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Abstract: In this paper, by applying the Hilbert Uniqueness Method in a non-cylindrical domain,
we prove the exact null controllability of one wave equation with a moving boundary. The moving
endpoint of this wave equation has a Neumann-type boundary condition, while the fixed endpoint
has a Dirichlet boundary condition. We derived the exact null controllability and obtained an exact
controllability time of the wave equation.
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1. Introduction

Notations:

The exact controllability of partial differential equations is a classical problem in
cybernetics, and in particular the exact controllability of wave equations has been a very
active area of research. A large number of research results have been achieved in cylindrical
domains. Furthermore, applications of such equations in non-cylindrical domains are
also very extensive. In the physical sense, many processes take place in domains with
moving boundaries. A typical example is the interface of an ice–water mixture when the
temperature rises. Therefore, it is necessary to study problems of the exact controllability
of wave equations, which have moving or free boundaries.

Given T > 0. Q̂k
T denotes a non-cylindrical domain in R2, defined by

Q̂k
T = {(x, t) ∈ R2; 0 < x < αk(t), f or all t ∈ (0, T)},

where
αk(t) = 1 + kt. (1)

let
V(0, αk(t)) =

{
ϕ ∈ H1(0, αk(t)); ϕ(0) = 0

}
f or t ∈ [0, T],

which is a subspace of H1(0, αk(t)). [V(0, αk(t))]′ denotes its conjugate space.
Consider the motion of a string with one endpoint fixed and the other moving. It can

be described by the wave equation in the non-cylindrical domain Q̂k
T , as follows:

utt − uxx = 0 in Q̂k
T ,

u(0, t) = 0 ux(αk(t), t) = v(t) on (0, T),

u(x, 0) = u0(x) ut(x, 0) = u1(x) in (0, 1),

(2)

where v is the control variable and u is the state variable. (u0, u1) ∈ L2(0, 1)× [V(0, 1)]′ is
any given initial value. The constant k is called the speed of the moving endpoint. Using
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a similar method to that in [1,2], in the sense of a transposition, system (2) has a unique
weak solution.

u ∈ C([0, T]; L2(0, αk(t))) ∩ C1([0, T]; [V(0, αk(t))]′).

Control problems can be seen everywhere in science, technology, and engineering
practice. The theory of controllability of distributed parameter systems has become an
important branch of modern mathematics. Control is categorized in different ways. Ac-
cording to the location of control in the system, control is categorized as boundary control
and internal control; according to the relationship between the isochronous region and
target, control is categorized as exact control, approximate control, and null control. In this
paper, we mainly considered exact controllability and exact null controllability, which are
equivalent in wave equations.

The controllability problem of wave equations in cylindrical domains has already
been studied by different authors. However, in non-cylindrical domains, little work has
been undertaken on wave equations (see [1–10]). The research in [1–3] dealt with the wave
equation with Dirichlet boundary conditions. In [4], a globally distributed control was
obtained through the stabilization of the wave equation. In [5,6], the wave equation was
studied as follows: 

utt − uyy = 0 in Q̂k
T ,

u(0, t) = 0 u(αk(t), t) = v(t) on (0, T),

u(y, 0) = u0(y) ut(y, 0) = u1(y) in (0, 1),

in which [6] improved the exact controllability time of [5]. In [5], the exact controllability
of system (2) was obtained by transforming the non-cylindrical domain into a cylindrical
domain. In [9,10], I studied the internal exact controllability of wave equations in one di-
mension. In [11,12], null controllability of heat equations were discussed. In this article, we
took a direct calculation in a non-cylindrical domain to obtain the exact null controllability
of (2) when k ∈ (0,

√
3

2 ). But the exact controllability of (2) when k ∈ (
√

3
2 , 1) is still an open

problem, and we shall try to address it in the future.
We know the essence of the Hilbert Uniqueness Method: the exact controllability of

the original system is equivalent to the observability of a certain dual system (for details,
see [2]). This article is organized as follows: in Section 2, we introduce definitions of exact
controllability and exact null controllability, and also show the main conclusion of this
article. In Section 3, we obtain Lemmas 1 and 2 by using the multiplier method, and by
combining the above two lemmas we prove Theorem 2 (observability). In Section 4, with
the conclusion of observability of the dual system, we obtain the exact null controllability
of the original system according to the Hilbert Uniqueness Method.

2. Preliminary Work and Main Results

First, we will give definitions of exact null controllability and exact controllability,
as follows:

Definition 1. Equation (2) is named exact null controllable at the time T, if for any given
initial value

(u0, u1) ∈ L2(0, 1)× [V(0, 1)]′,

one can always find a control v ∈ [H1(0, T)]′, such that the corresponding solution u of (2) in the
sense of a transposition satisfies

u(T) = 0 , ut(T) = 0.

Definition 2. Equation (2) is named exactly controllable at the time T, if for any given initial value

(u0, u1) ∈ L2(0, 1)× [V(0, 1)]′,
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and any target function

(u0
d, u1

d) ∈ L2(0, αk(T))× [V(0, αk(T))]′,

one can always find a control v1 ∈ [H1(0, T)]′, such that the corresponding solution u of (2) in the
sense of a transposition satisfies

u(T) = u0
d , ut(T) = u1

d.

Throughout this paper, we shall write

T∗k =
2

1− k
(3)

for the controllability time. The specific proof will be given later in this paper.
The following Theorem 1 is the focus of our proof in this paper.

Theorem 1. For any given T > T∗k , (2) is exactly null controllable at time T in the sense of
Definition 1.

From calculations, we know that the dual system of (2) is as follows:
ztt − zxx = 0 in Q̂k

T ,

z(0, t) = 0 zx(αk(t), t) + 2kzt(αk(t), t) = 0 on (0, T),

z(x, 0) = z0(x) zt(x, 0) = z1(x) in (0, 1),

(4)

where (z0, z1) ∈ V(0, 1) × L2(0, 1) is any given initial value. We learn that system (4) has a
unique weak solution from [1].

z ∈ C1([0, T]; V(0, αk(t))) ∩ C([0, T]; L2(0, αk(t))).

The key to proving Theorem 1 lies in proving the observability of system (4), which is described
as follows:

Theorem 2. Let T > T∗k . For any (z0, z1) ∈ V(0, 1)× L2(0, 1), there exists a constant C > 0,
such that the corresponding solution z of (4) satisfies

C(|z0|2V(0,1) + |z
1|2L2(0,1))

≤
∫ T

0 |zt(αk(t), t)|2dt

≤ C(|z0|2V(0,1) + |z
1|2L2(0,1)).

(5)

Remark 1. It is easy to verify

T0 = lim
k→0

T∗k = lim
k→0

2
1− k

= 2.

The time T0 = 2 is in accord with the controllability time obtained in [2].

Remark 2. In fact, for a more general function αk(t), where 0 < αk
′(t) <

√
3

2 , we can obtain the
same results as in this paper.

Remark 3. We define C to be a positive constant related only to T and k. C may not be the same in
different places.

The weighted energy function for (4) can be defined:

E(t) =
1
2

∫ αk(t)

0
[|zt(x, t)|2+|zx(x, t)|2]dx f or t ≥ 0, (6)
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where z is the solution of (4). It is obvious that

E(0) =
1
2

∫ 1

0
[|z1(x)|2+|z0

x(x)|2]dx.

3. Proof of Theorem 2 (Observability)

To prove the observability of system (4), we would first take the multiplier method
in the non-cylindrical domain (0, αk(s))× (0, t) for any t ∈ [0, T] to obtain the following
Lemmas 1 and 2. Then, combining the above Lemmas, we can obtain two important
observability inequalities for system (4), which proves the observability of system (4). The
specific proof process is as follows:

Lemma 1. For any (z0, z1) ∈ V(0, 1)× L2(0, 1) and t ∈ [0, T], the corresponding solution z of
(4) satisfies

E(t)− E(0) =
k(4k2 − 3)

2

∫ t

0
|zs(αk(s), s)|2ds. (7)

Proof. By multiplying the first equation in (4) by zs(x, s) while integrating on (0, αk(s))× (0, t), for
any t ∈ [0, T], we have the following equation:

0 =
∫ t

0

∫ αk(s)
0 [zss(x, s)− zxx(x, s)]zs(x, s)dxds

= 1
2

∫ t
0

∫ αk(s)
0 [|zs(x, s)|2 + |zx(x, s)|2]sdxds

−
∫ t

0

∫ αk(s)
0 (zs(x, s)zx(x, s))xdxds.

(8)

Since αk,s(s) = k, it follows from this above equality that

0 = 1
2

∫ t
0

∂
∂s

∫ αk(s)
0 [|zs(x, s)|2 + |zx(x, s)|2]dxds

− k
2

∫ t
0 [|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds

−
∫ t

0 zs(x, s)zx(x, s)
∣∣∣αk(s)
0 ds

= 1
2

∫ αk(t)
0 [|zt(x, t)|2 + |zx(x, t)|2]dx

− 1
2

∫ 1
0 [|zt(x, 0)|2 + |zx(x, 0)|2]dx

− k
2

∫ t
0 [|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds

−
∫ t

0 zs(αk(s), s)zx(αk(s), s)ds

+
∫ t

0 zs(0, s)zx(0, s)ds.

(9)

From z(0, s) = 0, we can find

zs(0, s) = 0. (10)

Considering the definition of E(t), E(0) and (10), it follows from (9) that

E(t)− E(0)

= k
2

∫ t
0 [|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds

+
∫ t

0 zs(αk(s), s)zx(αk(s), s)ds.

(11)

Note that
zx(αk(s), s) = −2kzs(αk(s), s). (12)
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It is obvious that

E(t)− E(0)

= k
2

∫ t
0 [|zs(αk(s), s)|2 + | − 2kzs(αk(s), s)|2]ds

−2k
∫ t

0 zs(αk(s), s)zs(αk(s), s)ds

= k(4k2−3)
2

∫ t
0 |zs(αk(s), s)|2ds.

(13)

�

Remark 4. For k ∈ (0,
√

3
2 ), according to (7), it is not difficult to verify

E′(t) =
k(4k2 − 3)

2
|zt(αk(t), t)|2 < 0.

We can find that E(t) is a monotonically decreasing function, and

E(t) < E(0). (14)

Lemma 2. For any (z0, z1) ∈ V(0, 1)× L2(0, 1) and t ∈ [0, T], the corresponding solution z of
(4) satisfies ∫ T

0 αk(t)|zt(αk(t), t)|2dt

= 2
∫ T

0 E(t)dt + 2
∫ αk(T)

0 xzt(x, T)zx(x, T)dx− 2
∫ 1

0 xzt(x, 0)zx(x, 0)dx.
(15)

Proof. By multiplying the first equation of (4) by 2xzx(x, s) while integrating on Q̂k
T , we

can find the following equation:

0 =
∫ T

0

∫ αk(t)
0 [ztt(x, t)− zxx(x, t)]2xzx(x, t)dxdt

= 2
∫ T

0

∫ αk(t)
0 (xzt(x, t)zx(x, t))tdxdt

−
∫ T

0

∫ αk(t)
0 [x|zt(x, t)|2 + x|zx(x, t)|2]xdxdt

+
∫ T

0

∫ αk(t)
0 [|zt(x, t)|2 + |zx(x, t)|2]dxdt.

(16)

Since
αk,t(t) = k (17)

and the definition of E(t), we can conclude:

0 = 2
∫ T

0
∂
∂t

∫ αk(t)
0 xzt(x, t)zx(x, t)dxdt

−2k
∫ T

0 αk(t)zt(αk(t), t)zx(αk(t), t)dt

−
∫ T

0 x[|zt(x, t)|2 + |zx(x, t)|2]
∣∣∣αk(t)
0 dt + 2

∫ T
0 E(t)dt

= 2
∫ αk(T)

0 xzt(x, T)zx(x, T)dx

−2
∫ 1

0 xzt(x, 0)zx(x, 0)dx

−2k
∫ T

0 αk(t)zt(αk(t), t)zx(αk(t), t)dt

−
∫ T

0 αk(t)[|zt(αk(t), t)|2 + |zx(αk(t), t)|2]dt

+2
∫ T

0 E(t)dt.

(18)
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From zx(αk(t), t) = −2kzt(αk(t), t), we can deduce that∫ T
0 αk(t)|zt(αk(t), t)|2dt

= 2
∫ T

0 E(t)dt + 2
∫ αk(T)

0 xzt(x, T)zx(x, T)dx

−2
∫ 1

0 xzt(x, 0)zx(x, 0)dx.

(19)

Combining Lemmas 1 and 2, we can prove Theorem 2. The proof process is divided
into two steps. �

Proof of Theorem 2.
Step 1. We complete the proof of the first inequality of (5). From the Cauchy inequality,

it is easy to deduce that:∣∣∣∣2∫ αk(T)

0
xzt(x, t)zx(x, t)dx

∣∣∣∣ ≤ 2αk(T)E(T), (20)

∣∣∣∣2∫ 1

0
xzt(x, 0)zx(x, 0)dx

∣∣∣∣ ≤ 2E(0). (21)

Combining (14), (15), (20) and (21), it holds that∫ T
0 αk(t)|zt(αk(t), t)|2dt

= 2
∫ T

0 E(t)dt + 2
∫ αk(T)

0 xzt(x, T)zx(x, T)dx

−2
∫ 1

0 xzt(x, 0)zx(x, 0)dx

≥ 2
∫ T

0 E(t)dt− 2αk(T)E(T)− 2E(0)

≥ 2
∫ T

0 E(t)dt− 2αk(T)E(0)− 2E(0).

(22)

From (7), we can deduce that∫ T
0 αk(t)|zt(αk(t), t)|2dt

≥ 2
∫ T

0 E(0) + k(4k2−3)
2

∫ t
0 |zs(αk(s), s)|2dsdt

−2αk(T)E(0)− 2E(0).

(23)

From this, it follows that

[αk(T)− k(4k2 − 3)T]
∫ T

0 |zt(αk(t), t)|2dt

≥ 2(T − αk(T)− 1)E(0).
(24)

Hence, if T > T∗k (see (3) for the definition of T∗k ), 2[(T − αk(T))− 1] > 0, and from
this inequality and (24), we can obtain∫ T

0 |zt(αk(t), t)|2dt

≥ C[2(T − αk(T)− 1)]E(0)

≥ C[2(T − αk(T)− 1)](|z0|2V(0,1) + |z
1|2L2(0,1)).

(25)
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Step 2. We shall prove the second inequality of (5). From (14), (15), (20) and (21), we
can obtain ∫ T

0 αk(t)|zt(αk(t), t)|2dt

= 2
∫ T

0 E(t)dt + 2
∫ αk(T)

0 xzt(x, T)zx(x, T)dx

−2
∫ 1

0 xzt(x, 0)zx(x, 0)dx

≤ 2
∫ T

0 E(t)dt + 2αk(T)E(T) + 2E(0)

≤ 2(T + αk(T) + 1)E(0).

(26)

Further, we have∫ T
0 |zt(αk(t), t)|2dt

≤ C[2(T + αk(T) + 1)]E(0)

≤ C[2(T + αk(T) + 1)](|z0|2V(0,1) + |z
1|2L2(0,1)).

(27)

Combining (25) and (27), we can conclude that

C(|z0|2V(0,1) + |z
1|2L2(0,1))

≤
∫ T

0 |zt(αk(t), t)|2dt

≤ C(|z0|2V(0,1) + |z
1|2L2(0,1)).

Hence, we can complete the proof of Theorem 2. �

4. Proof of Theorem 1 (Controllability)

From the proof of Section 3, we can obtain the observability of system (4). Based on the
Hilbert Uniqueness Method, we can learn that the controllability of system (2) is equivalent
to the observability of system (4).

In fact, Theorem 1 is equivalent to showing that, given the initial data
(u0, u1) ∈ L2(0, 1) × [V(0, 1)]′, we can find a control v(t) ∈ [H1(0, T)]′ such that the
solution of system (2) satisfies

u(T) = 0 and ut(T) = 0.

Proof of Theorem 1. We can complete the proof in the following three steps.
Step 1. We define the linear operator as Γ : V(0, 1)× L2(0, 1)→ [V(0, 1)]′ × L2(0, 1).
For any (z0, z1) ∈ V(0, 1)× L2(0, 1), we denote z as the corresponding solution of (4).

Now, we consider the wave equation:
ξtt − ξxx = 0 in Q̂k

T ,

ξ(0, t) = 0 ξx(αk(t), t) = Gz(αk(t),t) on (0, T),

ξ(x, T) = 0 ξt(x, T) = 0 in (0, 1).
(28)

It is worth noting that here Gz(αk(t),t) is defined as follows:〈
Gz(αk(t),t), φ

〉
((H1(0,T))′ ,H1(0,T))

=
∫ T

0
zt(αk(t), t)φt(t)dt, f or any φ ∈ H1(0, T). (29)

From [1], we know that (28), in the sense of a transposition, has a unique weak solution
ξ. We set the following:

(ξ0, ξ1) , (ξ(x, 0), ξt(x, 0)) ∈ L2(0, 1)× [V(0, 1)]′.
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Now, we define the operator:

Γ : V(0, 1)× L2(0, 1)→ L2(0, 1)× [V(0, 1)]′,

(z0, z1)→ (ξ0,−ξ1).

Therefore, 〈
Γ(z0, z1), (z0, z1)

〉
=
∫ 1

0
z1ξ0 − z0ξ1dx.

Step 2. By multiplying the first equation of (28) by z(x, t) while integrating on Q̂k
T , we

can obtain
0 =

∫ T
0

∫ αk(t)
0 [ξtt(x, t)− ξxx(x, t)]z(x, t)dxdt

=
∫ T

0

∫ αk(t)
0 [ξt(x, t)z(x, t)− ξ(x, t)zt(x, t)]tdxdt

−
∫ T

0

∫ αk(t)
0 [ξx(x, t)z(x, t)− ξ(x, t)zx(x, t)]xdxdt.

(30)

According to (17), it follows from (30) that

0 = [
∫ αk(t)

0 ξt(x, t)z(x, t)− ξ(x, t)zt(x, t)dx]
∣∣T
0

−k
∫ T

0 [ξt(αk(t), t)z(αk(t), t)− ξ(αk(t), t)zt(αk(t), t)]dt

−
∫ T

0 [ξx(x, t)z(x, t)− ξ(x, t)zx(x, t)]
∣∣∣αk(t)
0 dt

=
∫ αk(T)

0 ξt(x, T)z(x, T)− ξ(x, T)zt(x, T)dx

−
∫ 1

0 ξt(x, 0)z(x, 0)− ξ(x, 0)zt(x, 0)dx

−k
∫ T

0 [ξt(αk(t), t)z(αk(t), t)− ξ(αk(t), t)zt(αk(t), t)]dt

−
∫ T

0 [ξx(αk(t), t)z(αk(t), t)− ξ(αk(t), t)zx(αk(t), t)]dt

+
∫ T

0 [ξx(0, t)z(0, t)− ξ(0, t)zx(0, t)]dt.

(31)

Using the following conditions,

ξt(T) = ξ(T) = z(0, t) = ξ(0, t) = 0,

zx(αk(t), t) + 2kzt(αk(t), t) = 0.

From (31), we can conclude that∫ T

0
Gz(αk(t),t)z(αk(t), t)dt =

∫ 1

0
z1ξ0 − z0ξ1dx. (32)

From (29), it holds that∫ T

0
|zt(αk(t), t)|2dt =

∫ 1

0
z1ξ0 − z0ξ1dx. (33)

From Theorem 2, we can deduce that Γ is bounded and coercive. Hence, we can
conclude that Γ is an isomorphism using the Lax–Milgram Theorem.

Step 3. We can prove the exact null controllability of (2). Indeed, for any given
initial value

(u0, u1) ∈ L2(0, 1)× [V(0, 1)]′,

we choose
v(·) = Gz(·,t) ∈ (H1(0, T))′,

where z is the solution of (4) associated with Γ(z0, z1) = (u0,−u1).
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From the definition of Γ, we can deduce that

Γ(z0, z1) = (ξ0,−ξ1), (34)

where ξ is the solution of (28). Then, ξ satisfies

(ξ0,−ξ1) = (u0,−u1).

Considering the uniqueness of (28), u satisfies

(u(x, T), ut(x, T)) = (0, 0).

Hence, we can obtain the exact null controllability of (2). �

Remark 5. The exact null controllability of the wave equation is equivalent to its exact controllabil-
ity. The specific proof process is as follows:

For any (u0, u1) ∈ L2(0, 1)× [V(0, 1)]′, u denotes the solution of system (2). Consider the
system as follows: 

ηtt − ηxx = 0 in Q̂k
T ,

η(0, t) = 0 ηx(αk(t), t) = 0 on (0, T),

η(x, T) = u0
d(x) ηt(x, T) = u1

d(x) in (0, 1).

(35)

Since
Γ : V(0, 1)× L2(0, 1)→ L2(0, 1)× [V(0, 1)]′,

we can derive
(u0 − η0, u1 − η1) ∈ L2(0, 1)× [V(0, 1)]′.

From the definition of Γ, we can find z0, z1 such that the following equation holds:

Γ(z0, z1) = (u0 − η0, u1 − η1).

Therefore, combining (34), we can see

(ξ0,−ξ1) = (u0 − η0, η1 − u1).

This allows the conclusion that u = ξ + η satisfied both (2) and (28).
We can therefore complete the proof of Remark 5.

5. Conclusions

According to the essence of the Hilbert Uniqueness Method, in order to obtain the
exact null controllability of the original system, we need to obtain the observability of a
certain dual system. Thus, the main points of this article are as follows: Step 1. We proved
the observability of the dual system by proving two key inequalities in Section 3. Step 2.
The controllability of the original system was obtained based on the Hilbert Uniqueness
Method in Section 4. In the future, we will consider controllability problems of wave
equations with more complex conditions.
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