
Citation: Nikolaev, D.; Ershov, E.;

Kroshnin, A.; Limonova, E.;

Mukovozov, A.; Faradzhev, I. On a

Fast Hough/Radon Transform as a

Compact Summation Scheme over

Digital Straight Line Segments.

Mathematics 2023, 11, 3336. https://

doi.org/10.3390/math11153336

Academic Editors: Roman Parovik,

Kholmat Mahkambaevich

Shadimetov and Abdullo

Rakhmonovich Hayotov

Received: 3 June 2023

Revised: 25 July 2023

Accepted: 27 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On a Fast Hough/Radon Transform as a Compact Summation
Scheme over Digital Straight Line Segments
Dmitry Nikolaev 1,2,* , Egor Ershov 1 , Alexey Kroshnin 1,3 , Elena Limonova 2,4,* , Arseniy Mukovozov 2

and Igor Faradzhev 2,†

1 Institute for Information Transmission Problems RAS, 127051 Moscow, Russia; ershov@iitp.ru (E.E.)
2 Smart Engines Service LLC, 117312 Moscow, Russia
3 International Laboratory of Stochastic Algorithms and High-Dimensional Inference, Higher School of

Economics, 109028 Moscow, Russia; akroshnin@hse.ru (A.K.)
4 Federal Research Center Computer Science and Control RAS, 119333 Moscow, Russia
* Correspondence: dimonstr@iitp.ru (D.N.); limonova@smartengines.com (E.L.)
† Deceased.

Abstract: The Hough transform, interpreted as the discretization of the Radon transform, is a widely
used tool in image processing and machine vision. The primary way to speed it up is to employ
the Brady–Yong algorithm. However, the accuracy of the straight line discretization utilized in
this algorithm is limited. In this study, we propose a novel algorithm called ASD2 that offers
fast computation of the Hough transform for images of arbitrary sizes. Our approach adopts a
computation scheme similar to the Brady–Yong algorithm but incorporates the best possible line
discretization for improved accuracy. By employing the Method of Four Russians, we demonstrate
that for an image of size n× n where n = 8q and q ∈ N, the computational complexity of the ASD2
algorithm is O(n8/3) when summing over O(n2) digital straight line segments.

Keywords: fast Hough transform; fast discrete Radon transform; digital straight lines

MSC: 65D18

1. Introduction

In this paper, we propose a new fast algorithm for calculating sums along a large
number of discrete lines in an image. Such algorithms are called fast Hough transform
(fast HT, FHT) or fast discrete Radon transform algorithms [1]. HT was initially positioned
as a method for identifying certain graphic primitives in images, such as lines, ellipses,
or their segments [2]. Over time, its scope of application has significantly expanded.
Some examples of HT application areas that are very far from the search for segments
include color segmentation and determination of illumination chromaticity [3–5], as well
as automatic determination of optical aberration parameters [6–8].

Similarly to Fourier transform, HT requires fast algorithms for its calculation. The
use of fast algorithms is all the more justified the higher the requirements for computa-
tional efficiency in the applied problem being solved. Especially stringent performance
requirements are imposed on the visual systems of unmanned vehicles. The hardware
of such systems can be configured according to the requirements for weight, dimensions,
and power consumption, so the computational optimization of the algorithms used on
a particular computer becomes extremely important. Therefore, fast algorithms for HT
computation have become an almost integral part of such systems. They are most often
used to search for road marking elements [9,10], and many authors have created algorithms
designed for embedded devices [11–13].

The problem of energy efficiency is also key for systems running on mobile devices [14],
which also actively use fast HT calculation. Document recognition systems use HT to search

Mathematics 2023, 11, 3336. https://doi.org/10.3390/math11153336 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11153336
https://doi.org/10.3390/math11153336
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5560-7668
https://orcid.org/0000-0001-6797-6284
https://orcid.org/0000-0003-3321-6409
https://orcid.org/0000-0001-7673-9109
https://doi.org/10.3390/math11153336
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11153336?type=check_update&version=2

Mathematics 2023, 11, 3336 2 of 22

for quadrangles of document boundaries [15–17] or for parallel-segment patterns. Parallel
beam search algorithms using FHT can find the slope of a document [18–20] or its individual
characters [21,22] in an image. Another part of the recognition process on mobile devices
that uses FHT is barcode detection [23].

For somewhat different reasons, FHT is used in X-ray computed tomography [1,24–26].
With significant computing resources involved, the desired reconstruction resolution pa-
rameters have not yet been achieved, so the volumes of processed data are constantly
growing, which, when using asymptotically inefficient algorithms, sooner or later leads to
a resource shortage. On the contrary, using the correct algorithmic base allows for a much
more flexible approach to managing the applied resources. In addition, the task of speeding
up reconstruction is extremely relevant for a new class of online methods that allow for
real-time evaluation and correction of tomographic measurement parameters [27].

What is interesting is that the use of classical algorithms with FHT does not contradict
the development of neural network methods but allows them to be more computationally
efficient. A new field in recognition is the construction of so-called Hough networks based
on classical convolutional networks. Such networks include an untrainable layer that
calculates the discretization of the Radon transform. This layer allows for the extraction of
information about lines and segments in an image, even if the receptive fields of convolu-
tional neurons are small, unlike classical convolutional layers [28–30]. This effect is most
easily demonstrated by comparing neural network line and segment search methods [31,32].
In recognizing more complex objects with deep learning methods, using FHT also improves
the ratio of recognition accuracy and the required amount of computations [33,34]. In addi-
tion, currently the main architectures used in neural network tomographic reconstruction
methods contain Hough/Radon layers [35–37].

This paper proposes a new Hough transform fast computation algorithm that is more
accurate than the Brady–Yong algorithm [1].

2. Related Works

The Hough transform in image processing is usually understood as a method of robust
estimation of the parameters of one or more lines in a discrete image by counting the number
of points lying on each set of discrete lines. The method is named after Paul V. C. Hough,
who first proposed it in 1959 [38] and, in 1962, received, on its basis, the patent, “Method
and means for recognizing complex patterns” [39]. It is noteworthy that neither the original
publication nor Hough’s patent provides a formal definition of the proposed transform.
Neither text contains a single mathematical formula. In his historical excursus on the
invention of HT, authoritative researcher in classical visual pattern recognition Peter Hart
claims [40] that it was Azriel Rosenfeld who first formalized HT, at least partially, in his
book on image processing that was published in 1969 [41]. HT (and its very name) gained
wide popularity following the publication in of an article in 1972 coauthored by Richard
Duda and Peter Hart himself [2].

In 1981, Stanley Deans drew attention [42] to the extreme similarity of the Hough
transform and the Radon transform introduced by the latter back in 1917 [43]. In his work,
Deans argues that the Radon transform has all the properties of HT (according to R. Duda
and P. Hart’s interpretation [2]) and proposes the generalization of the Radon transform for
curved lines. In their detailed review devoted to HT published in 1988 [44], J. Illingworth
and J. Kittler consider, among other things, the work of S. Deans and claim that HT is
a special case of the Radon transform, adding that when it comes to binary images, the
transforms coincide.

In 1992, Martin Brady and Whanki Yong published a paper on the fast approximate

discrete Radon transform [1] for square images of linear size n def
= 2q, q ∈ N. In its anno-

tation and conclusion, the authors use the names of the Hough and Radon transforms
interchangeably. The method they proposed is based on dynamic programming, which
is used to skip the repeated calculation of the sums of already processed segments when
computing the sum along the line they constitute. This allows for calculation of the HT for

Mathematics 2023, 11, 3336 3 of 22

an n× n-sized image in Θ(n2 log n) summations (with the complexity of the naive method
Θ(n3)). Six years later, M. Brady once again published a description of this method, this
time without coauthors [45]. Figure 1 explains due to which intersections of patterns (sets
of pixel positions) in the discrete case some of the sub-sums participate in the computation
of several sums, making it more efficient.

0 1 2 3 4 5 6 7
i

0

1

2

3

4

5

6

7
j

Figure 1. Intersection of two patterns approximating closely spaced straight line segments. The
diagonal left shading and lighter gray show the individual part of the pattern with coordinates
j = [4 i/7 + 2], while the right shading and darker gray represent the individual part of the pattern
with coordinates j = [5 i/7 + 2]. The checkered area represents the shared part.

The Brady–Yong method was apparently also independently developed by Walter
Götz, who published it in his PhD thesis in German in 1993. This work was reprinted in
an English-language article by W. Götz and H. Druckmüller, published twice (in 1995 and
1996) in the same journal [46,47]. The two versions of the article are not completely identical,
but their differences are, at first glance, quite minor. Another author who published the
same method in 1994 is well-known French algorithmist Jean Vuillemin [48]. However,
all the works mentioned here were published later than those of M. Brady and W. Yong.
Therefore, in this paper, the method is referred to by the names of the latter.

The Brady–Yong method is an approximate method in the sense that the pixel sets it
sums over are not the best possible line approximations. In 2021, Simon Karpenko and Egor
Ershov published a proof that the maximum orthotropic error of approximating geometric
lines in the Brady–Yong method is (log2 n)/6 for cases of even binary powers (q) of linear
image size n = 2q and (log2 n)/6− 1/18 for odd binary powers [49]. Here, the orthotropic
error is understood as the error along the y axis for lines defined by the equation y = k x + b,
|k| ≤ 1 and along the x axis for lines defined by the equation x = k y + b, |k| < 1.

Brady’s approach is not the sole method for constructing fast Radon transform algo-
rithms with a computational complexity of Ω(n2 log n). Another approach is the pseu-
dopolar Fourier transform [50]. The algorithm based on this approach is also known as
the slant–stack algorithm. Despite having the same asymptotic complexity as the Brady–
Yong algorithm, the slant–stack algorithm involves complex multiplications, whereas the
Brady–Yong algorithm utilizes only additions and can be easily implemented using inte-
gers, thereby allowing for enhanced performance with various SIMD architectures [51].
However, it is important to note that the slant–stack algorithm is not considered to be
highly accurate. Levi and Efros [52] showed weight maps defined on the input raster which
corresponded to the algorithm’s outputs. These weight maps deviated significantly from
the expected line discretization. Furthermore, some weights can be negative, resulting in
unexpected effects, where the computed Radon image may contain negative values despite
having a non-negative preimage. Consequently, ref. [52] proposed an alternative algorithm
that is more accurate but slower in terms of execution. Comparing summation-based algo-
rithms directly with algorithms that use soft line discretization poses challenges because
the ideal discrete representation of a line depends on the nature of the input data and the
specific problem being addressed. In this study, we focus solely on algorithms that define
lines in a binary manner. These representations provide a basis for discussing accuracy.

Mathematics 2023, 11, 3336 4 of 22

Back in 1974, A. Rosenfeld considered the optimal discretization of line segments,
calling its result digital straight line segments (DSLS) [53]. The orthotropic error for DSLS
is limited to the constant 1/2. Thus, even for images with size n = 16, the error for discrete
Brady–Yong patterns becomes significant compared to DSLS. Figure 2 shows the difference
between DSLS and Brady–Yong approximation for a line defined by the equation j = 6 i/15.
Figure 3 presents a visualization of the distribution of coordinate error in the Brady–Yong
approximation along a line segment for a large image size of n = 4096.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i

0
1
2
3
4
5
6
7

j

Figure 2. Relative position of the ideal line and its Brady–Yong and DSLS discretizations for n = 16,
k = 6/15. The diagonal left shading and lighter gray represent DSLS discretization, and the diagonal
right shading and darker gray represent Brady–Yong discretization.

0 500 1000 1500 2000 2500 3000 3500 4000
x

−2
−1

0
1
2

∆
y

Figure 3. The deviation of Brady–Yong discretization from the ideal line described by the equation
y = x/3 along the y axis for an image size of n = 4096.

Regrettably, there is a lack of research studies that assess the extent to which the
mentioned geometric deviations influence the accuracy of applied algorithms utilizing the
Brady–Yong method. Nevertheless, this does not imply that the impact is insignificant.
Namely, in [25] the authors showed that the acceleration of the tomographic reconstruction
method through the convolution and backprojection using the Brady–Yong algorithm
results in an approximate doubling of the RMSE of the reconstruction, which is a significant
quality loss.

According to these facts, two related questions arise: is it possible to build a faster
and/or more accurate FHT algorithm than the algorithm proposed by Brady and Yong?
The first question, apparently (the work was not peer-reviewed), was answered by Timur
Khanipov in 2018 [54], who showed that the complexity of the problem of computing a
dense Hough image using Brady–Yong dyadic patterns is Ω(n2 log n), that is, their method
cannot be improved in terms of speed. In the same work, T. Khanipov showed that this
estimate is also true for DSLS-based FHT computations. The same year, he proposed,
apparently for the first time, a method for accelerated DSLS-based FHT computation [55]
with an asymptotic computational complexity of O(n3/ log n). Just like the Brady–Yong
method, the Khanipov method relies solely on summations and achieves acceleration
by reusing common sub-sums. The hierarchy of sub-sums is built through an iterative
process of refining patterns, where patterns with different slopes are intersected. In essence,
while the Brady–Yong method employs a hierarchical division of the image, the Khanipov
method employs a hierarchical division of the pattern set based on the patterns’ slopes.
It is important to note that this method is presented as an abstract mathematical scheme,
which means that additional efforts are necessary to turn it into a specific algorithm. It
is clear that the difference between the achieved complexity and the previously obtained

Mathematics 2023, 11, 3336 5 of 22

estimate is significant and leaves room for more efficient algorithms and/or more accurate
lower bounds.

What is interesting to note here is that the algorithm, which is a fast (Θ(n2 log n)) and
exact discrete Radon transform, has already been constructed [56]. However, this does not
negate the problem under discussion. The fact is that this and other works investigating
fast algorithms for computation of the discrete Fourier transform have used a different
definition of the discrete Radon transform (going back to the 1988 work of I. Gertner [57]).
In it, the sets of raster nodes over which the summation is performed are given by linear
congruent sequences. For Zn residue rings, such sequences are directly analogous to linear
functions, but the resulting sets differ significantly from DSLS. In particular, most of them
are not connected because for them, k is an integer. Figure 4 illustrates these differences.

(a) (b)

0 1 2 3 4 5 6 7
i

0

1

2

3

4

5

6

7

j

0 1 2 3 4 5 6 7
i

0

1

2

3

4

5

6

7

j

Figure 4. Examples of a set of raster nodes (pixels marked gray), the sum of which is equal to the
value of the discrete Radon transform at some point: (a) for the transform as proposed by I. Gertner
(k = 3, b = 1) and (b) for the Hough transform using DSLS (k = 0.4, b = 1.8). The linear size of the
raster is n = 8.

Another approach to the development of computational schemes for FHT is to con-
struct fast generalized Hough transforms (FGHTs) [58]. In this method, the development
of the FGHT algorithm (including the FHT for DSLS) is treated as an optimization prob-
lem and solved numerically. The disadvantages of this approach include the fact that
the scheme has to be calculated separately for each size of input image. In addition, the
problem of finding the optimal FGHT generally coincides with the NP-complete problem
named “ensemble computation” up to notation (p. 66 [59]). At the same time, approximate
approaches with acceptable complexity used for this task are rather primitive (they are
based on the greedy strategy [58,60]), and their theoretical efficiency is unknown. As a
consequence, estimates of the asymptotic complexity of the resulting FHT computational
schemes still have not been obtained.

Thus, in this paper, we solve the problem of constructing a fast algorithm for calcula-
tion of the Hough/Radon transform, similar to the Brady–Yong algorithm [1]. Unlike the
latter, the proposed algorithm uses a more accurate straight line approximation—DSLS.
The closest analog is the Khanipov method [55], but our algorithm has a lower asymp-
totic complexity.

The remainder of this article is structured as follows. Section 3 introduces the necessary
definitions, estimates the cardinality of the set of all DSLS in an image, and considers two
algorithms for summing over it: naive AFNA, which does not reuse matching sub-sums,
and accelerated AFD2, which uses a divide-and-conquer scheme. Section 4 specifies the
DSLS subset of cardinality (Θ(n2)) to be calculated and proposes the AS4R algorithm for
its computation with O(n8/3) summations. Section 5 considers the final ASD2 algorithm.
We show that the number of summations for it is not worse than for AS4R. Finally, the
complexity of other operations used in the algorithm is estimated, and the conclusion is
drawn that they do not worsen the asymptotic estimate. Section 6 recaps and discusses the
obtained results.

Mathematics 2023, 11, 3336 6 of 22

3. Hough (Discrete Radon) Transform Algorithms for a Full Set of Digital Straight
Line Segments
3.1. Basic Definitions and Statements

In this section, we estimate the total number of DSLS approximating straight line
segments intersecting an image section of size w× h, w, h ∈ N in such a way that both ends
of the segment are located on the section boundary. The image section is understood as the

rectangle Ωw,h
def
=[−0.5, w− 0.5)× [−0.5, h− 0.5) ⊂ R2. The proper image is the mapping

Iw,h : Z2
w,h → A, where Z2

w,h
def
= Zw ×Zh and (A,+) is an Abelian semigroup with a neutral

element. dom Iw,h is called a raster. Raster elements are called positions, and sets (including
ordered sets) of the positions are called patterns.

The considered DSLS are expressed in one of two ways depending on the slope of the
line being approximated:

pH
w,h(k, b) def

=
{
(i, j) ∈ Z2

w,h

∣∣∣ j = [k i + b]
}

, k ∈ (−1, 1] ⊂ R, b ∈ R,

pV
w,h(k, b) def

=
{
(i, j) ∈ Z2

w,h

∣∣∣ i = [k j + b]
}

, k ∈ [−1, 1) ⊂ R, b ∈ R.
(1)

The set (Sw,h) of all considered DSLS is the union of all such patterns and is defined
as follows:

Sw,h
def
= SH

w,h ∪ SV
w,h,

SH
w,h

def
=
{

p
∣∣∣∃k, b : p = pH

w,h(k, b) ∧ p 6= ∅
}

,

SV
w,h

def
=
{

p
∣∣∣∃k, b : p = pV

w,h(k, b) ∧ p 6= ∅
}

.

(2)

Patterns pH
w,h(k, b) and pV

h,w(k, b) differ only in the order of coordinates; therefore, we
do not consider patterns from SV further. Additionally,∣∣Sw,h

∣∣ ≤ ∣∣∣SH
w,h

∣∣∣+ ∣∣∣SH
h,w

∣∣∣. (3)

Patterns pH
w,h(k, b) and pH

w,h(−k,−b) are symmetric with respect to the first axis; there-
fore, ∣∣Sw,h

∣∣ ≤ 2
∣∣∣SH+

w,h

∣∣∣+ 2
∣∣∣SH+

h,w

∣∣∣, SH+
w,h

def
=
{

p
∣∣∣∃k ≥ 0, b : p = pH

w,h(k, b) ∧ p 6= ∅
}

, (4)

and the set SH− def
= SH \ SH+ is also not considered.

In what follows, some conclusions are based on the analysis of sets of S patterns closed
with respect to the vertical shift:

p ∈ S =⇒ p + (0, 1) ∈ S, p + (∆i, ∆j) def
={(i + ∆i, j + ∆j)|(i, j) ∈ p}, (5)

but SH+ does not have this property.
Let us define patterns for an image that is cyclically closed along the second coordinate:

pCH+
w,h (k, b) def

=
{
(i, j) ∈ Z2

w,h

∣∣∣ j = [k i + b] mod h
}

, k ∈ [0, 1] ⊂ R, b ∈ R. (6)

The patterns pCH+
w,h+w(k, b) and pH+

w,h (k, b) coincide on the raster Z2
w,h. Therefore,

∣∣Sw,h
∣∣ ≤ 2

∣∣∣SCH+
w,w+h

∣∣∣+ 2
∣∣∣SCH+

h,w+h

∣∣∣, SCH+
w,h

def
=
{

p
∣∣∣∃k, b : p = pCH+

w,h (k, b) ∧ p 6= ∅
}

. (7)

Mathematics 2023, 11, 3336 7 of 22

All patterns from SCH+
w,h include exactly one position in each column of the raster Z2

w,h,
where the set SCH+

w,h has property (5) (with a shift: ∆j ∈ Zh), which allows us to introduce
the set of generator patterns (GCH+

w,h):

SCH+
w,h =

{
p + (0, ∆j)

∣∣∣p ∈ GCH+
w,h ∩ ∆j ∈ Zh

}
, GCH+

w,h
def
=
{

p
∣∣∣p ∈ SCH+

w,h ∩ (0, 0) ∈ p
}

. (8)

where ∣∣∣SCH+
w,h

∣∣∣ = h
∣∣∣GCH+

w,h

∣∣∣, ∣∣Sw,h
∣∣ ≤ 2 (w + h)

(∣∣∣GCH+
w,w+h

∣∣∣+ ∣∣∣GCH+
h,w+h

∣∣∣). (9)

In what follows, we solve the problem of constructing sums of image elements (Iw,h)
given by patterns from SCH+

w,h . This also solves the problem for Sw,h, since we have traced
not only the relationship between the cardinalities of these sets but also the coincidence of
the geometry of their elements up to symmetries.

3.2. Digital Straight Line Segment Count

Let us find an upper estimate for
∣∣∣SH+

w,h

∣∣∣. To do this, we prove

Theorem 1.
∣∣∣GCH+

w,w+h

∣∣∣ ≤ w n1(w) ≤ w3, where

n1(w)
def
=

(w− 2) (w− 1)
2

+ 1. (10)

Proof. Let us estimate the number of patterns from SH+
w,h to which the positions (0, jl) and

(w− 1, jr) belong. All such patterns are given by parameter vectors ((k, b)) lying in the

following parallelogram: b ∈ [jl − 0.5, jl + 0.5), k ∈
[

jr − b− 0.5
w− 1

,
jr − b + 0.5

w− 1

)
. We denote

it as ω(jl , jr). Each of the image columns (i) has no more than two positions that can belong
to patterns from the considered set, since{

y = k x + b,
(k, b) ∈ ω(jl , jr)

=⇒ y ∈
[

jr − jl
w− 1

x + jl − 0.5,
jr − jl
w− 1

x + jl + 0.5
)

, (11)

that is, for (k, b) ∈ ω(jl , jr) and given i, the rounded value in definition (1) lies in a half
interval of length 1, and exactly one half-integer value belongs to such a half interval (see
Figure 5a).

We denote the half integer belonging to the half interval (11) for column i as ti. The
condition under which j > ti is satisfied in the position (i, j) specified by definition (1) is
linear with respect to the parameters of the following line: k i + b > ti; that is, the choice of
one of the two possible positions in column i is determined by the belonging of the point
(k, b) from ω(jl , jr) to one of the half planes.

With an image width of w, the choice of one of the two possible pixels occurs in w− 2
or fewer columns, and the pattern is formed by a combination of solutions in these columns.
The boundaries of k i + b > ti on the plane of parameters (k, b) of the lines form a partition
of the region (ω(jl , jr)). The original lines with parameters from ω(jl , jr) correspond to the
same pattern from SH+

w,h if and only if the corresponding points lie in the same partition
region (see Figure 5b–d).

The maximum number of regions that can result from dividing a plane by n straight
lines is n (n + 1)/2 + 1, as shown by Jacob Steiner in 1826 [61]. The same is true for a
convex region.

Therefore, the function n1(w) bounds from above the number of patterns with parameters
from ω(jl , jr). This is particularly true for ω(0, jr), where

∣∣∣GCH+
w,w+h

∣∣∣ ≤ w n1(w) ≤ w3.

Mathematics 2023, 11, 3336 8 of 22

(a) (b)

0 1 2 3 4 5
x

0

2

3

4

11

y
A

C

D

jl = 1

jr = 4
B

0 1/5 2/5 3/5 4/5 1
k

0.0

0.5

1.0

1.5

2.0

2.5

b

b = 3.5− 5k

b = 1.5

b = 0.5

b = 4.5− 5k
b = 3.5− 4k

b = 2.5− 3k
b = 1.5− k

b = 2.5− 2k ω(1, 4)

(c) (d)

0 1/5 2/5 3/5 4/5 1
k

0.0

0.5

1.0

1.5

2.0

2.5

b

ω(1, 4)

1/2

5/4

〈j(i)〉 = 〈1, 2, 2, 3, 3, 4〉

0 1 2 3 4 5
x

0

1

2

3

4

11

y

b = 5/4 + 1/2k

Figure 5. Counting the number of nearest patterns by partitioning the parameter space of lines for a
6× 12 raster. (a) Lines, the closest pattern for which includes {(0, jl), (w− 1, jr)}, lie nowhere above
segment AB and everywhere above segment CD; columns 0 < j < w− 1 for such lines have two
variants of the nearest position. (b) The choice in each column is determined by a linear division of
the region (ω(jl , jr)) of the considered lines in the parameter space ((k, b)). (c) The parameters of the
line y = 1/2 x + 5/4 lie in the region where the nearest pattern for any of the lines is p = (i, j(i))5

i=0.
(d) This can be verified by checking whether the line passes above or below the half-integer value in
each column.

Corollary 1.
∣∣∣SCH+

w,w+h

∣∣∣ ≤ w n1(w) (w + h).

Corollary 2.
∣∣∣SH+

w,h

∣∣∣ ≤ w n1(w) (w + h).

Consider Algorithm 1 (AFNA stands for “Algorithm, Full, NAive”), which sums the
values of the input image over all patterns from SCH+

w,h without taking into account their
possible intersections.

The AFNA function takes as input the dimensions of the raster (w and h), as well as
the input image (I).

The Build_Gchp(w, h) function returns a tuple of all patterns from GCH+
w,h . We do not

discuss the method or computational complexity of constructing such a tuple here, as we
subsequently eliminate the need for this function.

The Create_Zeroed_Image(w, h) function returns an empty w× h image (i.e., an image
with all values equal to the neutral element of A). An image of size w3 × h is sufficient to
store sums by patterns, since

∣∣∣GCH+
w,h

∣∣∣ ≤ ∣∣∣GCH+
w,w+h

∣∣∣, where
∣∣∣SCH+

w,h

∣∣∣ ≤ w3 h.
Based on the above, the number of summations within semigroup A in the AFNA

algorithm is
TAFNA(w, h) ≤ w2 n1(w) h. (12)

Up to this point, we have not been taking into account the summation of indices in
line 8 of Algorithm 1 and other operations.

Mathematics 2023, 11, 3336 9 of 22

Algorithm 1: Naive algorithm AFNA for summation of image values along
every pattern from set SCH+

w,h

1 Function AFNA(w, h, I) is
Input: w > 0, h > 0, image I : Z2

w,h → A
Output: image J : Z2

w3,h → A
2 pl ← Build_Gchp(w, h) ; // pl is a tuple of patterns
3 J ← Create_Zeroed_Image(w3, h) ; // J is an image
4 k← 0;
5 foreach p ∈ pl do // p is a pattern, i.e., tuple of positions
6 foreach 〈i, dj〉 ∈ p do
7 for j← 0 to h− 1 do
8 J(k, j)← J(k, j) + I(i, j + dj mod h);
9 end

10 end
11 k← k + 1;
12 end
13 end

3.3. Divide-and-Conquer Algorithm

Consider Algorithm 2 (AFD2 stands for “Algorithm, Full, Dividing by 2”), which
sums the values of the input image over all patterns from SCH+

w,h and uses the image width
bisection method to accomplish this.

Algorithm 2: Divide-and-conquer algorithm AFD2 for fast summation of image
values along every pattern from set SCH+

w,h

1 Function AFD2(w, h, I) is
Input: w > 0, h > 0, image I : Z2

w,h → A
Output: image J : Z2

w3,h → A
2 if w > 1 then
3 wL ← bw/2c;
4 wR ← w− wL;
5 IL ← Get_Image_Window(I, 0, 0, wL, h) ; // IL is an image
6 IR ← Get_Image_Window(I, wL, 0, wR, h) ; // IR is an image
7 JL ← AFD2(wL, h, IL) ; // JL is an image
8 JR ← AFD2(wR, h, IR) ; // JR is an image
9 pl ← Build_Gchp(w, h) ; // pl is a tuple of patterns

10 J ← Create_Zeroed_Image(w3, h) ; // J is an image
11 for k← 0 to |pl| − 1 do
12 p← pl(k) ; // p is a pattern, i.e., tuple of positions
13 kL ← Get_Subpattern_Index(w, h, k, 0, wL);
14 kR ← Get_Subpattern_Index(w, h, k, wL, wR);
15 posR ← p(wL) ; // posR is a position, i.e., pair of integers
16 for j← 0 to h− 1 do
17 J(k, j)← JL(kL, j) + JR(kR, j + posR(1) mod h);
18 end
19 end
20 else
21 J ← I;
22 end
23 end

Mathematics 2023, 11, 3336 10 of 22

The AFD2 algorithm uses two new functions.
The Get_Image_Window(I, l, t, w, h) function returns an orthotropic rectangular area

of the image (I) with the upper-left position (l, t), width (w), and height (h).
The Get_Subpattern_Index(w, h, k, i0, ws) function parses the pattern with index k from

the tuple constructed by the Build_Gchp(w, h) function. For its subpattern with the first
coordinate of positions i ∈ [i0, i0 + ws), the index of the generator pattern in the tuple is
found by the Build_Gchp(ws, h) function. Since Build_Gchp(w, h) constructs all patterns
from GCH+

w,h , the generator pattern can always be found. We do not discuss the method or
computational complexity of finding the subpattern index, as we subsequently eliminate
the need for this function.

Let us denote the number of summations within semigroup A in the AFD2 algorithm
as TAFD2(w, h).

Theorem 2. TAFD2(w, h) ≤ 2
3 w3 h.

Proof. Due to Theorem 1, TAFD2(w, h) satisfies the recurrent property:

TAFD2(w, h) ≤ TAFD2(wL, h) + TAFD2(wR, h) + w n1(w) h, w > 1,

TAFD2(1, h) = 0.
(13)

Let us show by induction that TAFD2(w, h) ≤ 2
3 w3 h. This holds for w = 1 and for

w ≥ 2 by inductive hypothesis:

1
h

TAFD2(w, h) ≤ 2
3

(⌈w
2

⌉3
+
⌊w

2

⌋3
)
+ w n1(w) ≤

≤ 2
3
(w− 1)3 + (w + 1)3

8
+

w2 − 3w + 4
2

w =

=
w3 + 3 w

6
+

w3 − 3 w2 + 4 w
2

=

=
2
3

w3 − 3
2

w2 +
5
2

w ≤ 2
3

w3.

(14)

4. O(n8/3) Summation Algorithm for O(n2) Digital Straight Line Segments

Both algorithms discussed above (AFNA and AFD2) compute sums for all patterns
from SCH+

w,h , among which there are many patterns that barely differ from each other. On
the other hand, the Brady–Yong algorithm computes only one pattern for a pair of pixels
located at opposite edges of the image. In his work, Brady notes that this number of
patterns provides reasonable accuracy [45]. We also consider a variant of the transform in
which only one sum is calculated for each pair of pixels at opposite edges of the image.
However, unlike the Brady–Yong algorithm, the deviation of the corresponding pattern
from the straight line is limited by a constant. We refer to patterns that approximate the
lines passing through the centers of pixels at opposite edges of the image as key patterns.

Let us introduce the set (GKCH+
w,h) of generator key patterns and the set (SKCH+

w,h) of all
key patterns as follows:

SKCH+
w,h

def
=
{

p + (0, ∆j)
∣∣∣p ∈ GKCH+

w,h ∩ ∆j ∈ Zh

}
,

GKCH+
w,h

def
=

{
pCH+

w,h

(
k

w− 1
, 0
)∣∣∣∣k ∈ [0, w) ⊂ Z

}
.

(15)

Obviously,

GKCH+
w,h ⊂ GCH+

w,h ,
∣∣∣GKCH+

w,h

∣∣∣ = w, SKCH+
w,h ⊂ SCH+

w,h ,
∣∣∣SKCH+

w,h

∣∣∣ = w h. (16)

Mathematics 2023, 11, 3336 11 of 22

Sparse Transformation and Method of Four Russians

When limiting the number of patterns for which the sums are required as the output,
the computational complexity of the naive summation algorithm decreases proportionally
to the number of patterns. If summed over the patterns from SKCH+

w,h , its complexity does
not exceed w2 h, since each pattern consists of w positions.

The restriction on the number of patterns allows for a reduction in the computational
complexity of the bisection algorithm if we do not compute partial patterns that do not
contribute to any of the final sums. However, it is not easy to estimate the complexity
of such an algorithm. We consider an algorithm with lower complexity than the naive
algorithm, estimate its complexity, and demonstrate that the bisection algorithm applied to
the given set of patterns has a complexity no greater than that of the former algorithm.

We use the adjustment of precalculation and inference complexity, which was first
proposed in 1970 by Soviet scientists V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and
I. A. Faradzhev for fast boolean matrix multiplication and computation of the transitive
closure of graphs [62]. The method later became known as the “Method of Four Russians”.
Fast boolean matrix multiplication is not the only well-known application of this method.
For instance, it has recently been utilized for fast summation over arbitrary line segments in
images [63], as well as for fast calculation of a sparse discrete John transform in computed
tomography [24].

Let us divide the computations into the following two parts:

1. Precalculation: computation of sums for all partial sub-patterns by bisection algorithm
up to a certain width (v), which is a parameter of the method;

2. Inference: calculation of the sums for complete patterns by naive addition of the
precomputed sums for partial patterns.

Below is Algorithm 3 (AS4R stands for “Algorithm, Sparse, 4 Russians”) that follows
the scheme presented above and sums the values of the input image over the patterns
from SKCH+

w,h .
The AS4R algorithm uses three new functions.
The Build_Gkchp(w, h) function returns a tuple of all patterns from GKCH+

w,h . It is
defined below as Algorithm 4.

The Create_Empty_Tuple(n) function returns an empty tuple of length n.
The Get_Subpattern_Index_2(w, h, k, m) function parses a pattern with index k from

a tuple built with the Build_Gkchp(w, h) function. For its m-th subpattern, the function
searches for the index of the corresponding generator subpattern in the tuple returned
by the Build_Gkchp function during precalculation. We do not discuss either the method
or the computational complexity of searching for the subpattern index, since the AS4R
algorithm is used solely to estimate the required number of summations.

We denote the number of summations within semigroup A in the AS4R algorithm
as TAS4R(w, h, v).

Theorem 3. w = 8q, q ∈ N =⇒ TAS4R(w, h, w1/3) ≤ 5
3 w5/3 h.

Proof. We denote the number of summations at the precalculation stage as TPRE and the
number at the inference stage as TINF:

TAS4R(w, h, v) = TPRE(w, h, v) + TINF(w, h, v). (17)

According to Theorem 2, the precalculation complexity is TPRE ≤ 2
3 v3 h w/v. At the

inference stage, for each of the w h complete patterns, the precalculated sums over the w/v
partial patterns are summed up, that is, TINF ≤ w2 h/v.

Therefore, the complexity of the AS4R algorithm is

TAS4R(w, h, v) ≤ 2
3

v2 w h +
w2

v
h. (18)

Mathematics 2023, 11, 3336 12 of 22

With v = w1/3, the complexity is

TAS4R(w, h, w1/3) ≤ 5
3

w5/3 h. (19)

The reasoning leading to this estimate is correct for w = 8q, q ∈ N.

Square images with dimensions of w = h = 8q allow for an even shorter complexity
estimate: O(n8/3).

Algorithm 3: Four Russians algorithm AS4R for fast summation of image values
along key patterns from set SKCH+

w,h

1 Function AS4R(w, h, v, I) is
Input: w > 0, h > 0, v > 0, image I : Z2

w,h → A
Output: image J : Z2

w,h → A
2 n← dw

v e;
3 Jl ← Create_Empty_Tuple(n) ; // Jl is a tuple of images
4 for m← 0 to n− 1 do
5 l ← m v;
6 r ← min(l + v, w);
7 It ← Get_Image_Window(I, l, 0, r− l, h) ; // It is an image
8 Jl(m)← AFD2(r− l, h, It);
9 end

10 pl ← Build_Gkchp(w, h) ; // pl is a tuple of patterns
11 J ← Create_Zeroed_Image(w, h) ; // J is an image
12 for k← 0 to |pl| − 1 do
13 p← pl(k) ; // p is a pattern, i.e., tuple of positions
14 Jt ← Jl(k) ; // Jt is an image
15 for m← 0 to n− 1 do
16 kt ← Get_Subpattern_Index_2(w, h, k, m);
17 post ← p(m v) ; // post is a position, i.e., pair of integers
18 for j← 0 to h− 1 do
19 J(k, j)← J(k, j) + Jt(kt, j + post(1) mod h);
20 end
21 end
22 end
23 end

Algorithm 4: Build_Gkchp function for the construction of a tuple with elements
of set GKCH+

w,h

1 Function Build_Gkchp(w, h) is
Input: w > 0, h > 0
Output: pattern tuple pl

2 pl ← Create_Empty_Tuple(w) ; // pl is a tuple of patterns
3 for k← 0 to w− 1 do
4 p← Create_Empty_Tuple(w) ; // p is a pattern
5 for i← 0 to w− 1 do
6 p(i)← 〈i,

[
k i

w−1

]
mod h〉;

7 end
8 pl(k)← p;
9 end

10 end

Mathematics 2023, 11, 3336 13 of 22

5. Fast Hough (Discrete Radon) Transform Algorithm for O(n2) Digital Straight
Line Segments
5.1. ASD2 Algorithm Description

Let us describe the final version of the algorithm for fast summation of the input image
values over all patterns from SKCH+

w,h . Algorithm 5 (ASD2 stands for “Algorithm, Sparse,
Dividing by 2”) employs the Build_Gkchp function introduced above (see Algorithm 4) to
build a set of generator patterns, while all the significant operations are encapsulated in the
Calculate_Patterns_ASD2 function.

Algorithm 5: Divide-and-conquer algorithm ASD2 for fast summation of image
values along key patterns from set SKCH+

w,h

1 Function ASD2(w, h, I) is
Input: w > 0, h > 0, image I : Z2

w,h → A
Output: pattern tuple pl, image J : Z2

|pl|,h → A
2 pl ← Build_Gkchp(w, h) ; // pl is a tuple of patterns
3 J ← Calculate_Patterns_ASD2(w, h, I, pl) ; // J is an image
4 end

The Calculate_Patterns_ASD2 function (see Algorithm 6) takes as input the raster
sizes (w, h), the input image (I), and the tuple of generator patterns (pl) to be summed over.
The inference algorithm is recursive, bisecting the image along the width.

Algorithm 6: Calculate_Patterns_ASD2 function.

1 Function Calculate_Patterns_ASD2(w, h, I, pl) is
Input: w > 0, h > 0, image I : Z2

w,h → A, pattern tuple pl
Output: image J : Z2

|pl|,h
2 if w > 1 then
3 wL ← bw/2c;
4 wR ← w− wL;
5 IL ← Get_Image_Window(I, 0, 0, wL, h) ; // IL is an image
6 IR ← Get_Image_Window(I, wL, 0, wR, h) ; // IR is an image
7 〈plL, kL〉 ← Get_Patterns_Section(pl, 0, wL);

/* plL is a tuple of patterns, kL is a tuple of integers */
8 〈plR, kR〉 ← Get_Patterns_Section(pl, wL, wR);

/* plR is a tuple of patterns, kR is a tuple of integers */
9 JL ← Calculate_Patterns_ASD2(wL, h, IL, plL) ; // JL is an image

10 JR ← Calculate_Patterns_ASD2(wR, h, IR, plR) ; // JR is an image
11 J ← Create_Zeroed_Image(|pl|, h) ; // J is an image
12 for k← 0 to |pl| − 1 do
13 p← pl(k) ; // p is a pattern, i.e., tuple of positions
14 posR ← p(wL) ; // posR is a position, i.e., pair of integers
15 for j← 0 to h− 1 do
16 J(k, j)← JL(kL(k), j) + JR(kR(k), j + posR(1) mod h);
17 end
18 end
19 else
20 J ← I ; // J is an image
21 end
22 end

Mathematics 2023, 11, 3336 14 of 22

In forward recursion, the image (I) is divided into images IL and IR. For the generator
patterns from the tuple (pl), fragments belonging to this image are determined, and tuples
of subpatterns plL and plR are formed from them. The corresponding Get_Patterns_Section
function is not trivial, as we show in the following section. Then, for each image half,
the Calculate_Patterns_ASD2 function calls itself, passing the corresponding tuple of
subpatterns. As a result, images JL and JR of the left and right partial sums are formed.
These images are required to calculate the sums of J over the full width. The recursion
stops at the image width (w = 1), when the problem is trivial and the image of the required
sums (J) coincides with the input column image (I).

In backward recursion (lines 11–18 of Algorithm 6), for each generator pattern from pl,
two generator subpatterns constituting it are determined from the tables of indices (kL and
kR) returned by the Get_Patterns_Section function, and the full sums for all integer vertical
pattern shifts are calculated from the images of partial sums (JL and JR).

Let us now consider the Get_Patterns_Section function (see Algorithm 7).

Algorithm 7: Get_Patterns_Section function.

1 Function Get_Patterns_Section(pl, i0, w) is
Input: pattern tuple pl, i0 ≥ 0, w > 0, 0 ≤ k < |pl| =⇒ |pl(k)| ≥ i0 + w
Output: pattern tuple spl, |spl| ≤ |pl|, index tuple ind, |ind| = |pl|

2 tab← Create_Empty_Tuple(|pl|);
/* tab is a tuple of records; each record is a tuple consisting

of subpattern hash, subpattern itself and index of its parent
pattern */

3 for k← 0 to |pl| − 1 do
4 p← pl(k) ; // p is a pattern, i.e., tuple of positions
5 sp← Create_Empty_Tuple(w) ; // sp is a pattern
6 pos0 ← p(i0) ; // pos is a position, i.e., pair of integers
7 for i← 0 to w− 1 do
8 pos = p(i0 + i) ; // pos is a position, i.e., pair of integers
9 sp(i)← 〈i, pos(1)− pos0(1)〉;

10 end
11 hash← Get_Pattern_Hash(sp) ; // hash is a tuple of 4 integers
12 tab(k)← 〈hash, sp, k〉;
13 end
14 Sort_By_Field(tab, 0);
15 spl ← Create_Empty_Tuple(|pl|) ; // spl is a tuple of patterns
16 ind← Create_Empty_Tuple(|pl|) ; // ind is a tuple of integers
17 hashprev ← 〈〉 ; // hashprev is a tuple of integers
18 n← 0;
19 foreach rec ∈ tab do // rec is a record, see above
20 k← rec(2);
21 hashcur ← rec(0) ; // hashcur is a tuple of 4 integers
22 if hashcur 6= hashprev then
23 spl(n)← rec(1);
24 n← n + 1;
25 end
26 ind(k)← n− 1;
27 hashprev ← hashcur;
28 end
29 Shrink_Tuple(spl, n);
30 end

The algorithm uses three new functions.

Mathematics 2023, 11, 3336 15 of 22

The Sort_By_Field(t, i) function sorts a tuple of records (t) according to an element
with an index (i) in each record.

The Shrink_Tuple(t, n) function removes all elements from the tuple (t), except the
first n.

The Get_Pattern_Hash(p) function builds a unique identifier for the pattern (p) con-
sisting of four integers. The algorithm behind this function is described in [64].

In the first loop (lines 3–13 of Algorithm 7), the Get_Patterns_Section function builds
a generator subpattern for each input pattern corresponding to a given interval of the
first coordinate and calculates its unique identifier. The subpattern tuple is then sorted
by identifiers.

In the second loop (lines 19–27), matching subpatterns are excluded from the list.
The index table (ind) is supported, allowing each pattern to find its subpattern from the
shortened list.

5.2. Algorithm Complexity Analysis

Let us determine the complexity of the ASD2 algorithm. First, we estimate the number
(TASD2(w, h)) of summations within semigroup A, then examine the asymptotic complexity
of auxiliary operations.

Theorem 4. w = 8q, q ∈ N =⇒ TASD2(w, h) ≤ 5
3 w5/3 h.

Proof. Algorithm ASD2 sums the values across subpatterns, doubling their length.
We denote the number of summations performed when constructing subpatterns of

length up to and including v = w1/3 as TSML, and the number of remaining summations
as TBIG:

TASD2(w, h) = TSML(w, h) + TBIG(w, h). (20)

TSML(w, h) ≤ TPRE(w, h, w1/3), since the AS4R algorithm uses the same order of sum-
mation but, at the same time, calculates the sums for all patterns, and ASD2 only calculates
the necessary sums.

In addition, TBIG(w, h) ≤ TINF(w, h, w1/3), since the AS4R algorithm uses a naive
algorithm at the inference stage, and ASD2 does not perform unnecessary summations.
Indeed, for each pattern out of GKCH+

w,h , there is not more than w/w1/3 summations of
precomputed values for subpatterns with lengths not less than w1/3, which corresponds to
the number of summations at the inference stage of the AS4R algorithm.

Hence, TASD2(w, h) ≤ TAS4R(w, h, w1/3).

We now consider the auxiliary operations.
The Build_Gkchp(w, h) function has a computational complexity of O(w2). It is es-

sential that only the key patterns are considered and that the function builds generator
elements only.

The number of summations in semigroup A in the Calculate_Patterns_ASD2 function,
excluding recursion, is O(|pl| h). Let us ensure that the other operations satisfy this asymp-
totic so that the asymptotic complexity of the entire ASD2 algorithm is determined by the
TASD2(w, h) number.

The number of index summations in line 16 of Algorithm 6 is equal to the number of
summations in semigroup A.

The Get_Image_Window function does not involve copying image values and can be
performed in O(1) operations.

The Create_Zeroed_Image(w, h) function has a computational complexity of O(w h);
therefore, the Create_Zeroed_Image(|pl|, h) call has an acceptable complexity.

Finally, we determine the conditions under which the Get_Patterns_Section(pl, i0, w)
function has a computational complexity of O(|pl| h).

Mathematics 2023, 11, 3336 16 of 22

The Get_Pattern_Hash(p) function has a computational complexity of O(|p|) [64],
which makes the first loop (lines 3–13 of Algorithm 7) of the Get_Patterns_Section function
have a computational complexity of O(|pl|w).

Sorting in line 14 has a computational complexity of O(|pl| log |pl|). On the other
hand, |pl| = O(w3), which gives O(|pl| log w) operations for the sorting.

The second loop (lines 19–27) of the Get_Patterns_Section function has a computa-
tional complexity of O(|pl|).

Thus, for w = O(h), the Get_Patterns_Section(pl, i0, w) function has a computational
complexity of O(|pl| h), and the ASD2 algorithm is O(w5/3 h). For w = 8q, q ∈ N, the
computational complexity of the ASD2 algorithm is equal to O(w5/3 h).

5.3. Properties of the ASD2 Algorithm

It is worth comparing the aforementioned results with the complexity of the Khanipov
method. According to Theorem 5.9 in [54], the number of summations (in terms of the
current work) for patterns from SKCH+

w,h is upper-bounded as follows:

4 w2 h
1 + log2 w

(
1 +

√
2
w

)
≈ 4 w2 h

log2 w
. (21)

It should be noted that Theorem 4 guarantees that the complexity bound for the ASD2
algorithm is

12 w1/3(1 +
√

2/w)

5(1 + log2 w)
>

3
2

(22)

times smaller, and this ratio tends to infinity as w→ ∞.
Table 1 presents numerical estimates of computation complexity and geometric de-

viation for the proposed ASD2 algorithm in comparison to previously known methods.
The Khanipov method is denoted as KHM, the Brady–Yong algorithm as BYA, and the
naive summation of key patterns as ASNA. The geometric deviation is evaluated along
the y axis for lines described by the following equation: y = k x + b, |k| ≤ 1. The estimates
are calculated for square images of size n× n, n ∈ {256, 1024, 4096}. These dimensions are
common in the processing of two-dimensional histograms and images and tomographic
reconstruction. According to the obtained estimates, for n = 4096, the ASD2 algorithm
exhibits a nearly threefold performance gain compared to the Khanipov method. However,
it is important to note that this ratio is for the upper-bound estimates, both of which may
be inaccurate.

Table 1. Upper bounds for computation complexity and geometric deviation for different summation-
only HT calculation algorithms.

n 256 1024 4096 256 1024 4096
Algorithm Summations Error

ASNA 1.68× 107 1.08× 109 6.88× 1010 0.5 0.5 0.5
KHM 8.12× 106 4.08× 108 2.17× 1010 0.5 0.5 0.5
ASD2 4.41× 106 1.78× 108 7.16× 109 0.5 0.5 0.5
BYA 5.25× 105 1.05× 107 2.02× 108 1.34 1.67 2

Figure 6 illustrates the impact of geometric approximation errors on the values of
the Hough image. The test image is the Shepp–Logan phantom [65], with a resolution of
4096× 4096 pixels. When constructing the Hough image using the Brady–Yong algorithm,
noticeable high-frequency artifacts are observed. Conversely, these artifacts are absent
when employing the DSLS patterns.

Mathematics 2023, 11, 3336 17 of 22

(a)

(b) (c)

(d) (e)

Figure 6. An example of image transformation: (a) original image (Shepp–Logan phantom);
(b) Brady–Yong algorithm; (c) Brady–Yong algorithm (a zoomed-in section marked red in the left
image); (d) ASD2 algorithm; (e) ASD2 algorithm (a zoomed-in section marked red in the left image).

Mathematics 2023, 11, 3336 18 of 22

5.4. Final Touches

With the aforementioned constraints, the ASD2 algorithm has a complexity of O(w5/3 h)
when processing an image of size w× h. It computes the sums over the patterns from the
set SKCH+

w,h ⊂ SCH+
w,h , while initially, we were faced with the task of summing over patterns

from Sw,h. In Section 4, we decided to limit ourselves to a smaller number of patterns,
which we referred to as key patterns.

Let us define the key patterns from the set Sw,h:

SK
w,h

def
= SKH

w,h ∪ SKV
w,h,

SKH
w,h

def
=

{
p = pH

w,h

(
kz

w− 1
, b
)∣∣∣∣kz ∈ (−w + 1, w− 1] ⊂ Z∧ b ∈ Z∧ p 6= ∅

}
,

SKV
w,h

def
=

{
p = pV

w,h

(
kz

h− 1
, b
)∣∣∣∣kz ∈ [−h + 1, h− 1) ⊂ Z∧ b ∈ Z∧ p 6= ∅

}
.

(23)

The procedure for calculating sums over patterns from the set SK
w,h in the image Iw,h

using the ASD2 algorithm completely repeats the scheme of applying the Brady–Yong
algorithm [1].

The image (Iw,h) is padded with zeros up to a size of Iw,h+w. The ASD2 algorithm is
applied to this image. The same pair of operations is performed with the image reflected
on the second axis, the transposed image, and the transposed and reflected image. The
resulting four sets of sums cover the set SK

w,h. The total complexity of the algorithm in this
case is O(w8/3 + h8/3).

6. Discussion

The Build_Gkchp function in the ASD2 algorithm can be replaced without affecting
its functionality. Thus, the list of patterns to be summed can be varied. This is interesting
both in terms of further introduction of sparsity into the pattern set in cases when high-
resolution results are not required and in terms of computing patterns with k ≤ 0 and
with k ≥ 0 in a single pass. The computational complexity of such modifications to the
ASD2 algorithm is not discussed in this work. However, it is clear that for majorization of
summations, the AS4R algorithm relies not on the internal structure of the pattern set but
only on its cardinality.

It is also worth noting that the ASD2 algorithm itself does not require the condition
w = 8q to be satisfied, as this condition is used only to construct a complexity estimate. As
for the original Brady–Yong algorithm, its modification supporting arbitrary array sizes
was published only in 2021 [66]. A solution to this problem had already been announced
nine years earlier in [67], but the proposed algorithm was based on factoring of the array
size and was not efficient for sizes with large prime factors. As for the ASD2 algorithm, it
would be interesting to evaluate its complexity for arbitrary image sizes.

It is also interesting to consider the generalization of the ASD2 algorithm to three-
dimensional images. Generalizations of the Brady–Yong algorithm for summations over
lines and planes in three-dimensional images were first published by T.-K. Wu and M. Brady
in 1998 [68], but this publication in the proceedings of a symposium on image processing
and character recognition went unnoticed for a long time. Both algorithms have been
repeatedly reinvented [26,69].

It is worth noting that the estimation of the number of DSLS in this work is not the first
of its kind. A more accurate estimation was obtained in [70], but the reasoning presented
in Section 3.2 appears to be simpler to us while still illustrating one of the key ideas of
the paper.

Another important area for future research is the numerical comparison of the various
algorithms investigated in this study, including the Brady–Yong and Khanipov algorithms.
To conduct such a comparison, it is necessary to reconstruct the Khanipov algorithm based
on the provided scheme. Ensuring a fair assessment under identical conditions requires

Mathematics 2023, 11, 3336 19 of 22

the careful implementation of all algorithms. It is particularly important to pay attention
to algorithms based on the pseudo-polar Fourier transform, as their performance can be
significantly influenced by the choice of libraries. Additionally, it would be interesting to
compare the accuracy of these algorithm classes using a fixed data discretization model.

Finally, in certain applications, such as tomographic reconstruction, it is necessary to
obtain not the projection operator (A) calculated by the aforementioned algorithms but its
“inverse”. The use of quotation marks in this context is to highlight that in reconstruction
problems, a regularized problem is typically stated:

‖Ax− y‖2 + R(x)→ min
x

, (24)

where x is the target image, y is the observed image, and R is a regularizer. One approach
to tackle this optimization problem involves gradient-descent-type iterative algorithms [71].
These algorithms require repeated computations of the adjoint operator (AT). From this
perspective, fast algorithms for computing the adjoint operator of the Hough transform are
more significant than fast algorithms for direct inverse transform. It is feasible to modify
the considered algorithms to efficiently compute the image ATz, and this aspect warrants
further research.

Author Contributions: Conceptualization, D.N. and A.K.; software, E.L.; validation, E.L., A.M.
and I.F.; writing—original draft preparation, D.N. and E.E.; writing—review and editing, D.N.,
A.K., E.L. and A.M.; supervision, I.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DSLS Digital straight line segment
FGHT Fast generalized Hough transform
FHT Fast Hough transform
HT Hough transform

References
1. Brady, M.L.; Yong, W. Fast Parallel Discrete Approximation Algorithms for the Radon Transform. In Proceedings of the SPAA’92:

Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, USA, 29 June–1
July 1992 ; pp. 91–99. [CrossRef]

2. Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15.
[CrossRef]

3. Nikolaev, D.P.; Nikolayev, P.P. Linear color segmentation and its implementation. Comput. Vis. Image Underst. 2004, 94, 115–139.
[CrossRef]

4. Shi, L.; Funt, B. Dichromatic illumination estimation via Hough transforms in 3D. In Proceedings of the European Conference on
Colour in Graphics, Imaging, and Vision (IS&T, 2008), Barcelona, Spain, June 2008; pp. 259–262.

5. Berman, D.; Treibitz, T.; Avidan, S. Air-light estimation using haze-lines. In Proceedings of the IEEE International Conference on
Computational Photography, Stanford, CA, USA, 12–14 May 2017; pp. 1–9. [CrossRef]

6. Kunina, I.A.; Gladilin, S.A.; Nikolaev, D.P. Blind compensation of radial distortion in a single image using fast Hough transform.
Comput. Opt. 2016, 40, 395–403. [CrossRef]

7. Yang, S.; Rong, J.; Huang, S.; Shang, Z.; Shi, Y.; Ying, X.; Zha, H. Simultaneously vanishing point detection and radial lens
distortion correction from single wide-angle images. In Proceedings of the 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 363–368. [CrossRef]

8. Chang, Y.; Bailey, D.; Le Moan, S. Lens distortion correction by analysing peak shape in Hough transform space. In Proceedings
of the 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), Christchurch, New Zealand, 4–6
December 2017; pp. 1–6. [CrossRef]

http://doi.org/10.1145/140901.140911
http://dx.doi.org/10.1145/361237.361242
http://dx.doi.org/10.1016/j.cviu.2003.10.012
http://dx.doi.org/10.1109/ICCPHOT.2017.7951489
http://dx.doi.org/10.18287/2412-6179-2016-40-3-395-403
http://dx.doi.org/10.1109/ROBIO.2016.7866349
http://dx.doi.org/10.1109/IVCNZ.2017.8402448

Mathematics 2023, 11, 3336 20 of 22

9. Aminuddin, N.S.; Ibrahim, M.M.; Ali, N.M.; Radzi, S.A.; Saad, W.H.M.; Darsono, A.M. A new approach to highway lane detection
by using Hough transform technique. J. Inf. Commun. Technol. 2017, 16, 244–260. [CrossRef]

10. Panfilova, E.I.; Shipitko, O.S.; Kunina, I.A. Fast Hough Transform-Based Road Markings Detection For Autonomous Vehicle. In
Proceedings of the SPIE 11605, Thirteenth International Conference on Machine Vision (ICMV 2020), Rome, Italy, 2–6 November
2020; Volume 11605, pp. 671–680. [CrossRef]

11. Jahan, R.; Suman, P.; Singh, D.K. Lane detection using canny edge detection and hough transform on raspberry Pi. Int. J. Adv.
Res. Comput. Sci. 2018, 9, 85–89. [CrossRef]

12. Guan, J.; An, F.; Zhang, X.; Chen, L.; Mattausch, H.J. Energy-Efficient Hardware Implementation of Road-Lane Detection
Based on Hough Transform with Parallelized Voting Procedure and Local Maximum Algorithm. IEICE Trans. Inf. Syst. 2019,
E102.D, 1171–1182. [CrossRef]

13. Thongpan, N.; Rattanasiriwongwut, M.; Ketcham, M. Lane Detection Using Embedded System. Int. J. Comput. Internet Manag.
2020, 28, 46–51.

14. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [CrossRef]
15. Hartl, A.; Reitmayr, G. Rectangular target extraction for mobile augmented reality applications. In Proceedings of the 21st

International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 81–84.
16. Puybareau, É.; Géraud, T. Real-Time Document Detection in Smartphone Videos. In Proceedings of the 2018 25th IEEE

International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1498–1502. [CrossRef]
17. Tropin, D.V.; Ilyuhin, S.A.; Nikolaev, D.P.; Arlazarov, V.V. Approach for Document Detection by Contours and Contrasts.

In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021;
pp. 9689–9695.[CrossRef]

18. Gatos, B.; Perantonis, S.J.; Papamarkos, N. Accelerated Hough transform using rectangular image decomposition. Electron. Lett.
1996, 32, 730–732. [CrossRef]

19. Singh, C.; Bhatia, N.; Kaur, A. Hough transform based fast skew detection and accurate skew correction methods. Pattern
Recognit. 2008, 41, 3528–3546. [CrossRef]

20. Bezmaternykh, P.V.; Nikolaev, D.P. A document skew detection method using fast Hough transform. In Proceedings of the SPIE
11433, Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2019;
Volume 11433, pp. 132–137. [CrossRef]

21. Gao, Y.P.; Li, Y.M.; Hu, Z.Y. Skewed text correction based on the improved Hough transform. In Proceedings of the 2011
International Conference on Image Analysis and Signal Processing, Wuhan, China, 21–23 October 2011; pp. 368–372. [CrossRef]

22. Limonova, E.; Bezmaternykh, P.; Nikolaev, D.; Arlazarov, V. Slant rectification in Russian passport OCR system using fast Hough
transform. In Proceedings of the SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), Nice, France, 18–20
November 2016 ; Volume 10341, pp. 127–131. [CrossRef]

23. Martynov, S.I.; Bezmaternykh, P.V. Aztec core symbol detection method based on connected components extraction and contour
signature analysis. In Proceedings of the SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019),
Amsterdam, The Netherlands, 16–18 November 2019; Volume 11433, pp. 27–34. [CrossRef]

24. Bulatov, K.B.; Chukalina, M.V.; Nikolaev, D.P. Fast X-ray sum calculation algorithm for computed tomography. Bull. South Ural.
State Univ. Ser. Math. Model. Program. Comput. Softw. 2020, 13, 95–106. [CrossRef]

25. Dolmatova, A.V.; Chukalina, M.V.; Nikolaev, D.P. Accelerated FBP for Computed Tomography Image Reconstruction. In
Proceedings of the 2020 IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 25–28 October
2020; pp. 3030–3034. [CrossRef]

26. Marichal-Hernandez, J.G.; Gómez-Cárdenes, Ó.; González, F.L.R.; Kim, D.H.; Rodríguez-Ramos, J.M. Three-dimensional
multiscale discrete Radon and John transforms. Opt. Eng. 2020, 59, 093104. [CrossRef]

27. Bulatov, K.; Chukalina, M.; Buzmakov, A.; Nikolaev, D.; Arlazarov, V.V. Monitored Reconstruction: Computed Tomography as an
Anytime Algorithm. IEEE Access 2020, 8, 110759–110774. [CrossRef]

28. Sheshkus, A.; Chirvonaya, A.; Nikolaev, D.; Arlazarov, V.L. Vanishing point detection with direct and transposed fast Hough
transform inside the neural network. Comput. Opt. 2020, 44, 737–745. [CrossRef]

29. Lin, Y.; Pintea, S.L.; van Gemert, J.C. Deep Hough-Transform Line Priors. In Computer Vision—ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, 23–28 August 2020; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020;
Volume 12367, pp. 323–340. [CrossRef]

30. Han, Q.; Zhao, K.; Xu, J.; Cheng, M.M. Deep Hough Transform for Semantic Line Detection. In Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK, 23–28 August 2020; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020;
Volume 12354, pp. 249–265. [CrossRef]

31. Teplyakov, L.; Kaymakov, K.; Shvets, E.; Nikolaev, D. Line detection via a lightweight CNN with a Hough Layer. In Proceedings
of the SPIE 11605, Thirteenth International Conference on Machine Vision (ICMV 2020), Rome, Italy, 2–6 November 2020; Volume
11605, pp. 376–385. [CrossRef]

32. Zhao, K.; Han, Q.; Zhang, C.B.; Xu, J.; Cheng, M.M. Deep Hough Transform for Semantic Line Detection. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 44, 4793–4806. [CrossRef]

33. Zhao, H.; Zhang, Z. Improving Neural Network Detection Accuracy of Electric Power Bushings in Infrared Images by Hough
Transform. Sensors 2020, 20, 2931. [CrossRef]

http://dx.doi.org/10.32890/jict2017.16.2.3
http://dx.doi.org/10.1117/12.2587615
http://dx.doi.org/10.26483/ijarcs.v9i0.6143
http://dx.doi.org/10.1587/transinf.2018EDP7279
http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.1109/ICIP.2018.8451533
http://dx.doi.org/10.1109/ICPR48806.2021.9413271
http://dx.doi.org/10.1049/el:19960510
http://dx.doi.org/10.1016/j.patcog.2008.06.002
http://dx.doi.org/10.1117/12.2559069
http://dx.doi.org/10.1109/IASP.2011.6109065
http://dx.doi.org/10.1117/12.2268725
http://dx.doi.org/10.1117/12.2559183
http://dx.doi.org/10.14529/mmp200107
http://dx.doi.org/10.1109/ICIP40778.2020.9191044
http://dx.doi.org/10.1117/1.OE.59.9.093104
http://dx.doi.org/10.1109/ACCESS.2020.3002019
http://dx.doi.org/10.18287/2412-6179-CO-676
http://dx.doi.org/10.1007/978-3-030-58542-6_20
http://dx.doi.org/10.1007/978-3-030-58545-7_15
http://dx.doi.org/10.1117/12.2587167
http://dx.doi.org/10.1109/TPAMI.2021.3077129
http://dx.doi.org/10.3390/s20102931

Mathematics 2023, 11, 3336 21 of 22

34. Nabil, A. Combination of Hough Transform and Neural Network on recognizing mathematical symbols. In Proceedings of the
2021 8th International Conference on ICT & Accessibility (ICTA), Tunis, Tunisia, 8–10 December 2021; pp. 1–6. [CrossRef]

35. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE
Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

36. Adler, J.; Öktem, O. Learned Primal-Dual Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332. [CrossRef]
37. Jiao, F.; Gui, Z.; Li, K.; Hong, S.; Wang, Y.; Liu, Y.; Zhang, P. A Dual-Domain CNN-Based Network for CT Reconstruction. IEEE

Access 2021, 9, 71091–71103. [CrossRef]
38. Hough, P.V.C. Machine Analysis of Bubble Chamber Pictures. In International Conference on High Energy Accelerators and

Instrumentation; CERN: Geneva, Switzerland , 1959; Volume 590914, pp. 554–558.
39. Hough, P.V.C. Method and Means for Recognizing Complex Patterns. US 3069654 A, 18 December 1962.
40. Hart, P.E. How the Hough transform was invented [DSP History]. IEEE Signal Process. Mag. 2009, 26, 18–22. [CrossRef]
41. Rosenfeld, A. Picture Processing by Computer; Academic Press: New York, NY, USA, 1969.
42. Deans, S.R. Hough Transform from the Radon Transform. IEEE Trans. Pattern Anal. Mach. Intell. 1981, PAMI-3, 185–188.

[CrossRef] [PubMed]
43. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Über

Verhandlungen Sächs. Akad. Wiss. 1917, 69, 262–277.
44. Illingworth, J.; Kittler, J. A survey of the hough transform. Comput. Vision Graph. Image Process. 1988, 44, 87–116. [CrossRef]
45. Brady, M.L. A fast discrete approximation algorithm for the Radon transform. Siam J. Comput. 1998, 27, 91–99. [CrossRef]
46. Götz, W.A.; Druckmüller, H.J. A fast digital Radon transform—An efficient means for evaluating the Hough transform. Pattern

Recognit. 1995, 28, 1985–1992. [CrossRef]
47. Götz, W.A.; Druckmüller, H.J. A fast digital Radon transform—An efficient means for evaluating the Hough transform. Pattern

Recognit. 1996, 29, 711–718. [CrossRef]
48. Vuillemin, J.E. Fast linear Hough transform. In Proceedings of the IEEE International Conference on Application Specific Array

Processors (ASSAP’94), San Francisco, CA, USA, 22–24 August 1994; pp. 1–9. [CrossRef]
49. Karpenko, S.M.; Ershov, E.I. Analysis of Properties of Dyadic Patterns for the Fast Hough Transform. Probl. Inf. Transm. 2021,

57, 292–300. [CrossRef]
50. Averbuch, A.; Coifman, R.R.; Donoho, D.L.; Israeli, M.; Shkolnisky, Y.; Sedelnikov, I. A Framework for Discrete Integral

Transformations II—The 2D Discrete Radon Transform. Siam J. Sci. Comput. 2008, 30, 785–803. [CrossRef]
51. Nikolaev, D.P.; Karpenko, S.M.; Nikolayev, I.P. Hough Transform: Underestimated Tool In The Computer Vision Field. In

Proceedings of the 22nd European Conference on Modelling and Simulation, Nicosia, Cyprus, 3–6 June 2008; pp. 238–243.
[CrossRef]

52. Levi, O.; Efros, B.A. A new fast algorithm for exact calculation of the discrete 2-d and 3-d x-ray transform. In Advances in
Computational Methods in Sciences and Engineering 2005: Selected Papers from the International Conference of Computational Methods in
Sciences and Engineering 2005 (ICCMSE 2005); Lecture Series on Computer and Computational Sciences; Brill Academic Publishers:
Leiden, The Netherlands, 2005; Volume 4, pp. 319–322.

53. Rosenfeld, A. Digital Straight Line Segments. IEEE Trans. Comput. 1974, C-23, 1264–1269. [CrossRef]
54. Khanipov, T.M. Computational complexity lower bounds of certain discrete Radon transform approximations. arXiv 2018,

arXiv:1801.01054. [CrossRef]
55. Khanipov, T.M. Ensemble computation approach to the Hough transform. arXiv 2018, arXiv:1801.01054. [CrossRef]
56. Yang, D. Fast discrete Radon transform and 2-D discrete Fourier transform. Electron. Lett. 1990, 26, 550–551. [CrossRef]
57. Gertner, I. A new efficient algorithm to compute the two-dimensional discrete Fourier transform. IEEE Trans. Acoust. Speech

Signal Process. 1988, 36, 1036–1050. [CrossRef]
58. Ershov, E.I.; Khanipov, T.M.; Shvets, E.A.; Nikolaev, D.P. Generation algorithms of fast generalized hough transform. In

Proceedings of the 31st European Conference on Modelling and Simulation, ECMS 2017, Budapest, Hungary, 23–26 May
2017; pp. 534–538.

59. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Co.: New
York, NY, USA, 1979; p. 338.

60. Ikenaga, Y.; Yamaguchi, K. Proposal of Greedy Random for Ensemble Computation. Jsai Tech. Rep. SIG-FPAI 2022, 120, 7–10.
[CrossRef]

61. Steiner, J. Einige Gesetze über die Theilung der Ebene und des Raumes. J. Füur Reine Angew. Math. 1826, 1, 349–364.
62. Arlazarov, V.L.; Dinitz, Y.A.; Kronrod, M.A.; Faradzhev, I.A. On economical construction of the transitive closure of an oriented

graph. Dokl. Akad. Nauk SSSR 1970, 194, 487–488. (In Russian)
63. Soshin, K.V.; Nikolaev, D.P.; Gladilin, S.A.; Ershov, E.I. Acceleration of summation over segments using the fast Hough

transformation pyramid. Bull. South Ural. State Univ. Ser. Math. Model. Program. Comput. Softw. 2020, 13, 129–140. [CrossRef]
64. Lindenbaum, M.; Koplowitz, J. A new parameterization of digital straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 1991,

13, 847–852. [CrossRef]
65. Shepp, L.A.; Logan, B.F. The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 1974, 21, 21–43. [CrossRef]
66. Anikeev, F.A.; Raiko, G.O.; Limonova, E.E.; Aliev, M.A.; Nikolaev, D.P. Efficient Implementation of Fast Hough Transform Using

CPCA Coprocessor. Program. Comput. Softw. 2021, 47, 335–343. [CrossRef]

http://dx.doi.org/10.1109/ICTA54582.2021.9809779
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1109/TMI.2018.2799231
http://dx.doi.org/10.1109/ACCESS.2021.3079323
http://dx.doi.org/10.1109/MSP.2009.934181
http://dx.doi.org/10.1109/TPAMI.1981.4767076
http://www.ncbi.nlm.nih.gov/pubmed/21868933
http://dx.doi.org/10.1016/S0734-189X(88)80033-1
http://dx.doi.org/10.1137/S0097539793256673
http://dx.doi.org/10.1016/0031-3203(95)00057-7
http://dx.doi.org/10.1016/0031-3203(96)00015-5
http://dx.doi.org/10.1109/ASAP.1994.331821
http://dx.doi.org/10.1134/S0032946021030078
http://dx.doi.org/10.1137/060650301
http://dx.doi.org/10.7148/2008-0238
http://dx.doi.org/10.1109/T-C.1974.223845
https://doi.org/10.48550/ARXIV.1801.01054
https://doi.org/10.48550/ARXIV.1802.06619
http://dx.doi.org/10.1049/el:19900358
http://dx.doi.org/10.1109/29.1627
http://dx.doi.org/10.11517/jsaifpai.120.0_07
http://dx.doi.org/10.14529/mmp200110
http://dx.doi.org/10.1109/34.85678
http://dx.doi.org/10.1109/TNS.1974.6499235
http://dx.doi.org/10.1134/S0361768821050029

Mathematics 2023, 11, 3336 22 of 22

67. Marichal-Hernandez, J.G.; Lüke, J.P.; González, F.L.R.; Rodríguez-Ramos, J.M. Fast approximate 4-D/3-D discrete radon transform
for lightfield refocusing. J. Electron. Imaging 2012, 21, 023026. [CrossRef]

68. Wu, T.K.; Brady, M.L. A fast approximation algorithm for 3D image reconstruction. In Proceedings of the 1998 Interna-
tional Computer Symposium. Workshop in Image Processing and Character Recognition, Tainan, Taiwan, 17–19 December
1998; pp. 213–220.

69. Ershov, E.I.; Terekhin, A.P.; Nikolaev, D.P. Generalization of the Fast Hough Transform for Three-Dimensional Images. J. Commun.
Technol. Electron. 2018, 63, 626–636. [CrossRef]

70. Koplowitz, J.; Lindenbaum, M.; Bruckstein, A. The number of digital straight lines on an N*N grid. IEEE Trans. Inf. Theory 1990,
36, 192–197. [CrossRef]

71. Tian, Z.; Jia, X.; Yuan, K.; Pan, T.; Jiang, S.B. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys.
Med. Biol. 2011, 56, 5949–5967. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1117/1.JEI.21.2.023026
http://dx.doi.org/10.1134/S1064226918060074
http://dx.doi.org/10.1109/18.50392
http://dx.doi.org/10.1088/0031-9155/56/18/011
http://www.ncbi.nlm.nih.gov/pubmed/21860076

	Introduction
	Related Works
	Hough (Discrete Radon) Transform Algorithms for a Full Set of Digital Straight Line Segments
	Basic Definitions and Statements
	Digital Straight Line Segment Count
	Divide-and-Conquer Algorithm

	O(n8/3) Summation Algorithm for O(n2) Digital Straight Line Segments
	Fast Hough (Discrete Radon) Transform Algorithm for O(n2) Digital Straight Line Segments
	ASD2 Algorithm Description
	Algorithm Complexity Analysis
	Properties of the ASD2 Algorithm
	Final Touches

	Discussion
	References

