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Abstract: Learning the structure of a Bayesian network and considering the efficiency and accuracy
of learning has always been a hot topic for researchers. This paper proposes two constraints to solve
the problem that the A* algorithm, an exact learning algorithm, is not efficient enough to search larger
networks. On the one hand, the parent–child set constraints reduce the number of potential optimal
parent sets. On the other hand, the path constraints are obtained from the potential optimal parent
sets to constrain the search process of the A* algorithm. Both constraints are proposed based on the
potential optimal parent sets. Experiments show that the time efficiency of the A* algorithm can be
significantly improved, and the ability of the A* algorithm to search larger Bayesian networks can be
improved by the two constraints. In addition, compared with the globally optimal Bayesian network
learning using integer linear programming (GOBNILP) algorithm and the max–min hill-climbing
(MMHC) algorithm, which are state of the art, the A* algorithm enhanced by constraints still performs
well in most cases.
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1. Introduction

Artificial intelligence has been widely used in reality after decades of development.
However, capturing and understanding causal relationships from data, known as causal
discovery, remains a challenging task in artificial intelligence. Robust causal analysis is
widely recognized as a key driver of techniques such as learning, prediction, diagnosis,
and counterfactual reasoning, which can have significant implications for almost all fields
of science.

A Bayesian network (BN) is a probabilistic graphical model of the combination of
probability theory and graph theory, and a BN can support the representation and analysis
of causal structure in the field of artificial intelligence. The structure of the BN is a di-
rected acyclic graph (DAG), which represents the dependence relationship between nodes.
These relationships are further quantified by a set of conditional probability distributions.
In general, a Bayesian network represents the joint probability distribution of a set of
random variables.

The number of possible structures increases exponentially with the number of nodes
n. Determining the BN structure from data is an NP-hard problem [1,2], and it has been
a hot topic in the research field of BN in recent decades. Existing BN structure learning
algorithms can be divided into three categories: constraint-based, score-based, and hybrid
search approaches [3].

Constraint-based approaches use statistical tests or information theory techniques to
test conditional independence (CI), determine the relationship between variables, and ob-
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tain the corresponding DAG. Widely adopted constraint-based approaches mainly include
the Peter–Clark (PC) algorithm [4], inductive causality (IC) algorithm [5], and grow–shrink
(GS) algorithm [6]. These algorithms can return equivalence classes if CI tests are correct.
However, such assumptions are difficult to satisfy in practice. The CI test is often affected
by statistical tests, and there will be a certain probability of error in the case of insufficient
samples or noise. Perhaps even worse, because a series of steps in the algorithm relies
on CI tests, these erroneous CI test results can further amplify errors in the subsequent
learning process.

Score-based approaches are the most common BN structure learning approaches.
Score-based approaches use a scoring function to measure the fitness between the BN
structure and data, and return the BN structure with the optimal score. Therefore, score-
based approaches treat BN structure learning as a combinatorial optimization problem.
From the perspective of combinatorial optimization, greedy search (GS) [7–9], simulated
annealing (SA) [10], ordering-based search (OBS) [11], and other algorithms have devel-
oped rapidly in the early stage. In addition, the genetic algorithm (GA) [12], particle swarm
optimization (PSO) [13], ant colony optimization (ACO) [14], and other swarm intelligence
algorithms have also been widely used. However, these algorithms often obtain locally
optimal network structures; in particular, swarm intelligence algorithms’ convergence to
the optimal solution in infinite time has no practical significance. Therefore, exact learn-
ing algorithms have begun to enter the field of vision of researchers. Research on exact
learning algorithms began with a series of dynamic programming (DP) algorithms [15–17],
which require exponential time and space complexity and can only be used for small-scale
network structure learning. In recent years, other exact learning algorithms that are more
competitive than DP algorithms have also been proposed, such as the A* [18,19], anytime
window A* (AWA*) [20], Bidirectional heuristic search (BiHS) [21], CPBayes [22], and Glob-
ally Optimal Bayesian Network learning using Integer Linear Programming (GOBNILP)
algorithms [23,24]. The A*, AWA*, and BiHS algorithms regard the structure learning
problem as the shortest path search problem and use different strategies to search, and
A* is the more stable algorithm among them. CPBayes and GOBNILP use constraint pro-
gramming and integer programming, respectively, to solve the structure learning problem.
Later, CPBayes was enhanced by including linear programming techniques to provide
more efficient acyclicity checking [25]. Compared with DP algorithms, these algorithms
improve the scalability and efficiency of learning BNs, but their efficiency is still relatively
low, and there is still room for improvement. Furthermore, algorithms based on continu-
ous optimization have been developed in recent years. For example, the noncombinato-
rial optimization via trace exponential and augmented Lagrangian for structure learning
(NOTEARS) algorithm [26] used the augmented Lagrangian method to address continuous
optimization problems.

Hybrid search approaches try to combine the advantages of score-based and constraint-
based algorithms. The most famous hybrid search approach is the max–min hill-climbing
(MMHC) algorithm [27]. This algorithm is divided into two stages: in the first stage, the
max–min parent and children (MMPC) algorithm [28] is used to learn the parent–child
set of each node; in the second stage, the hill-climbing algorithm is conducted within the
limited range of the parent–child set. The constrained optimal search (COS) algorithm [29]
performs an optimal search through the DP algorithm under superstructure constraints.
The edge-constrained optimal search (ECOS) algorithm [30] clusters the superstructure
based on the COS algorithm, learns in each cluster, and finally merges to obtain the
complete BN structure. The constrained hill-climbing (CHC) algorithm [31] improves
algorithm efficiency and accuracy by dynamically limiting the hill-climbing algorithm
process. The separation and reunion (SAR) algorithm [32] decomposes a large BN into
learning some relatively small BNs through the CI test and builds the actual network
structure by remerging these smaller network structures. Kuipers et al. [33] proposed a
hybrid algorithm that creates a restricted search space using the PC algorithm followed by
Markov Chain Monte Carlo (MCMC) sampling.
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In this paper, we continue to study the structural learning problem from the per-
spective of the shortest path search problem. This paper proposes an improved A* algo-
rithm based on constraints from potential optimal parent sets (POPS), which is specifically
improved in two aspects. On the one hand, the number of POPS is reduced through
parent–child sets constraints; on the other hand, obtaining path constraints from POPS
constrains the A* algorithm. The search efficiency of A* can be improved by the two aspects
of constraints about POPS.

The remainder of this paper is organized as follows. In Section 2, the relevant the-
oretical basis of the problem is introduced and formulated. The details of the proposed
algorithms are designed in Section 3. The proposed algorithms are demonstrated with
experiments in Section 4, followed by conclusions in Section 5.

2. Preliminaries for Bayesian Networks

This section will introduce BN and the structure learning problem based on the shortest
path search perspective, providing the theoretical basis for the new algorithm.

2.1. Bayesian Networks

The Bayesian network BN = (G, P) consists of two parts, DAG G and probability
distribution P. G is called the structure of a BN, in which each node corresponds to the
variables in variable set V = {X1, . . . , Xn} one by one, and the directed edges between
nodes reflect the dependencies between nodes. The probability distribution P is called
the parameter of BN, specifically P(Xi|PAi) , where PAi represents the parent set of Xi.
The joint probability of all variables can be decomposed into the product of conditional
probability distributions. Figure 1 shows an example of DAG, and PA2 is formed by {X1}
and {}.
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Given the dataset D = {D1, . . . , DN} (N is the sample size), the scoring function can
give the fitness of network structure G and dataset D. The goal of BN structure learning is
to find a network structure G∗ so that the scoring function can obtain the optimal value.
Many scoring functions can be used in the BN structure learning problem. Since this
paper is based on the perspective of the shortest path search problem, the score of the
minimum description length (MDL) [34] is selected. The smaller the MDL score is, the
better the corresponding BN structure. Many scoring functions, including the MDL score,
are decomposable, namely, the following:

MDL(G) =
n

∑
i=1

MDL(Xi|PAi) (1)

where MDL(Xi|PAi) is called the local score.
Each local score MDL(Xi|PAi) is calculated as follows:

MDL(Xi|PAi) = H(Xi|PAi) +
log N

2
K(Xi|PAi) (2)



Mathematics 2023, 11, 3344 4 of 18

H(Xi|PAi) = − ∑
xi ,pai

Nxi ,pai log
Nxi ,pai

Npai

(3)

K(Xi|PAi) = −(ri − 1) ∏
Xl∈PAi

rl (4)

where Nxi ,pai is the number of data points that satisfy Xi = xi and PAi = pai in the dataset
D, Npai is the number of data points that satisfy PAi = pai in the dataset D, and ri is the
number of states of Xi.

For any variable Xi, the other n − 1 variables can be its parent nodes, and thus,
each node can have 2n−1 parent sets. There are n2n−1 possible parent sets in total, and
the corresponding n2n−1 local scores must be calculated theoretically. Obviously, it is
impossible to calculate all local scores, and this number can be further reduced by some
pruning rules. The following theorems, which have been proven in [19,35], provide a basis
for ignoring some parent sets when searching for an optimal parent set for a variable with
the MDL function.

Theorem 1 ([19,35]). In an optimal Bayesian network based on the MDL scoring function, each
variable has at most blog(2N/log N)c parents.

Theorem 2 ([19]). Let U and S be two candidate parent sets for Xi, U ⊂ S, and
K(Xi|S) − MDL(Xi, U) > 0. Then, S and all supersets of S cannot possibly be optimal par-
ent sets for Xi.

Theorem 3 ([19]). Let U and S be two candidate parent sets for Xi such that U ⊂ S, and
MDL(Xi, U) ≤ MDL(Xi, S). Then, S is not the optimal parent set of Xi for any candidate set.

The pruning rules are lossless and can ensure that the optimal parent set of each
node can be obtained in the remaining parent sets. The remaining parent sets are called
the potential optimal parent sets, and the potential optimal parent sets of Xi are denoted
as POPSi.

For exact learning algorithms, the local scores that correspond to the POPS are usually
calculated in advance. Then, the local scores are used as the input to obtain the output
optimal BN score. Therefore, for the exact learning algorithms, BN structure learning is
regarded as a combinatorial optimization problem, as follows:

Input : A setV = {X1, . . . , Xn} and a set of POPSi for each Xi
Output : Find a DAG G∗ such that

G∗ ∈ argmin
G

n
∑

i=1
MDL(Xi|PAi)

where PAi ∈ POPSi

(5)

2.2. Structure Learning in Order Graph

A series of DP algorithms are proposed to solve the abovementioned combinatorial
optimization problem. DP algorithms are mainly based on the following recursive formula:

MDL(V) = min
Xi
{MDL(V\Xi) + BestMDL(Xi, V\Xi)} (6)

BestMDL(Xi, V\Xi) = min
PAi⊆V\{Xi},PAi∈POPSi

MDL(Xi, PAi) (7)

According to the recursive relationship, the basic principle of DP algorithms is
as follows. First, the optimal network structure is found for a single variable starting
from the empty set. Then, nodes are gradually added to build the optimal subnetwork
for an increasingly large set of variables until the optimal network corresponding to
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V = {X1, . . . , Xn} is found. DP algorithms can find the optimal BN in the time and space
complexity of O(n2n), and the whole process can be graphically represented by the order
graph. Figure 2 shows the order graph of a four-node BN.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

A series of DP algorithms are proposed to solve the abovementioned combinatorial 
optimization problem. DP algorithms are mainly based on the following recursive for-
mula: 

( ) ( ) ( ){ }n \,\mi
i

i i iX
MDL MDL X BestMDL X X= +V V V  (6) 

( )
{ }

( )
\ ,

, min\ ,
i i i i

i i i iPA X PA
BestMDL X X MDL X PA

⊆ ∈
=

V POPS
V  (7) 

According to the recursive relationship, the basic principle of DP algorithms is as 
follows. First, the optimal network structure is found for a single variable starting from 
the empty set. Then, nodes are gradually added to build the optimal subnetwork for an 
increasingly large set of variables until the optimal network corresponding to 

1{ ,..., }nX X=V  is found. DP algorithms can find the optimal BN in the time and space 

complexity of ( )2nO n , and the whole process can be graphically represented by the order 
graph. Figure 2 shows the order graph of a four-node BN. 

 
Figure 2. The order graph of a four-node BN. 

Yuan and Malone [18,19] further transformed the combinatorial optimization prob-
lem into the shortest path search problem. They regarded the top empty set ∅O =  as the 
start state and the bottom V  as the goal state. Therefore, a path from the start state to the 
goal state corresponds to the ordering of nodes, which is how the order graph obtains its 
name. In the order graph, state U  to the next state { }( )\i iX X ∈S =U V U  is equivalent 
to adding node iX  based on subnetwork U , and the path cost from state U  to the next 
state S  is 

( ) ( )
( )

, ,
min ,

i i i

i

i iPA PA

cost BestMDL X

MDL X PA
⊆ ∈

=

=
U, POPS

U S U
 (8) 

where ( ),iBestMDL X U  is obtained by replacing \ iXV  in (7) by U . The cost of the path 
is equal to the score of selecting an optimal parent set for iX   out of U  , i.e., 

( ),iBestMDL X U  . For example, the path { } { }2 3 1 2 3, , ,X X X X X→   has a cost equal to 

{ }( )1 2 3, ,BestMDL X X X . 
Then, the corresponding optimal ordering can be obtained in the order graph by find-

ing the shortest path from the start state O  to the goal state V . In the process of finding 
the shortest path, the optimal parent sets corresponding to the path are recorded. The 

Figure 2. The order graph of a four-node BN.

Yuan and Malone [18,19] further transformed the combinatorial optimization problem
into the shortest path search problem. They regarded the top empty set O = ∅ as the
start state and the bottom V as the goal state. Therefore, a path from the start state to the
goal state corresponds to the ordering of nodes, which is how the order graph obtains its
name. In the order graph, state U to the next state S = U∪ {Xi}(Xi ∈ V\U) is equivalent
to adding node Xi based on subnetwork U, and the path cost from state U to the next
state S is

cost(U, S) = BestMDL(Xi, U)
= min

PAi⊆U,PAi∈POPSi
MDL(Xi, PAi)

(8)

where BestMDL(Xi, U) is obtained by replacing V\Xi in (7) by U. The cost of the path is
equal to the score of selecting an optimal parent set for Xi out of U, i.e., BestMDL(Xi, U).
For example, the path {X2, X3} → {X1, X2, X3} has a cost equal to BestMDL(X1, {X2, X3}).

Then, the corresponding optimal ordering can be obtained in the order graph by
finding the shortest path from the start state O to the goal state V. In the process of finding
the shortest path, the optimal parent sets corresponding to the path are recorded. The
optimal BN can be built by combining the optimal node ordering with the optimal parent
set of each node.

Yuan and Malone searched for the optimal BN structure using the classical A* algo-
rithm based on the shortest path search. In the A* algorithm, for each current state U in
the order graph, the path cost g(U) generated from start state O to U is calculated, and the
heuristic function h is used to estimate the cost h(U) from the current state U to the goal
state V. During the search, f (U) = g(U) + h(U) is used to estimate the optimal cost of the
path through state U, the Open list is used to store the states that will be expanded, and the
Closed list is used to store the states that have been expanded. In the Open list, the current
state with the lowest f value is expanded each time, and the current state is put into the
Closed list, while the state expanded by the current state is put into the Open list. Until
the goal state V is expanded, the shortest path from O to V is found, and the optimal node
ordering is also found; thus, the corresponding optimal BN can also be built.

AWA* and BiHS also search for the shortest path in the order graph, only their search
strategies are different from A*. Although AWA* and BiHS have the ability to return more
upper and lower bounds for the optimal score than A*, in most datasets, A* expands fewer
states and has better stability than AWA* and BiHS in the order graph.
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3. Two Constraints for Improved A* Algorithm

According to the introduction of BN structure learning theories and the A* algorithm
based on the order graph in Section 2, we can obtain two key factors that restrict the
efficiency of the A* algorithm:

(1) Potential optimal parent sets. According to the BN structure learning problem
description and Formulas (3) and (4), it is necessary to find an optimal parent set from the
POPSi of each node Xi. Obviously, the number of POPS limits the efficiency of the search.
If the number of remaining POPS is very small, it is easy to find the parent sets that meet
the requirements.

(2) Order graph. The total number of states in the order graph is 2n, and its scale
increases exponentially with the increase in the nodes in BN. The size of the search space
also limits the efficiency of the search.

Based on the above two points, this paper will propose solutions to improve the
efficiency of the A* algorithm.

3.1. Pruned Potential Optimal Parent Sets with MMPC

Although pruning rules can further reduce the number of POPS, the remaining number
is still considerable. In the problem of BN structure learning, we ultimately need optimal
parent sets. Therefore, other sets are relatively unnecessary. Given a target variable T, the
MMPC algorithm can quickly return the parent–child set CPC(T) of the target variable
T under the CI test. For the two variables X, T and the set Z, the CI PIT(X, T|Z) can be
calculated by G2 statistics under the null hypothesis of conditional independence. Let Nabc

represent the occurrence times of X = a, T = b, and Z = c in the dataset D (respectively, a,
b, and c denote the values specifically taken by X, T, and Z. a and b generally are integers,
and c is a combination of the integers.); then, the statistical variable G2 is defined as

G2 = 2 ∑
a,b,c

Nabc ln(
NabcNc

NacNbc ) (9)

Under the null hypothesis, the G2 statistic asymptotically obeys the distribution of
χ2 statistics. Therefore, given the significance level α, if the value p calculated by the test,
namely, PIT(X, T|Z), is less than α, the hypothesis is rejected, and the variables X and T
are considered to be conditionally dependent under a given Z. Otherwise, X and T are
considered to be conditionally independent under a given Z. The pseudocode of the MMPC
algorithm is shown in Algorithm 1. In Algorithm 1, CPC(T) is the parent–child set of the
target variable T.

Algorithm 1: MMPC

Input: Target variable T, variable set V, and significance level α

Output: Parent-child set of the target variable T: CPC(T)

1. Let parent-child set of the target variable T: CPC(T) = ∅, R = V\{T};
2. while R 6= ∅
3. for ∀X ∈ R do

4. if maxZ⊆CPC(T)PIT(X, T
∣∣∣Z) > α then R = R\{T} end if

5. end for

6. Y = argminX∈RmaxZ⊆CPC(T)PIT(X, T
∣∣∣Z) and CPC(T) = CPC(T) ∪ {Y}

7. for ∀X ∈ CPC(T)\{Y} do

8. if maxZ⊆CPC(T)\{X}PIT(X, T
∣∣∣Z) > α then CPC(T) = CPC(T)\{X} end if

9. end for

end while
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Given a condition set Z, the MMPC algorithm not only considers PIT(X, T|Z) to
determine whether X and T are independent but also considers max

Z′⊆Z
PIT(X, T|Z′), which

has stronger robustness, to determine whether X and T are independent. Certainly, this
approach requires more χ2 test calculations. Finally, we can use the MMPC algorithm to
compute the parent–child set CPC(T) for each variable Xi.

Through the constraint of the parent–child set CPC(T), we can further prune the
unnecessary sets and their corresponding MDL score calculations for the POPSi. Taking a
four-node BN as an example, for node X4, {X1, X2, X3} and all of its subsets could be the
parent set of X4. If the traditional pruning rules (Theorems 1–3) are not considered to be in
effect, its POPS are still {X1, X2, X3} and all its subsets, which are represented as the parent
graph of X4, as shown in Figure 3. If the parent–child set of X4 obtained by the MMPC
algorithm is CPC(X4) = {X2, X3}, then the parent graph of X4 shown in Figure 3 can be
pruned to the parent graph shown in Figure 4. For larger BNs, this pruning will be more
significant in its score calculations. The constraints of the parent–child set calculated by the
MMPC algorithm can greatly reduce unnecessary score calculations and storage. Limiting
the number of corresponding POPS improves the search efficiency of the A* algorithm.
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3.2. Pruned Order Graph with Path Constraints

According to Section 2.2, the optimal BN structure learning actually searches for the
shortest path from the order graph. Therefore, if the path constraints can be found in the
order graph, it will greatly improve the efficiency of the A* algorithm in searching for the
shortest path in the order graph.

Before illustrating such path constraints, a simple example can be taken. Table 1 shows
the POPS of each variable in a six-node BN. We assume that we have obtained the POPS of
each variable by the score pruning rules or MMPC algorithm in Section 3.1. It can be seen
from Table 1 that not all nodes can choose all other nodes as their parent nodes due to the



Mathematics 2023, 11, 3344 8 of 18

parent–child set constraints obtained from Section 3.1. For example, X1 can only choose X2
as its parent node or an empty set with no parent.

Table 1. The POPS of each variable in a 6-node BN.

Variable POPS

X1 {X2}, {}
X2 {X1}, {}
X3 {X1, X2}, {X1, X4}, {X2, X4}, {X1}, {}
X4 {X1, X5}, {X1}, {X5}, {}
X5 {X1, X2}, {X6}, {X1}, {X2}, {}
X6 {X2, X3}, {X3}, {}

A directed graph can be obtained by connecting each node Xi and its potential optimal
parent sets POPSi. We connect from each node Xi and its potential optimal parent sets
POPSi from Table 1 to obtain the directed graph, as shown in Figure 5. In such a directed
graph, if Xj is a potential parent node of Xi, then the graph contains directed edges from
Xj to Xi.
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Figure 5. A directed graph based on each variable in Table 1 and its POPS.

An interesting phenomenon can be observed in Figure 5: there are only directed
edges from the node in {X1, X2} to the node in {X3, X4, X5, X6} but no directed edges
from the node in {X3, X4, X5, X6} to the node in {X1, X2}; in other words, the node in
{X3, X4, X5, X6} cannot be the parent node of the node in {X1, X2}, and thus, it can be split
into two parts: {X1, X2} and {X3, X4, X5, X6}. Thus, based on Figure 5, by contracting
{X1, X2} to one node and {X3, X4, X5, X6} to another node, we can finally obtain the acyclic
component graph, as shown in Figure 6. Based on the above splitting method, we can split
the order graph of learning the six-node BN into two subgraphs, as shown in Figure 6.
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Obviously, it can be seen from the above that the complete order graph of the
six-variable BN should contain 26 states. However, the order graph can be split into
two subgraphs based on the constraints from Figure 5, in other words, {X1, X2} and
{X3, X4, X5, X6}. We refer to this splitting method as path constraints.

As the structure of the order graph changed, the entire process of searching the order
graph also changed. First, we find the shortest path from O to {X1, X2} in the first subgraph
of Figure 7, and then find the shortest path from {X1, X2} to V = {X1, X2, X3, X4, X5, X6} in
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the second subgraph of Figure 7. The shortest path from O to V is obtained by concatenating
the shortest paths in the two subgraphs. {X1, X2} becomes the necessary state in the shortest
searching process of the order graph. Therefore, the number of the states in the order graph
search space of Figure 7 can be reduced to 22 + 24 − 1.
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Compared with 26 states in the complete order graph of the six-variable BN, path
constraints can reduce the number of states in the order graph. As the number of nodes
n increases, the path constraint reduces the number of states in the order graph more
significantly. We give Theorem 4 to generalize and quantify this reduction.

Theorem 4. In a Bayesian network with node set V = {X1, . . . , Xn}, given path constraints, V

can be split into subsets P1, P2, . . . , Pm(
m
∑

i=1
Pi = V). Then, the number of states in the order graph

is reduced from 2n to
m
∑

i=1
2|Pi | −m + 1.

Proof of Theorem 4. Obviously, the total 2n states of the complete order graph correspond
to the Bayesian network of n nodes. For the ordered graph under path constraints, where
the number of states of any subgraph split by Pi is 2|Pi |, there are m such subgraphs, and the

total number of states is
m
∑

i=1
2|Pi |. However, this will double count m− 1 states. Therefore,

m− 1 states are removed from the total number of computations. Finally, the total number

of states is
m
∑

i=1
2|Pi | −m + 1. �

This simple example shows that the directed graph built from each node Xi and its
potential optimal parent sets POPSi implies path constraints, which can be used to prune
the order graph.

The internal principle is briefly described as follows, requiring the help of Theorem 5
(it is proved in the literature [19]).

Theorem 5. Let U and S be two candidate parent sets for Xi such that U ⊂ S. We must have
BestMDL(Xi, S) ≤ BestMDL(Xi, U).
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In general, if there is only a directed path from Xj to Xi in the directed graph but
no directed path from Xi to Xj, then the order graph does not need to generate states
containing Xi but excluding Xj. One way to think about this phenomenon is the following.
For a current state U in the order graph that does not include Xi and Xj, if we expand Xj
first and then Xi, then the path cost from state U to state U∪

{
Xi, Xj

}
is BestMDL

(
Xj, U

)
+

BestMDL
(
Xi, U∪

{
Xj

})
. On the other hand, if we expand Xi first and then Xj, the

path cost from state U to state U∪
{

Xi, Xj
}

is BestMDL(Xi, U) + BestMDL
(
Xj, U∪ {Xi}

)
.

However, since only a directed path from Xj to Xi can exist, BestMDL
(
Xj, U∪ {Xi}

)
=

BestMDL
(
Xj, U

)
. For these two path expansion plans, we should continue to compare

the values of BestMDL
(
Xi, U∪

{
Xj

})
and BestMDL(Xi, U). According to Theorem 5 and

U ⊆ U ∪
{

Xj
}

, it is more likely to obtain a better value that makes this path smaller in
a larger set, and thus, BestMDL

(
Xi, U∪

{
Xj

})
≤ BestMDL(Xi, U). Therefore, the plan

that expands Xj first and then Xi is more likely to achieve the shortest path from U to
U∪

{
Xi, Xj

}
. Thus, there is no need to generate states that contain Xi but exclude Xj.

Based on the previous simple example, we discuss the general method of obtaining
path constraints in order to prune the order graph.

A new concept, the strongly connected component (SCC), is actually involved in the
process of splitting the directed graph built from each node Xi and its potential optimal
parent sets POPSi. In a directed graph, if there is a directed path from Vi to Vj between two
nodes and a directed path from Vj to Vi, the two nodes are said to be strongly connected.
A directed graph is a strongly connected graph if any two nodes are strongly connected.
The extremely strongly connected subgraph of a directed graph is called a strongly con-
nected component. The strongly connected components of a directed graph form an acyclic
component graph, which is also a DAG. Each node Ci in the acyclic component graph
corresponds to a strongly connected component SCCi and to a subset of the node set
V = {X1, . . . , Xn} in a BN. The acyclic component graph gives more intuitive path con-
straints. In the acyclic component graph, if there are directed paths from Ci to Cj, the
variable in SCCj cannot be the parent node of the variable in SCCi.

Based on the above concept, we try to obtain path constraints by extracting SCCs
to prune the order graph. At present, there are mature algorithms for SCC extraction,
among which the Kosaraju algorithm is the most commonly used. The pseudocode of the
algorithm that obtains path constraints by extracting SCCs is shown in Algorithm 2.

In this algorithm, the potential optimal parent sets POPSi of each node Xi are used
to build the directed graph G0, and the SCC {SCC1, . . . SCCi, . . . SCCm} of the directed
graph G0 is extracted by the Kosaraju algorithm. It is worth noting that if the size of the
SCC is too large, it is still not conducive to improving the efficiency of the algorithm and
to searching for a larger network. For example, the original A* algorithm itself cannot
search the network of over 50 nodes. If, in the operation of building a directed graph G0

and extracting SCCs through the POPS, two SCCs with |SCC1|= 1 and |SCC2|= 49 are
obtained, and the path constraints are determined, such a method is still meaningless.
Because the A* algorithm still cannot search a network of 49 nodes. Thus, we limit the size
of the SCC with the parameter t. If the size of the maximum SCC exceeds the parameter t,
a part of the set of potential optimal parent sets POPSi is selected to rebuild the directed
graph G0. We prefer to select the sets that correspond to the local scores of the top k in
POPSi. The parameter t will gradually decrease from the maximum number of POPS until
the SCC that meets the conditions can be extracted from the built directed graph. Then,
Algorithm 2 breaks out of the loop and returns the extracted SCCs under the constraints
of the parameter t. However, this method is greedy because only part of POPS is used to
build the directed graph, and the extracted SCCs lose some information. The pruned order
graph formed according to the path constraints of SCCs has certain problems, which will
affect the shortest path search and affect the accuracy of the final BN. This effect will be
analyzed in detail in the experimental section.
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Algorithm 2: Obtain path constraints algorithm

Input: Potential optimal parent sets of each node Xi POPSi, maximum size t
Output: Path constraints P1, . . . , Pi, . . . , Pm

1. p← max(|POPS1|, . . .|POPSi|, . . .|POPSm|)
2. build graph G0 according to all POPSi of Xi
3. {SCC1, . . . , SCCi, . . . , SCCm} ← Kosaraju

(
G0) ;

4. q← max(|SCC1|, . . .|SCCi|, . . .|SCCm|) ;
5. if q > t then
6. for k = p→ 1 do
7. build graph G0 according to the best k POPSi of Xi
8. {SCC1, . . . , SCCi, . . . , SCCm} ← Kosaraju

(
G0) ;

9. q← max(|SCC1|, . . .|SCCi|, . . .|SCCm|) ;
10. if q ≤ t then break; endif
11. end for
12. end if
13. P1, . . . , Pi, . . . , Pm ← SCC1, . . . , SCCi, . . . , SCCm

Finally, we discuss the search complexity in the pruned order graph.
{SCC1, . . . , SCCi, . . . , SCCm} obtained by Algorithm 2 can split the original order graph
into m subgraphs, where the connection state between each subgraph is Fi = ∪i

k=1SCCk,
and Fm = ∪m

k=1SCCk = V, F0 = {} = O. Thus, for each subgraph, the start state is Fi−1
and the goal state is Fi. For the entire order graph, it is equivalent to searching the shortest
paths from F0 to F1, then from F1 to F2, all the way to Fm−1 to Fm. Still taking Figure 7
as an example, because there are SCC1 = {X1, X2} and SCC2 = {X3, X4, X5, X6}, there
are F1 = {X1, X2} and F2 = {X1, X2, X3, X4, X5, X6}. Therefore, we search the shortest
path from F0 = ∅ to F1 = {X1, X2} and then search the shortest path from F1 = {X1, X2}
to F2 = {X1, X2, X3, X4, X5, X6}. Finally, it only remains to connect each shortest path
to obtain the entire shortest path on the order graph. For each subgraph, the maximum
complexity of the A* search is O

(
2|SCCi |

)
. This case is the worst case, which is almost im-

possible because A* uses heuristic functions. Therefore, in the pruned order graph, which
is split into m subgraphs using {SCC1, . . . , SCCi, . . . , SCCm}, the maximum complexity of
the A* search is

O
(

2|SCC1| + . . . + 2|SCCi | . . . + 2|SCCm |
)
= O

(
mmax

i
2|SCCi |

)
(10)

This conclusion also corroborates Theorem 4. This finding shows that the maximum
complexity depends on the size of the maximum SCC. Therefore, it is necessary for Al-
gorithm 2 to use the parameter t to limit the size of the maximum SCC, which effectively
limits the maximum complexity of the A* search of the pruned order graph.

4. Experiments

To evaluate the effect of A* under MMPC constraints (Section 3.1) and path constraints
(Section 3.2), experiments will be performed on some common benchmark BNs and UCI
datasets. The A* algorithm using only MMPC constraints is named A*-MMPC, the A*
algorithm using only path constraints is named A*-PC, and the algorithm using both
constraints is named A*-MM2PC. Experiments are mainly divided into two parts. First,
the improvement effect of the two constraints on A* is tested; in other words, the various
indices between the A*, A*-MMPC, A*-PC, and A*-MM2PC algorithms are tested. Then,
the A*-MM2PC with two constraints is compared with the typical GOBNILP and MMHC
algorithms.

First, the comparison experiment will compare A*, A*-MMPC, A*-PC, and A*-MM2PC
from the following three aspects:

1. Time: Time recorded the running time of the algorithm (OT means out of time);
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2. States: The number of expanded states in the order graph;
3. Error: The percentage error (MDL(Gobtained)/MDL(Gexact)− 1) × 100% where

MDL(Gobtained) is the MDL score of the BN obtained by the performing algorithm
after learning the data, and MDL(Gexact) is the exact MDL score of the BN obtained
by the original A* or GOBNILP algorithms.

4. Both the original A* and GOBNILP algorithms are exact learning algorithms. If
scoring values can be obtained, they are both optimal and equal. Therefore, these
two algorithms do not need to calculate the percentage error, and they are both 0%.
On the one hand, the MMPC algorithm uses a CI test, and there will be a certain
probability of error in the case of insufficient or noisy samples. On the other hand,
path constraints adopt a greedy strategy when extracted SCCs do not meet parameter
t. Therefore, A*-MMPC, A*-PC, and A*-MM2PC should all consider the influence of
the accuracy, namely, the percentage error. The smaller the percentage error is, the
higher the accuracy of the corresponding algorithm. Two decimal places are retained
for each index, and scientific notation is used for numbers that are too large or
too small.

The benchmark BNs are selected for the comparison experiment, and the sampled
data are obtained from the sample sizes of 1000, 3000, 5000, 7000, and 10,000. Then, BN
is learned from the sampled data. Table 2 records the performances of the A*, A*-MMPC,
A*-PC, and A*-MM2PC algorithms on benchmark BNs. By adding path constraints, the
scale of BNs that the A* algorithm can search is expanded, and Water and Alarm networks
that cannot be searched before can be searched.

Table 2. Performances of the A*, A*-MMPC, A*-PC, and A*-MM2PC algorithms on benchmark BNs.
The best-performing results (including minimum time, minimum number of expanded states and
minimum percentage error) are highlighted in bold in the Table 2 and the following tables.

Name n N
A* A*-MMPC A*-PC A*-MM2PC

Time(s) States Time(s) States Error Time(s) States Error Time(s) States Error

Sachs 11 1000 2.61 × 10−3 215 2.02 × 10−3 199 0% 3.55 × 10−3 58 0% 3.05 × 10−3 49 0%
Sachs 11 3000 2.64 × 10−3 416 2.27 × 10−3 368 0% 4.52 × 10−3 84 0% 3.37 × 10−3 76 0%
Sachs 11 5000 3.04 × 10−3 492 2.33 × 10−3 396 0% 5.01 × 10−3 89 0% 3.71 × 10−3 79 0%
Sachs 11 7000 3.92 × 10−3 599 2.82 × 10−3 487 0% 5.64 × 10−3 100 0% 4.04 × 10−3 86 0%
Sachs 11 10,000 3.65 × 10−3 629 2.86 × 10−3 501 0% 5.83 × 10−3 113 0% 4.16 × 10−3 98 0%

Child 20 1000 1.94 × 10−1 50,887 1.28 × 10−1 36,678 0.21% 7.89 × 10−2 18,714 0% 6.30 × 10−2 16,226 0.21%
Child 20 3000 5.69 × 10−1 158,853 2.48 × 10−1 63,946 0.27% 2.08 × 10−1 58,677 0% 7.44 × 10−2 29,427 0.27%
Child 20 5000 4.07 × 10−1 115,639 3.13 × 10−1 65,100 0.19% 1.73 × 10−1 52,226 0% 7.53 × 10−2 30,242 0.19%
Child 20 7000 4.19 × 10−1 119,577 3.05 × 10−1 59,259 0% 1.81 × 10−1 54,496 0% 7.39 × 10−2 28,040 0%
Child 20 10,000 4.64 × 10−1 137,545 3.36 × 10−1 67,065 0% 2.02 × 10−1 63,799 0% 8.87 × 10−2 31,196 0%

Insurance 27 1000 142.45 2.05 × 10+7 36.47 4.71 × 10+6 0.72% 44.98 7.00 × 10+6 0% 12.36 1.95 × 10+6 0.72%
Insurance 27 3000 175.68 2.44 × 10+7 27.87 3.42 × 10+6 0.60% 48.42 8.14 × 10+6 0% 10.44 1.67 × 10+6 0.60%
Insurance 27 5000 192.73 2.56 × 10+7 21.22 2.63 × 10+6 0.49% 50.76 8.08 × 10+6 0% 8.84 1.35 × 10+6 0.49%
Insurance 27 7000 218.43 2.66 × 10+7 23.67 2.91 × 10+6 0.45% 52.54 8.48 × 10+6 0% 9.13 1.38 × 10+6 0.45%
Insurance 27 10,000 215.52 2.55 × 10+7 26.95 3.16 × 10+6 0.42% 50.95 8.15 × 10+6 0% 9.53 1.46 × 10+6 0.42%

Water 32 1000 OT OT 23.65 5.67 × 10+6 0% 18.98 4.98 × 10+6 0.19%
Water 32 3000 OT OT 26.31 6.20 × 10+6 0% 18.55 4.77 × 10+6 0.18%
Water 32 5000 OT OT 27.07 6.39 × 10+6 0% 17.11 4.20 × 10+6 0.11%
Water 32 7000 OT OT 27.66 6.41 × 10+6 0% 19.60 4.46 × 10+6 0.06%
Water 32 10,000 OT OT 27.86 6.45 × 10+6 0% 21.08 4.85 × 10+6 0.07%

Alarm 37 1000 OT OT 3.17 × 10−1 1.01 × 10+6 0% 1.40 × 10−1 29,265 0.03%
Alarm 37 3000 OT OT 1.37 × 10−1 4992 0.22% 4.96 × 10−2 2731 1.99%
Alarm 37 5000 OT OT 2.59 × 10−1 78,817 0.02% 7.14 × 10−2 29,283 0.44%
Alarm 37 7000 OT OT 3.33 × 10−1 10,3821 0% 8.42 × 10−2 30,415 0.02%
Alarm 37 10,000 OT OT 2.48 × 10−1 86,143 0.02% 8.10 × 10−2 29,695 0.21%

Hailfinder 56 1000 OT OT 6.67 × 10−2 1670 0.013% 2.52 × 10−2 573 0.11%
Hailfinder 56 3000 OT OT 6.41 × 10−2 1931 0.023% 3.42 × 10−2 922 0.42%
Hailfinder 56 5000 OT OT 1.56 3.62 × 10+5 0.025% 8.26 × 10−1 1.51 × 10+5 1.35%
Hailfinder 56 7000 OT OT 2.91 × 10−2 491 0.067% 1.21 × 10−2 202 2.21%
Hailfinder 56 10,000 OT OT 1.66 3.66 × 10+5 0.043% 8.61 × 10−1 1.53 × 10+5 1.21%

Win95pts 76 1000 OT OT 1.47 3.23 × 10+5 0.49% 6.48 × 10−1 1.32 × 10+5 1.61%
Win95pts 76 3000 OT OT 2.07 4.66 × 10+5 0.67% 1.08 2.37 × 10+5 2.13%
Win95pts 76 5000 OT OT 3.36 7.63 × 10+5 0.50% 2.29 4.40 × 10+5 2.99%
Win95pts 76 7000 OT OT 3.98 8.91 × 10+5 0.59% 2.72 5.44 × 10+5 2.15%
Win95pts 76 10,000 OT OT 3.70 8.36 × 10+5 0.56% 3.28 6.56 × 10+5 1.94%

In terms of the number of expanded states in the order graph, using either MMPC or
path constraints can significantly reduce the number of states, and A*-MM2PC using both
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constraints has the lowest number of expanded states. Similarly, in general, the trend of
the corresponding time consumption follows the trend of the number of expanded nodes,
except for the Sachs network. In the Sachs network, although A*-PC and A*-MM2PC have
fewer expanded states than A* and A*-MMPC, their corresponding time consumption is
higher. The time consumption for structure learning in the Sachs network is already low;
however, it takes a certain amount of time to generate heuristic functions every time the A*
program is executed. Therefore, in the Sachs network, A*-PC and A*-MM2PC divide the
complete order graph into several subgraphs using path constraints, and each subgraph
increases the generation time of the heuristic function accordingly. In conclusion, A*-PC
and A*-MM2PC use path constraints to reduce the number of expanded states in the order
graph, and thus reduce the search time, which is far less than the generation time of the
increased heuristic function, resulting in higher time consumption in a smaller network.
However, in larger networks, the reduction in more states is the more dominant factor,
and thus, their time consumption is significantly reduced. In the Alarm network, the size
of the maximum SCC obtained by Algorithm 2 is 18, while the sizes of other SCCs are
mostly 2 and 3. Therefore, the experimental results regarding the time consumption and the
number of expanded states are similar to the Child network with 20 nodes. In Hailfinder
and Win95pts, the size of the maximum SCC obtained by Algorithm 2 is relatively small,
so their total time consumption and the number of expanded states are both even smaller
than the corresponding results for smaller networks. This phenomenon shows that the
maximum complexity of the algorithm depends on the size of the maximum SCC, which is
consistent with the conclusion in Section 3.2.

In terms of the accuracy of these algorithms, it is easier to lose accuracy using MMPC
constraints. The accuracy loss is more significant in the case of a small sample size, and
the accuracy is higher in the case of a large sample size. Since MMPC uses the CI test,
it is sensitive to the sample size and can only obtain good results under the condition of
sufficient samples; as a result, this drawback is also inherited into the new algorithm. In
addition, path constraints lead to accuracy loss in the Alarm network. For calculating
path constraints in a large-scale network, Algorithm 2 will attempt to generate a directed
graph using the sets that corresponds to the local scores of the top k in POPSi. However,
this approach is greedy, which reduces the accuracy of the final BN. Fortunately, path
constraints using the greedy approach lead to a lower accuracy loss than MMPC constraints.
Furthermore, it can be concluded from the experimental results that the accuracy loss of
the A*-MM2PC algorithm using MMPC constraints and path constraints comes more from
the accuracy loss caused by MMPC constraints.

Table 3 records the performances of the A*, A*-MMPC, A*-PC, and A*-MM2PC algo-
rithms on 13 common UCI datasets. By adding MMPC constraints and path constraints,
the size of BNs that can be searched by the A* algorithm is expanded, and the performance
of adding path constraints is more significant than that of adding MMPC constraints. In
terms of the number of expanded states in the order graph, MMPC or path constraints
can significantly reduce the number of expanded states, and adding both can reduce the
number of expanded states even further. The variation trend of time consumption is similar
to that of the number of expanded states. In terms of the accuracy of these algorithms,
since most UCI datasets have small sample sizes, and the CI test used in MMPC constraints
requires a sufficient sample size, it is easier to lose accuracy by using MMPC constraints.
Comparatively, the accuracy loss of path constraints appears only in Flag, Soybean, Bands,
and Spectf. The accuracy loss of the A*-MM2PC algorithm using both MMPC constraints
and path constraints mainly comes from MMPC constraints.



Mathematics 2023, 11, 3344 14 of 18

Table 3. Performances of the A*, A*-MMPC, A*-PC, and A*-MM2PC algorithms on UCI datasets.

Name n N
A* A*-MMPC A*-PC A*-MM2PC

Time(s) States Time(s) States Error Time(s) States Error Time(s) States Error

Lympho 19 148 5.37 × 10−3 17,414 2.94 × 10−2 95 0% 5.33 × 10−2 8757 0% 2.44 × 10−2 93 0%
Hepatitis 20 126 6.05 × 10−3 8515 2.80 × 10−2 2824 0.26% 3.85 × 10−2 4809 0% 1.86 × 10−3 1533 0.26%
Segment 20 2310 1.72 428,083 7.99 × 10−1 218,456 0.76% 4.01 × 10−1 107,902 0% 1.71 × 10−1 54,588 0.76%

Mushroom 23 8124 5.93 × 10−1 49,593 3.55 × 10−1 38,835 2.07% 4.89 × 10−1 33,167 0% 2.55 × 10−1 25,669 2.07%
Autos 26 159 36.55 4.76 × 10+6 12.24 1.64 × 10+6 2.60% 18.38 2.54 × 10+6 0% 6.74 906,247 2.60%
Steel 28 1941 OT 50.48 7.61 × 10+6 2.70% 12.34 2.55 × 10+6 0% 1.46 310,744 2.70%
Flag 29 194 OT 2.99 319,340 0.69% 3.47 418,554 0.01% 3.53 × 10−1 46,659 0.69%

Soybean 36 266 OT OT 1.23 234,185 0.13% 1.16 164,698 3.93%
Bands 39 277 OT OT 11.33 1.54 × 10+6 0% 0.23 15,354 1.06%
Spectf 45 267 OT OT 8.45 × 10−2 76 0.10% 7.76 × 10−2 74 0.27%

Sponge 45 76 OT OT 3.01 × 10−1 13,106 0.659% 1.73 × 10−1 6753 1.304%
LungCancer 57 32 OT OT 4.42 × 10−1 19,223 2.159% 3.66 × 10−1 26,019 5.54%

Splice 61 3190 OT OT 1.62 × 10−1 216 0.123% 1.62 × 10−1 193 0.323%

On the whole, MMPC and path constraints can effectively and significantly improve
the overall efficiency of the A* algorithm and reduce time consumption and the number of
expanded states in the order graph, at the cost of only a slight loss in accuracy.

A*-MM2PC with MMPC constraints and path constraints is compared with other
classical algorithms. The GOBNILP algorithm is considered to be the state-of-the-art
algorithm among the exact learning algorithms, while the MMHC algorithm is the most
well-known algorithm among the hybrid algorithms, which also uses MMPC constraints.
In addition, the Insert Neighborhood Ordering-Based Search (INOBS) [36] algorithm is
a state-of-the-art improved variant of OBS. The comparison experiment will compare
GOBNILP, MMHC, INOBS, and A*-MM2PC from the following two aspects:

1. Time: time recorded the running time of the algorithm (OT means out of time);
2. Error: the percentage error (MDL(Gobtained)/MDL(Gexact)− 1)× 100%.

The percentage error is calculated in the same way as before, and since the GOBNILP
algorithm is an exact learning algorithm, it is always 0% and is not recorded. In addition,
since GOBNILP, MMHC, and INOBS have different search spaces and do not use the
order graph as the search space, the number of expanded states in the order graph is also
not recorded.

Table 4 records the performances of the GOBNILP, MMHC, INOBS, and A*-MM2PC
algorithms on benchmark BNs. Compared with the GOBNILP algorithm, A*-MM2PC
consumes less time in the Sachs, Child, Alarm, Hailfinder, and Win95pts networks. Al-
though the accuracy of A*-MM2PC is not as good as GOBNILP, the overall accuracy loss of
A*-MM2PC is less than 3%, mainly concentrated within 0.5%. Compared with the MMHC
algorithm, A*-MM2PC has less time consumption on the Sachs, Child, Alarm, Hailfinder,
and Win95pts networks and always has less accuracy loss than the MMHC algorithm.
Although both the MMHC and A*-MM2PC algorithms adopt MMPC constraints, MMHC
uses greedy search to further search in the second stage, while A*-MM2PC is based on
the A* algorithm, an exact learning algorithm, to further search; thus, A*-MM2PC will
achieve higher accuracy than MMHC. The accuracy of the MMHC algorithm also roughly
conforms to the trend of low accuracy when the sample size is small and high accuracy
when the sample size is large. The reason is the fact that CI tests rely on sufficient samples.
Compared with the INOBS algorithm, A*-MM2PC mostly has less time consumption on
the Sachs, Child, Alarm, Hailfinder, and Win95pts networks than the INOBS algorithm,
and has less accuracy loss than the INOBS algorithm, in most cases.
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Table 4. Performances of GOBNILP, MMHC, and A*-MM2PC algorithms on benchmark BNs.

Name n N
GOBNILP MMHC INOBS A*-MM2PC

Time(s) Time(s) Error Time(s) Error Time(s) Error

Sachs 11 1000 0.22 0.39 0.67% 1.5 × 10−2 0% 3.05 × 10−3 0%
Sachs 11 3000 0.21 0.60 0% 1.5 × 10−2 0.098% 3.37 × 10−3 0%
Sachs 11 5000 0.31 0.95 0% 1.5 × 10−2 0.065% 3.71 × 10−3 0%
Sachs 11 7000 0.38 1.11 0% 1.5 × 10−2 0.130% 4.04 × 10−3 0%
Sachs 11 10,000 0.35 1.41 0% 1.6 × 10−2 0.072% 4.16 × 10−3 0%

Child 20 1000 0.48 0.77 4.25% 1.5 × 10−2 0.33% 6.30 × 10−2 0.21%
Child 20 3000 0.87 1.63 0.34% 1.6 × 10−2 0.13% 7.44 × 10−2 0.27%
Child 20 5000 1.08 2.54 0.32% 9.24 × 10−2 0.38% 7.53 × 10−2 0.19%
Child 20 7000 1.47 3.62 0.33% 1.73 × 10−1 0% 7.39 × 10−2 0%
Child 20 10,000 2.03 5.56 0.32% 2.61 × 10−1 0% 8.87 × 10−2 0%

Insurance 27 1000 2.87 0.76 2.08% 0.32 1.21% 12.36 0.72%
Insurance 27 3000 6.26 2.37 1.20% 0.33 0.71% 10.44 0.60%
Insurance 27 5000 6.82 4.56 1.09% 0.57 0.63% 8.84 0.49%
Insurance 27 7000 9.07 6.87 0.83% 0.89 0.37% 9.13 0.45%
Insurance 27 10,000 10.16 11.05 0.67% 0.98 0% 9.53 0.42%

Water 32 1000 2.13 0.43 1.94% 0.31 0.21% 18.98 0.19%
Water 32 3000 2.98 0.59 1.58% 0.42 0.28% 18.55 0.18%
Water 32 5000 5.25 0.88 1.15% 0.48 0.33% 17.11 0.11%
Water 32 7000 5.71 1.34 1.16% 0.63 0.07% 19.60 0.06%
Water 32 10,000 7.51 1.61 0.77% 0.97 0.15% 21.08 0.07%

Alarm 37 1000 2.58 0.80 6.69% 6.33 × 10−1 0.69% 1.40 × 10−1 0.03%
Alarm 37 3000 8.61 1.32 6.21% 6.82 × 10−1 2.17% 4.96 × 10−2 1.99%
Alarm 37 5000 10.77 2.24 3.20% 1.26 0.92% 7.14 × 10−2 0.44%
Alarm 37 7000 14.15 2.78 2.72% 1.41 0.25% 8.42 × 10−2 0.02%
Alarm 37 10,000 22.34 4.27 2.37% 1.25 0.23% 8.10 × 10−2 0.21%

Hailfinder 56 1000 8.11 ×
10−1 7.93 2.75% 5.61 × 10−1 0.14% 2.52 × 10−2 0.11%

Hailfinder 56 3000 1.92 2.74 14.49% 6.72 × 10−1 0.36% 3.42 × 10−1 0.42%
Hailfinder 56 5000 6.56 42.78 5.59% 7.46 × 10−1 1.48% 8.26 × 10−1 1.35%
Hailfinder 56 7000 34.39 138.75 3.81% 1.85 2.31% 1.21 × 10−1 2.21%
Hailfinder 56 10,000 68.88 307.99 2.25% 1.56 1.60% 8.61 × 10−2 1.21%

Win95pts 76 1000 256.87 1.862 8.56% 1.68 0.83% 6.48 × 10−1 1.61%
Win95pts 76 3000 529.38 5.734 3.86% 2.24 2.56% 1.08 2.13%
Win95pts 76 5000 3201.13 55.928 4.91% 4.84 4.21% 2.29 2.99%
Win95pts 76 7000 2883.96 509.719 3.01% 6.36 2.89% 2.72 2.15%
Win95pts 76 10,000 4798.52 659.807 5.23% 8.22 3.57% 3.28 1.94%

Table 5 records the performances of the GOBNILP, MMHC, and A*-MM2PC algorithms
on UCI datasets. Compared with the GOBNILP algorithm, the A*-MM2PC algorithm has
less time consumption on most datasets. Compared with the MMHC algorithm, it has
less time consumption on most datasets and has less accuracy loss. Compared with the
INOBS algorithm, A*-MM2PC has less time consumption and has less accuracy loss than
the INOBS algorithm on more datasets. Due to the small sample size in the UCI dataset, the
accuracy of the A*-MM2PC algorithm and the MMHC algorithm in the UCI dataset is lower
than that of benchmark BNs, and the overall accuracy of the A*-MM2PC algorithm is higher
than that of the MMHC algorithm. The A*-MM2PC algorithm has more advantages in time
and accuracy than the MMHC algorithm. For the Mushroom dataset, due to having a large
number of states of each variable and a large number of POPS, the time consumption of
GOBNILP and MMHC increases significantly when learning its structure, and the accuracy
of the MMHC algorithm decreases significantly. However, the search space of A*-MM2PC
is an order graph, which does not increase as the number of variable states and POPS
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increases. In contrast, it decreases with appropriate path constraints. Therefore, A*-MM2PC
has higher time efficiency than GOBNILP and MMHC on Mushroom.

Table 5. Performances of GOBNILP, MMHC, and A*-MM2PC algorithms on UCI datasets.

Name n N
GOBNILP MMHC INOBS A*-MM2PC

Time(s) Time(s) Error Time(s) Error Time(s) Error

Lympho 19 148 1.67 × 10−1 0.49 3.86% 1.11 × 10−1 0% 2.44 × 10−2 0%
Hepatitis 20 126 4.51 × 10−1 0.32 1.47% 3.13 × 10−1 0% 1.86 × 10−3 0.26%
Segment 20 2310 13.01 2.57 2.67% 2.36 0.93% 1.71 × 10−1 0.76%

Mushroom 23 8124 OT 258.33 85.33% 6.75 × 10−1 3.43% 2.55 × 10−1 2.07%
Autos 26 159 13.47 0.85 5.19% 1.62 2.67% 6.74 2.60%
Steel 28 1941 75.32 20.08 0.63% 8.21 × 10−1 1.52% 1.46 2.70%
Flag 29 194 1.21 0.84 1.83% 4.71 × 10−1 0.86% 3.53 × 10−1 0.69%

Soybean 36 266 31.50 1.32 6.44% 2.25 1.13% 1.16 3.93%
Bands 39 277 6.42 0.68 2.14% 6.23 × 10−1 1.72% 2.31 × 10−1 1.06%
Spectf 45 267 4.85 × 10−1 0.83 0.29% 3.52 × 10−1 0.56% 7.76 × 10−2 0.27%

Sponge 45 76 7.61 × 10−1 9.12 ×
10−1 10.263% 1.78 × 10−1 1.296% 1.73 × 10−1 1.304%

LungCancer 57 32 4.68 6.32 ×
10−1 4.758% 2.23 × 10−1 2.806% 3.66 × 10−1 5.54%

Splice 61 3190 303.882 116.56 0.894% 1.02 × 10−1 0.603% 1.62 × 10−1 0.323%

5. Conclusions

Based on the A* algorithm and POPS, this paper proposes an improved A* algorithm,
which is specifically divided into two aspects. On the one hand, it is called MMPC con-
straints, and POPS can be reduced through parent–child set constraints calculated by the
MMPC algorithm. On the other hand, it is called path constraints and uses a directed graph
built from POPS, and SCCs are extracted to obtain the path constraints in the order graph.
The two constraints based on POPS can improve the search efficiency of A*. A large number
of experiments were conducted to test the performance of the constraints. The A*-MMPC
algorithm with MMPC constraints and the A*-PC algorithm with path constraints have
less time consumption and fewer expanded states in the order graph and search larger
networks than the original A* algorithm. Meanwhile, the A*-MM2PC algorithm with two
constraints has better performance. The only drawback of both constraints is a slight loss
of accuracy, most of which is no more than 0.5%. Compared with the MMPC constraints,
the path constraints bring a lower loss of accuracy, and the scale of the Bayesian network
that can be searched is larger. Compared with the state-of-the-art GOBNILP algorithm, A*-
MM2PC has higher time efficiency in some experiments. Compared with the well-known
MMHC algorithm of the hybrid algorithms, A*-MM2PC has more time efficiency and
accuracy advantages in most cases. Compared with the state-of-the-art improved variant of
OBS, namely, INOBS, A*-MM2PC has less time consumption and has less accuracy loss on
more datasets.

Of course, the constraints we propose can not only be applied to the A* algorithm.
DP, AWA*, and BiHS have the same search space as A*, only the specific search method
is different. Thus, our proposed constraints can also be applied to these algorithms. The
method of application is similar to adding the constraints proposed in this paper into A*.
First, the number of potential optimal parent sets for DP, AWA*, and BiHS is reduced by
parent–child set constraints from the MMPC algorithm. After that, path constraints are
obtained from their pruned potential optimal parent sets to limit the search process of
these algorithms.

However, further research questions remain. In Algorithm 2, if the size of the maxi-
mum SCC exceeds the parameter t, we prefer to select the sets that correspond to the local
scores of the top k in POPSi, which is a greedy strategy, leading to a slight loss in accuracy.
Perhaps this can be mitigated by more reasonable rules that filter out better POPS.
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In practice, we try to obtain complete and sufficient data. On this basis, local scores and
POPS are calculated, POPS are pruned by the MMPC algorithm, and then path constraints
files are obtained from Algorithm 2 by the POPS. The A* algorithm is modified to provide
the ability to search after reading the path constraints files. Finally, the A* algorithm is
invoked through a script to enable it to search for sub-networks under different path
constraint files and merge the sub-networks.

In future work, we seek to obtain more useful constraints from POPS to further restrict
the learning process of the BN structure to improve the performance of the BN exact
structure learning algorithm on larger networks. In addition, determining whether further
constraints can be obtained directly from the data is also a direction for new thinking in
producing new research.
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