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Abstract: The implications of nonlinear thermal radiation on a Cu–water nanofluid flow with varying
viscosity characteristics and convective boundary conditions are investigated numerically in this
article. The nonlinear model takes the combined effects of Joule dissipation and Ohmic heating into
consideration. The Spectral Local Linearization Method (SLLM) is used to address the nonlinear gov-
erning model. The numerical investigation’s findings were conducted and compared with the existing
study. In Cu–water nanofluid flows with variable viscosity and convective boundary conditions,
nonlinear thermal radiation plays an important role, as this work insightfully demonstrates. Pertinent
results for velocity, temperature, skin friction, and heat transfer rate are displayed graphically and
discussed quantitatively with respect to various parameters embedded in the model. The results
revealed that the Cu–water thermal distribution lessens as the nanoparticle volume fraction upsurges.
The outcomes of this study have potential applications in industrial systems such as power plants,
cooling systems, and climate control systems.

Keywords: water-copper nanoparticles; permeable channel; variable viscosity; nonlinear radiative
heat flux; convective boundary conditions; numerical method

MSC: 37N10

1. Introduction

Fluids incorporating solid-sized nanoparticles are referred to as “nanofluids”. Natural
or induced convection in enclosures has been a very active field of research over the last
few decades. Nanofluids exhibit exceptional qualities such as high thermal conductivity,
little clogging in flow passageways, long-term stability, and homogeneity due to the
nanoparticles’ tiny sizes and extremely large specific surface areas [1]. In the thermal
sector, nanoparticles are utilized to boost transformer coolant efficiency and enhance
heat transmission from solar collectors to storage tanks. In addition to improving the
transfer of heat, the use of nanofluids in thermal management systems also results in
smaller and lighter heat exchangers. The contemporary trend in nano liquid in view of
their application is observed by Giwa et al. [2]. Younes et al. [3] investigated the thermal
efficiency impact on nanofluid and their application. Recently, the interaction between
heat transport and magnetohydrodynamic nanofluid was studied by Gürdal et al. [4]. In
order to potentially save solar energy, Hussain et al. [5] looked at the heat characteristics of
Maxwell nanofluids movements of a solar concentrator. In a microchannel with a porous
regime, Wang et al. [6] simulation of nanofluid flow was conducted. In the more expansive
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framework of magnetohydrodynamics (MHD), some basic flow issues related to classical
hydrodynamics have attracted attention recently. The heat emission characteristics of a
hydromagnetic effect of nanofluid flow through a spinning system were explored by Satya
Narayana et al. [7]. Izadi et al. [8] emphasize the MHD thermal gravitational circulation of
a spinning nanofluid in a permeable container.

Fluid viscosity is a crucial component of the nanofluid heat transfer process. In virtually
all situations, the coefficient of viscosity for real fluids is said to be temperature and pressure
dependent. For liquids (say, water and oils), the highest prevailing effect of viscosity
variation is accounted for by temperature. For various thermal system processes, it is
established that heat distribution within the flow channel is non-uniform; hence fluid
viscosity sometimes visibly changes with a large temperature difference [9]. In most of the
studies of this type of problem, the viscosity of the fluid is assumed to be constant. To better
understand the viscosity variation characteristic of nanofluids, a variety of studies have
been carried out. Nasrin and Alim [1] used a water/Cu nanofluid and variations in the
viscosity of aided convective flow via a riser pipe of a horizontal flat plate solar collector to
quantitatively assess thermal efficiency. The findings demonstrate that altering the values of
viscosity may offer heat transfer via the more efficient collector. A helpful tool for describing
and predicting the temperature dependence of fluid flow, the Arrhenius form of variable
viscosity allows for a greater understanding of a variety of natural and industrial processes.
Molaledi and Makinde [9] examined the Couette flow of water-based copper nanofluid
with variable viscosity features of the Arrhenius form. The variable viscosity property effect
of the motion of a water-based nanofluid utilizing nanoparticles separated by two spinning
disks was explored by Bhandari et al. [10]. Recently, Adesanya et al. [11] presented the
magnetized couple stress fluid flow over a slanted Riga surface with variable viscosity.

In the fields of thermal sciences and nanotechnology, the study of nanoparticles in
a base fluid in the presence of heat radiation has captured the attention of scientists and
researchers in significant ways. The behaviour of a Cu nanoparticle in a water-based
nanofluid with the influence of heat radiation was examined by Kumar et al. [12]. They
observed that the Nusselt number improved as heat radiation and Rayleigh number rose,
but the number of Hartmann grew in the opposite direction. The consequences of thermal
emission on the heat transfer variation in Casson fluid flow across an undulating surface
were discussed by Khan et al. [13]. Al-Mdallal et al. [14] looked at the thermal characteristics
of a water-based Cu nanofluid when radiation was present. The temperature and radiative
heat transfer are frequently assumed to have a linear connection in conventional heat
transfer estimations, but in certain cases, nonlinear effects become significant, especially
at high temperatures or when considering nanoscale phenomena. Nonlinear thermal
radiation describes the transfer of heat energy through radiation, which follows a nonlinear
relationship with temperature. A radially extended disk was employed as a medium by
Khan et al. [15] to assess the influence of entropy generation imposed by nonlinear thermal
radiation on the Carreau nanofluid. Rooman et al. [16] looked at the dissipation effect as
well as the nonlinear radiative flux in nanofluid flow induced by a stretching cylinder. Their
findings show that the heat transfer rate is a decreasing effect of the temperature ratio.

Much less effort has been devoted to examining nanofluid flow problems of temperature-
dependent viscosity and the combined effects of nonlinear thermal radiation, imposed
magnetic field and convective heat exchange at the channel surface. The main objective
of this present study is to bridge this information gap. Moreover, water is viewed as
a universal solvent that is affordable and simple to use. Water-based nanofluids are
extensively used in many industrial processes as heat exchangers. Due to its high pH and
low surface tension, which allow for the free movement of nanoparticles on its surface, it is
suggested as the being most functional base fluid. The copper nanoparticle is appealing
for a variety of applications due to its distinctive mix of thermal, optical, and antibacterial
properties. As a result, the main aim of this current work is to numerically examine the effect
of varying Cu–water nanofluid viscosity in the context of radiative effect-influenced heat
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transfer across a permeable channel. The impacts of captured thermophysical parameters
are presented in graphs and discussed quantitatively.

2. Mathematical Model

Consider a channel with walls assumed to be electrically non-conducting that is
filled with an optically dense radiating nanofluid that also assumes the conditions of
incompressible, laminar, electrically conducting, fully developed forced convection. As
displayed in Figure 1, the flow of the water-based nanofluid, which is thought of as a single-
phase flow, occurs in the x direction between two parallel leaky plates with walls spaced
h distances apart. Both the lower plate and the top plate are held motionless. A steady
magnetic field B is provided in the direction of the y-axis to the flow. The nanoparticle is
considered a single-phase flow and is assumed to be in thermal equilibrium with water. It
is also assumed that there is no slip flow between the nanoparticles and water. In addition,
the nanoparticle heat transfer analysis is maintained by considering temperatures T1 and
T2 lower and upper walls of the channel. Thermal radiation and dissipation are also put
into account.

Figure 1. Flow Geometry.

Under these aforementioned conditions, the model mathematical formulation of
momentum and energy equation may be written as Molaledi and Makinde [9]

ρn f v0
du′

dy′
= −dp′

dx′
+

d
dy′

(
µn f

du′

dy′

)
− σn f B0u′, (1)

(
ρcp
)

n f v0
dT
dy′

= kn f
d2T
dy′2
− dqr

dy′
+ µn f

(
du′

dy′

)2

+ σn f B0u′2 (2)

and the boundary constraints

u′(0) = 0, kn f
dT
dy′

(0) = −γ1

(
Tf − T(0)

)
, (3)

u′(h) = 0, kn f
dT
dy′

(h) = −γ2(T(h)− T0) (4)

where u′ is the velocity component in the x direction, v0 is the suction/injection velocity at
the channel walls, ρnf is the nanofluid density, knf is the nanofluid thermal conductivity, T
is the nanofluid temperature, σnf is the nanofluid electrical conductivity, B0 is the magnetic
field imposed along the y′-axis, and (ρCp)nf is the nanofluid heat capacitance. Moreso, γ1
and γ2 are the heat transfer coefficients at the lower and upper walls, respectively, T0 is
the fluid initial temperature, Tf is the ambient temperature. Following [9], the nanofluid
temperature-dependent viscosity (µn f ) is described in Arrhenius form as
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µn f =
µ f e

E
RT

(1− φ)2.5 , (5)

and the Rosseland approximation is expressed nonlinearly in the form

qr = −
4σ∗

3k∗
∂T4

∂y′
= −16σ∗

3k∗
T3 ∂T

∂y′
, (6)

where σ* is the Stefan Boltzmann constant and k* is the mean observation constant. Further,
the thermophysical expressions of nanofluid are given below and also in Table 1 as:

σn f
σf

= 1 +

[
3( σs

σf
−1)φ

( σs
σf

+2)−( σs
σf
−1)φ

]
,

ρn f
ρ f

= (1− φ) + φ
ρs
ρ f

,

(ρcp)n f
(ρcp) f

= (1− φ) + φ
(ρcp)s
(ρcp) f

,
kn f
k =

ks+(m−1)k f−(m−1)φ(k f−ks)

ks+(m−1)k f +φ(k f−ks)
.

Table 1. Thermo-physical properties of fluid and nanoparticles.

ρ
(
kg/m3) Cp(J/kgK) k(W/mK) σ(Sm)

Fluid phase (Water) 997.1 4179 0.613 0.05

Cu 8933 385 400 5.96 × 107

Introducing the dimensionless parameters

u =
u′

v0
, y =

y′

h
, x =

x′

h
, θ =

E(T − T0)

RT2
0

. (7)

After the use of Equation (7) on Equations (1) and (2), the dimensionless form is

AR
du
dy

= G +
e

1
γ e−(

θ
1+γθ )

(1− φ)2.5

(
d2u
dy2 −

1

(1 + γθ)2
dθ

dy
du
dy

)
− DMu, (8)

CRPr
dθ

dy
= B

d2θ

dy2 +
d

dy

(
Rd(γθ + 1)3 dθ

dy

)
+

e
1
γ e−(

θ
1+γθ )

(1− φ)2.5 EcPr
(

du
dy

)2
+ DEcPrMu2, (9)

and the boundary conditions (3) and (4):

dθ

dy
(0) =

β1

B
(θ(0)− 1), u(0) = 0,

dθ

dy
(1) = − β2

B
θ(1), u(1) = 0 (10)

where

G = − dp
dx , R =

v0hρ f
µ f

, Pr =
µ f cp f

k f
, Ec = v2

0E
cp f RT2

0
, Rd =

16σ∗T3
0

3k∗k f
, M =

σf h2B2
0

µ f
,

p = hp̂
µ f v0

, γ = RT0
E , β1 = γ1h

k f
, β2 = γ2h

k f
, B =

ks+(m−1)k f−(m−1)φ(k f−ks)

ks+(m−1)k f +φ(k f−ks)
,

A = (1− φ) + φ
ρs
ρ f

, C = (1− φ) + φ
(ρcp)s
(ρcp) f

, D = 1 +

 3
(

σs
σf
−1
)

φ(
σs
σf

+2
)
−
(

σs
σf
−1
)

φ

.

(11)

In (11), G denotes the pressure gradient parameter, R is Reynolds number, Pr is the
Prandtl number. The Eckert number and radiation parameter are denoted by Ec and Rd,
respectively. M denotes the magnetic field; γ is the activation energy parameter while β1
and β2 are the Biot numbers for the lower and upper wall, respectively.
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Skin Friction and Nusselt Number

The formulas for skin friction coefficients are:

C f =
τw

ρ f U2 =
e

1
γ e−(

θ
1+γθ )

R(1− φ)2.5
du
dy

∣∣∣∣∣∣
y=1

, Nu =
qw

k f RT2
w
= −

(
B + Rd(γθ + 1)3

) dθ

dy

∣∣∣∣
y=1

, (12)

which define surface shear stress τw and the wall heat flux qw as:

τw = µn f
∂u′

∂y′
, qw = −kn f

(
1 +

16σ∗T3

3k∗k f

)
∂T
∂y′

.

3. Method of Solution

The Spectral Local Linearization Method (SLLM) is used to address the boundary
value problem (8)–(10). Details on this method can be found in [17–22]. To implement
SLLM, governing Equations (8) and (9) are, respectively, denoted by U and Θ, as follows:

U = G +
e

1
γ e−(

θ
1+γθ )

(1− φ)2.5

(
d2u
dy2 −

1

(1 + γθ)2
dθ

dy
du
dy

)
− DMu− ARe

du
dy

, (13)

Θ = B
d2θ

dy2 +
d

dy

(
Ra(γθ + 1)3 dθ

dy

)
+

e
1
γ e−(

θ
1+γθ )

(1− φ)2.5 EcPr
(

du
dy

)2
+ DEcPrMu2 − CRePr

dθ

dy
. (14)

Equations (13) and (14) are first linearized locally by adopting quazilinearization
method to obtain

a0r
d2ur+1

dy2 + a1r
dur+1

dy + a2rur+1 = R1,r,

b0r
d2θr+1

dy2 + b1r
dθr+1

dy + b2rθr+1 = R2,r,
(15)

with the corresponding boundary conditions

ur+1(0) = 0, dθr+1
dy (0)− Bi1

B θr+1(0) = − Bi1
B θ f ,

ur+1(1) = 0, dθr+1
dy (1) + Bi2

B θr+1(1) = 0,
(16)

where

a0r =
∂U

∂

(
d2u
dy2

) = e(
1
γ )e
−( θr

γθr+1 )

(1−φ)2.5 , a1r =
∂U

∂
(

du
dy

) = −
dθr
dy e(

1
γ )e
−( θr

γθr+1 )

(1−φ)2.5(γθr+1)2 − AR , a2r =
∂U

∂(u) = −D M

b0r =
∂Θ

∂

(
d2θ
dy2

) = B + Ra(γθr+1)3, b1r =
∂Θ

∂
(

dθ
dy

) = 6γ dθr
dy Ra(γθr+1)2 −CPrR,

b2r =
∂Θ

∂(θ)
= −

Ec
(

dur
dy

)2
Pre(

1
γ )e
−( θr

γθr+1 )

(1−φ)2.5(γθr+1)2 + 6γ2
(

dθr
dy

)2
Ra(γθr+1)+3γ d2θr

dy2 Ra(γθr+1)2

R1,r = a0r
d2ur
dy2 + a1r

dur
dy + a2rur −Ur, R2,r = b0r

d2θr
dy2 + b1r

dθr
dy + b2rθr −Θr


. (17)

The initial approximations ur and θr required to start the iteration (15) are chosen to
be functions satisfied the boundary conditions. Thus, the suitable initial approximations
are given as

ur = 0, θr =
β1θ f (B+β2)− β1β2θ f y

Bβ1+Bβ2 + β1β2
. (18)

The next step is to use the spectral collocation method repeatedly to solve the resulting
linear Equation (15) with boundary conditions (16). For the sake of conciseness, the spectral
collocation approach is not covered in depth in this study. It is appropriate to transfer
the domain on which the governing equation is defined to the interval where the spectral
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technique may be used before using the spectral approach. To map the interval [0, 1]
to [−1, 1], we utilize the transformation y = x+1

2 . The fundamental idea of the spectral
collocation method is that of a differentiation matrix D which is employed to approximate
the derivative of the unknown variables u(y) and θ(y) at the collocation points of the
matrix–vector product.

du(y)
dy =

N
∑

k=0
Di,ku(xk) = Du and dθ(y)

dy =
N
∑

k=0
Di,kθ(xk) = Dθ, where N is the number of

collocation points, D = 2D, u = [u(x0), u(x1), . . . , u(xN)]
T , and θ = [θ(x0), θ(x1), . . . , θ(xN)]

T

are the vector functions at the collocation points. Higher order derivatives are obtained as
powers of D, that is

dnu(y)
dyn =

N
∑

k=0
Dn

i,ku(xk) = Dnu and dnθ(y)
dyn =

N
∑

k=0
Dn

i,kθ(xk) = Dnθ, where n is the

order of the derivative.
Applying the spectral collocation method with derivative matrices on Equations (15)

and (16) yield
A1ur+1 = R1,r,
A2θr+1 = R2,r,

(19)

with corresponding boundary conditions

ur+1(xN) = 0,
N
∑

k=0
DN,kθr+1(xk)− Bi1

B θr+1(xN) = − Bi1
B θ f ,

ur+1(x0) = 0,
N
∑

k=0
D0,kθr+1(xk) +

Bi2
B θr+1(x0) = 0,

(20)

here
A1 = diag(a0r)D2 + diag(a1r)D + diag(a2r)I,
A2 = diag(b0r)D2 + diag(b1r)D + diag(b2r)I
R1,r = a0rD2ur + a1rDur + a2rur −Ur,
R2,r = b0rD2θr + b1rDθr + b2rθr −Θr.

(21)

Equations (19) and (20) are solved iteratively until the desired solution is obtained.

Analysis of Numerical Convergence, Error and Stability of the Method

The method’s convergence and stability are assessed by taking into account the norm
of the difference in the values of the functions between two subsequent iterations as

Eu = Max‖ur+1 − ur‖, Eθ = Max‖θr+1 − θr‖ (22)

Eu and Eθ decrease swiftly as the number of iterations increases (see Figure 2). This
shows that LLM converges within a few iterations. Furthermore, a convergence of the
numerical scheme for Skin friction and Nuselt number as a function of collocation points is
computed in Table 2.

Table 2. Convergence of Skin friction and Nuselt number for different collocation points when:
β1 = 1, β2 = 1, θ f = 1, φ = 0.01, M = 1, Ra = 0.5, γ = 1, Pr = 6.8, Ec = 0.1, G = 1, R = 1, m = 3,
r = 20.

Collocation Points (N) Cf Nu

5 0.4247578180 0.3774410096

10 0.4246332084 0.3732542791

15 0.4246333494 0.3732579467

20 0.4246333493 0.3732579407

25 0.4246333493 0.3732579407

30 0.4246333493 0.3732579407
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Figure 2. Residual Error.

Also, residual error norms are computed to show the accuracy of LLM. Residual error
norms are given as

Ru = Max‖U(u, θ)‖, Rθ = Max‖Θ(u, θ)‖ (23)

where U(u, θ) and Θ(u, θ) are nonlinear differential Equations (13) and (14), respectively.
Residual errors are found to decrease rapidly with an increasing number of iterations, as
depicted in Figure 2. However, the residual error Θ(u, θ) is not as minimum as U(u, θ)
because the energy equation is strongly nonlinear compared to the momentum equation.
Table 3 shows the validation of velocity profile results with the work of Makinde and
Egunjobi [23], which elucidates that the values obtained from the solution techniques
agree well with those results obtained by Makinde and Egunjobi [23]. Furthermore, in
Tables 4 and 5, the validation of velocity and temperature profile solutions with the ones
obtained via the regular fourth-order Runge-Kutta method (RK4) is presented. RK4 is
executed by utilising the NDSolve command in Wolfram Mathematica. As shown in both
tables, a good agreement between the solutions is recorded, and both solutions match each
other with an average absolute error of 10−9.

Table 3. Validation of LLM results for velocity when: φ = 0, γ = ∞, G = 1, R = 1.

y uLLM(y) Makinde and Egunjobi [23] |uLLM−uRK4|
0.0 0.00000000000 0.00000000 0.000000000

0.1 0.0387929829 0.03879297 1.29401 × 10−8

0.2 0.0711487741 0.071148750 2.40614 × 10−8

0.3 0.0963903478 0.09639032 2.78057 × 10−8

0.4 0.1137695200 0.11376948 4.00103 × 10−8

0.5 0.1224593312 0.12245933 1.18527 × 10−8

0.6 0.1215460526 0.12154600 5.25610 × 10−8

0.7 0.1100195730 0.11001953 4.30211 × 10−8

0.8 0.0867637675 0.08676372 4.74739 × 10−8

0.9 0.0505450044 0.05054498 2.43530 × 10−8

1.0 0.00000000000 0.00000000 0.000000000
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Table 4. Validation of LLM results for velocity when: β1 = β2 = M = θ f = 1, φ = 0.01, Ra = 0.5, γ = 1,
Pr = 6.8, Ec = 0.1, G = 1, R = 1, m = 3.

y uLLM(y) uRK4(y) |uLLM−uRK4|
0.0 0.00000000000000000 0.00000000000000000 0.0000000000

0.2 0.04031441474884955 0.04031441475827205 9.42250 × 10−12

0.4 0.06222933909835976 0.06222933912645120 2.80914 × 10−11

0.6 0.06414832639662879 0.06414832648711902 9.04902 × 10−11

0.8 0.04408622150954411 0.04408622182947682 3.19933 × 10−10

1.0 0.00000000000000000 3.6244 × 10−12 0.0000000000

Table 5. Validation of LLM results for temperature when: β1 = 1, β2 = 1, θ f = 1, φ = 0.01, M = 1,
Ra = 0.5, γ = 1, Pr = 6.8, Ec = 0.1, G = 1, R = 1, m = 3.

y θLLM(y) θRK4(y) |θLLM−θRK4|
0.0 0.9125189148462466 0.9125189148472346 9.87987 × 10−13

0.2 0.8921648635663214 0.8921648318426922 3.17236 × 10−8

0.4 0.8632813168173238 0.8632812232251493 9.35922 × 10−8

0.6 0.8216871044428341 0.8216869210586025 1.83384 × 10−7

0.8 0.7595470252170218 0.7595465966603754 4.28557 × 10−7

1.0 0.6602479343870364 0.6602479343038165 8.32200 × 10−11

4. Discussion of Results

This section investigates the impressions of several significant features that include
the variability factor (γ), nanoparticle volume fraction (φ), magnetic factor (M), Reynold’s
number (R), Radiation factor (Rd), Biot numbers number (β1, β2), Eckert number (Ec),
against the velocity u(y), temperature θ(y), skin friction C f and Nusselt number (Nu). The
nanoparticle volume fraction is defined as φ falling between 0% and 6%, with 0 denoting
pure base fluid. Additionally, the radiation parameter is allocated a range of 0.1 ≤ Rd ≤ 0.7,
the Reynolds number 1 ≤ R ≤ 4, and the thermal conductivity variation parameter is
assigned a range of 0.1 ≤ γ ≤ 1.0, the Brinkman number 0.1 ≤ Ec ≤ 0.7, and the magnetic
parameter 0 ≤M ≤ 5. The dimensionless pressure gradient is kept fixed at G = 1. The impact
of the variability parameter (γ) on the Cu–water nanofluid velocity and temperature profiles,
as seen in Figures 3 and 4, is a significant factor in laminar flow. In Figure 3, when the
variability parameter (γ) increases, the Cu–water nanofluid velocity dramatically increases
and the temperature drops. With higher values of the variability parameter (γ), the flow
distribution becomes more parabolic, with the highest value near the channel’s centerline and
the minimum at the walls. The fluid gets more flow-resistive as the parameter values rise,
enhancing the flow motion. This means that in order to overcome the increased resistance, the
flow must accelerate more quickly. Additionally, the increased convective heat transfer may
be responsible for the drop in the Cu–water nanofluid thermal profile.

Figure 3. Effect of γ on the velocity.



Mathematics 2023, 11, 3409 9 of 16

Figure 4. Effect of γ on the temperature.

Figures 5 and 6 depict the consequences of the magnetic parameter (M) on the
Cu–water nanofluid velocity and temperature profiles. In magnetohydrodynamic (MHD)
flow, the Lorentz force interaction with the flow alters the Cu–water nanofluid velocity pro-
file. This force tends to oppose the flow motion, resulting in Cu–water nanofluid velocity
reduction. Similarly, in Figure 6, the temperature profile is influenced by the enhanced
magnetic parameter (M) through a magnetohydrodynamic (MHD) cooling phenomenon.
The fluctuation in the Cu–water nanofluid velocity and temperature profiles temperature
profile is depicted in Figures 7 and 8, respectively, for values varying numbers of volume
fraction factor (φ). It has been reported with clarity that by raising the volume fraction
factor (φ), the copper particles form clusters due to attractive force between them. These
clusters act as an obstruction to the flow, thereby impeding flow motion, which results in a
drop in the velocity profile. Furthermore, as elucidated in Figure 8, with the introduction
of copper particles into the base liquid, the effective thermal conductivity of the mixture is
thereby enhanced. This promotes more efficient heat transfer giving rise to heat dissipation
and leading to a decrease the thermal distribution.

Figure 5. Effect of M on the velocity.

Figure 6. Effect of M on the temperature.
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Figure 7. Effect of φ on the velocity.

Figure 8. Effect of φ on the temperature.

Figures 9 and 10 indicate the effect of Reynolds number (R) on the Cu–water nanofluid
velocity and temperature profiles, respectively. The Cu–water nanofluid velocity decreases
near the lower fixed wall and increases near the upper fixed wall due to an increase in
the values of Reynolds number (R). The physics behind such fluctuations is that as the
Reynolds number becomes larger, the flow becomes more prone to turbulence. This tur-
bulence effect translates to enhance mixing and increases the momentum transfer, which
could result in a boost in the flow motion. Furthermore, the enhanced mixing could also
lead to improvement in the convective heat transfer, increasing temperature gradient. As
seen in Figure 11, an increment in the radiation factor (Rd) results in a decline in the
Cu–water nanofluid velocity. This is expected as the fluid viscosity is reduced due to
higher temperature impacting the velocity profile by reducing the resistance to flow, conse-
quently decreasing the nanofluid velocity. On the other hand, as illustrated in Figure 12,
the Cu–water nanofluid temperature profile decreases as the radiation factor (Rd) increases.
This effect is a result of increasing convective heat transfer counterbalancing the impact
of thermal radiation, which results in a Cu–water nanofluid temperature decrease. The
consequences of the upper and lower Biot numbers (β1 and β2) on the Cu–water nanofluid
temperature profiles are displayed in Figures 13 and 14, respectively. It is observed that
the enhancing the values of the upper Biot number, the thermal distribution declines as
well. Physically, the convective Biot number represents the ratio of thermal resistance
within the solid to the thermal resistance at the fluid-solid interface. By increasing the
convective heat transfer coefficient, the rate of convective heat transfer will thereby increase,
which consequently results in a more pronounced reduction in the Cu–water nanofluid
temperature profile. Conversely, higher thermal conductivity, which is a sign of efficient
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heat conduct, leads to a reduction in the temperature gradient and enhances the tem-
perature profile. In Figure 15, enhanced values of Eckert number (Ec) slightly decrease
the Cu–water nanofluid temperature profile. For a larger Eckert number, the increased
kinetic energy can lead to larger dissipation of mechanical energy into thermal energy
via a viscous effect. This intensifies dissipation, thereby resulting in a slight Cu–water
temperature increase.

Figure 9. Effect of R on the velocity.

Figure 10. Effect of R on the temperature.

Figure 11. Effect of Rd on the velocity.
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Figure 12. Effect of Rd on the temperature.

Figure 13. Effect of β1 on the temperature.

Figure 14. Effect of β2 on the temperature.

Figures 16–18 depict how several factors affect skin friction. With increasing the upper
and lower Biot numbers (β1 and β2), Eckert number (Ec), variability parameter (γ), volume
fraction parameter (φ), and heat radiation absorption (Rd), a reduction in the skin friction
coefficient becomes apparent at the inner surface of the channel. As the value of these
parameters rises, the fall in skin friction may be linked to a decline in the velocity gradient
at the interior of the channel. Moreover, in Figures 19–21, the tendency appears to reverse,
with a rise in the rate of channel surface heat transfer as measured by the upper and lower
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Biot numbers (β1 and β2), the Eckert number (Ec), the variability parameter (γ), the volume
fraction parameter (φ), and the absorption of thermal radiation (Rd). As such variables
grow, the rise in the temperature disparity at the boundary of the channel may be the cause
of the rising Nusselt number. The increase in the Nusselt number may be attributed to a
rise in the temperature gradient at the channel surface as these parameters increase.

Figure 15. Effect of Ec on the temperature.

Figure 16. Effect of Ec and β1 on the skin friction coefficient.

Figure 17. Effect of γ and β2 on the skin friction coefficient.



Mathematics 2023, 11, 3409 14 of 16

Figure 18. Effect of φ and Rd on the skin friction coefficient.

Figure 19. Effect of Ec and β1 on the Nusselt number.

Figure 20. Effect of γ and β2 on the Nusselt number.
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Figure 21. Effect of φ and Rd on the Nusselt number.

5. Conclusions

Considering the influence of the temperature-dependent nanofluid viscosity, which is
expressed in the Arrhenius model, the momentum and heat balance behaviour of magne-
tohydrodynamic copper–water nano liquids through a permeable channel are examined
in this study. Additionally, viscous dissipation and Ohmic heating are taken into con-
sideration, and the nonlinear thermal radiation heat flow model is used to describe the
heat transfer. Finally, the Spectral Local Linearization Method (SLLM) is used to solve the
generated governing nonlinear model. The outcomes of the current analysis are as follows:

• The Cu–water nanofluid velocity profile rises with increasing values of the viscosity
variable parameter.

• The water/Cu nanofluid temperature field exhibits a rising Reynold’s number be-
haviour while degrading the value of Rd.

• The viscosity variable parameter and the volume fraction term of the Cu particles both
have a lowering effect on the heat distribution of the water/Cu nanofluid.

• Skin friction coefficients are lowered in magnitude with higher values of heat radiation
and volume fraction parameter.

• The rate at which heat travels increases at the channel surface as values of γ and β2
are increased.

The current research has been investigated to determine the increase in thermal effi-
ciency when utilizing water/Cu nanofluid owing to the viscosity variations and nonlinear
thermal radiation through examining the combined impacts of nonlinear thermal radiation
and nanofluid channel flow. In addition, it advances the understanding of the heat transfer
processes that take place in these systems and investigates the technical sectors in which
they may be used.
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