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Abstract: The Laney p′ control chart is a new type of attribute control chart that can be applied in
situations where the process exhibits either overdispersion or underdispersion. While it has gained
acceptance in the industry, there is still limited knowledge about its effectiveness in detecting process
variation. It is well known that before applying a control chart, understanding its performance is
crucial, especially when the parameters of the control chart need to be estimated from historical data.
In this study, we used simulations to investigate the ability of the Laney p′ control chart to detect
process variations when the parameters are estimated. We designed appropriate experiments to
assess the impact of overdispersion on the average run length (ARL) performance. In this study, we
assumed that the overdispersion comes from the variation in the mean fraction nonconforming of
each sample. The mean value varies according to a uniform distribution. This study evaluated the
performance of the Laney p′ control chart using the average of the ARL (AARL) and the standard
deviation of the ARL (SDARL). Additionally, real-world data were utilized to illustrate the practical
applications of the Laney p′ control chart in the PCB and IC substrate industries. The research
findings can serve as valuable guidance for practical implementation.

Keywords: Laney p′ control chart; overdispersion; underdispersion; average run length

MSC: 37M10

1. Introduction

Control charts are a statistical process control (SPC) tool used to monitor a process over
time and determine whether a manufacturing or business process is in control or out of
control. An in-control process refers to a process that is stable, predictable, and exhibits only
random cause variations [1]. Conversely, an out-of-control process may display various
nonrandom patterns on the control chart, indicating the presence of assignable causes that
are responsible for variations in process performance [1]. By understanding the underlying
causes, organizations can make informed decisions to improve processes, reduce variation,
and enhance product or service quality.

Generally, control charts can be divided into two types: variables control charts and
attribute control charts [1]. The specific type of control chart used depends on the nature
of the data being monitored. A variable control chart is used to monitor and control
process variability when the data being measured are quantitative and continuous. On the
other hand, an attribute control chart is a tool used to monitor and control process quality
characteristics that are discrete or qualitative in nature. In SPC, the p control chart is an
attribute control chart used to monitor the fraction of nonconforming items in a sample [1].
The sample fraction nonconforming (also known as nonconforming rate) is defined as the
ratio of the number of nonconforming units in a sample (denoted as X) to the sample size
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(denoted as n). The p control charts have been widely used in monitoring manufacturing
processes. Recently, the use of p control charts is increasing in the healthcare industry [2–5].

This section provides a brief overview of the p chart. For more details, please refer
to Montgomery [1]. The development of the p chart requires estimating the process frac-
tion nonconforming, p, from a set of historical data because the value of p is typically
unknown. This estimation is carried out by selecting m preliminary samples (also known
as subgroups), each with a size of n. Denote p as the average of these sample fractions
nonconforming. The statistic p is then used to estimate the unknown fraction nonconform-
ing, p. Based on this estimation, the parameters of the p control chart can be expressed
as follows:

UCL = p + 3

√
p(1− p)

n
(1)

CL = p (2)

LCL = p− 3

√
p(1− p)

n
(3)

If the true fraction nonconforming in the production process is known or is a specified
standard value, p, then the p value in Equations (1)–(3) can be replaced with p.

The above description represents the two-phase implementation of control charts. In
Phase I, a set of process data is collected and used to estimate the unknown parameters
when the process is in control. These estimates are then used to construct the Phase II chart,
which monitors the process by plotting the chart statistics and comparing their values to
the control limits. It is well known that the more accurate the estimates of the control chart
parameters in Phase I, the better the Phase II control chart will perform.

In certain cases where the p control chart is used to monitor the fraction of noncon-
forming items, the sample consists of a complete inspection of the process output during a
specific timeframe. Due to variations in the number of units produced during each period,
this leads to variable control limits on the chart.

In the past, numerous studies have been conducted to enhance the traditional p control
chart. One area of research involves exploring different control charts, such as MA [6],
EWMA [7], and CUSUM [8], to improve the ability to detect changes in the nonconforming
rate. Another line of research aims to address the issue of ARL-biased characteristics that
emerge when using traditional p control charts to detect changes in the nonconforming
rate [9–11]. A third category of research focuses on employing supplementary rules to
enhance the detection capability of traditional p control charts [9,12,13]. The final research
direction aims to modify the traditional p control chart to address the issue of variation in
nonconforming rates between samples. This aspect is also the primary focus of our study.

It is important to note that the traditional p control chart assumes that the samples
are independent and that the probability of nonconforming is constant over time. If these
assumptions are not met, it may be necessary to consider alternative control charts. For
instance, in the healthcare application of SPC methods, one issue that raises concern is that
of overdispersion. Overdispersion commonly arises in the cases when sample sizes are
very large and the parameter p (event probability) is not constant but changes over time.

The Laney p′ chart [14] is a new type of attribute control chart that is particularly
useful in scenarios where there are large sample sizes and the data exhibit overdispersion.
Overdispersion can lead to false indications of out-of-control points on a traditional p
chart. The Laney p′ chart incorporates both the variation within samples and the variation
between consecutive samples in its definition of common cause variation. When there is
overdispersion, the control limits on a Laney p′ chart are wider in comparison to those of a
traditional p chart. The wider control limits mean that only significant deviations in the
process are identified as out of control.

The Laney p′ chart is also useful in the situation when data exhibit underdispersion.
Underdispersion, which can occur with samples of any size, is often caused by a lack of
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randomness. Underdispersion can result in control limits that are too wide for the data.
The Laney p′ chart corrects for underdispersion by calculating narrower control limits.

The calculations for the Laney p′ chart include σZ, which is an adjustment for overdis-
persion or underdispersion. In order to compute σZ, the sample statistic pi is first standard-
ized using Equation (4):

Zi =
pi − p

σpi

(4)

where

σpi =

√
p(1− p)

ni
(5)

The value of σZ can be estimated as

MRz

d2
(6)

where d2 = 1.128 if a moving range of two observations is used.
The average of the moving range of Zi can be obtained by

MRZ =
∑m

i=1|Zi − Zi−1|
m− 1

(7)

where m is the number of samples. The parameters for the Laney p′ chart are

UCL = p + 3σpi × σz (8)

CL = p (9)

LCL = p− 3σpi × σz (10)

A σZ value of 1 indicates that no adjustment is necessary and that the Laney p′ control
chart is the same as a traditional p chart.

Equations (8) and (10) reveal that the utilization of a p′ chart incorporates an extra
variance component resulting from the variability in parameter p over time, in addition to
the conventional calculation of binomial sampling variance.

After conducting a comprehensive literature review, it is evident that a research gap
exists regarding the impact of parameter estimation on the performance of the p′ control
chart. Previous studies have primarily focused on evaluating performance solely based on
the average run length (ARL). However, when parameters are estimated, the ARL becomes
a random variable, necessitating the consideration of both the average value of the average
run length (AARL) and the standard deviation of the average run length (SDARL) for
performance evaluation [15,16]. This is crucial because different practitioners may obtain
varying estimates of the process parameters, leading to different ARL values. Consequently,
practitioner-to-practitioner variability introduces randomness into the ARL.

The main objective of this study is to evaluate the performance of the p′ chart with
estimated parameters based on the AARL and SDARL metrics. We also investigate how
the number of samples in Phase I influences the performance of the control chart when
the parameters are unknown. Furthermore, we evaluate the performance of the p′ chart
when the values of sample size and nonconforming rate are allowed to vary from sample
to sample.

The rest of the paper is organized as follows. Section 2 provides a review of previous
studies on the Laney attribute control charts, as well as studies on the performance evalua-
tion of the Laney p′ control charts, where the parameters are estimated from historical data.
Section 3 outlines the experimental setup and simulation procedure employed in this study.
Section 4 presents the experimental results. In Section 5, we utilize real data to explain the
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applications of the Laney p′ control chart in the PCB and IC substrate industries. Finally,
Section 6 summarizes the findings and proposes potential avenues for future research.

2. Related Work

This section presents a literature review on topics that are relevant to this study, which
includes the application of Laney control charts, as well as the research on evaluating the
performance of the p′ control chart.

In the past, many researchers have studied the impact of overdispersion or under-
dispersion on data and proposed solutions. Jones and Govindaraju [17] pointed out that
overdispersion refers to the variability in data exceeding the variability assumed by their
probability distribution. They proposed a simple graphical method to verify the distri-
butional assumption of attribute control charts. This method can also indicate whether
there is excessive dispersion or underdispersion in the data. They also briefly reviewed
the literature on handling process attributes that do not follow the binomial or Poisson
distribution.

Laney [14] introduced the p′ control chart as a means to prevent negative outcomes
resulting from overdispersion in process data. This new type of attribute control chart can
also be utilized in cases where a process exhibits insufficient dispersion. Laney demon-
strated the application of the p′ control chart using examples from Heimann [18] but did
not conduct performance testing on this chart. Since its introduction, the Laney p′ control
chart has been widely used in healthcare quality monitoring, particularly in cases with large
sample sizes. Mohammed and Laney [19] further applied the p′ control chart to monitor
overdispersion in healthcare performance data, highlighting its relevance in healthcare
quality monitoring.

Sellers [20] proposed a generalized statistical control chart that can be used to monitor
count data for overdispersion or underdispersion. The distributions considered in this
study include the binomial, Poisson, and negative binomial distributions.

Vidmara and Blagus [21] pointed out that the identification of outliers in overdispersed
proportion data is crucial for effective healthcare quality monitoring. Their study found
that the Laney method produces the lowest rate of false alarms. However, in situations
where the sample size is small and the proportion is very low, it is difficult to detect outliers,
or when the proportion value is very high, outliers are difficult to detect irrespective of
sample size.

Evaluating the microbiological quality of pharmaceutical products is an important cri-
terion for determining whether they can be safely released into the drug market. Eissa [22]
stated that since the data of the total viable count (TVC) in pharmaceuticals do not follow
any specific distribution type, the Laney U′ control chart is suitable for application in such
cases. Eissa [22] believes that when there is significant overdispersion or underdisper-
sion in the data distribution, the Laney U′ control chart pattern is highly appropriate for
monitoring the microbiological characteristics of pharmaceutical products.

Moon [23] applied the Laney U′ control chart to schedule performance management.
In this study, planned value costs were considered as the sample size, and each dollar was
assumed to represent an attribute (inspection) unit. Earned value cost, which represents
the value of work completed to date, was treated as a variable. By dividing the earned
value cost by the planned value cost, a schedule performance index (SPI) was obtained.
The study treated SPI as a sample statistic and monitored its variation using the Laney U′

control chart.
Arafah [24] utilized the Laney p′ control chart to monitor the variations in the COVID-

19 cases in Jordan. The study defined the infection rate (IR) as the number of confirmed
cases divided by the number of polymerase chain reaction (PCR) tests conducted. The
objective of the research was to understand the effectiveness of the government’s restrictive
measures in controlling the infection rate during the COVID-19 pandemic, which included
restrictions on population movement and activities. The study results demonstrated that
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implementing restrictive measures effectively reduced the infection rate, while relaxing
these measures had the opposite effect.

Valdés-Manuel and Cogollo-Flórez [25] pointed out that overdispersion is a phe-
nomenon that frequently occurs in large-sample data analysis. In the analysis of discrete
data, it refers to a higher level of variation in the data than what is implied by the reference
binomial or Poisson distribution. In clinical laboratories, there is often high variability
in the proportion of nonconforming units, leading to the occurrence of overdispersion.
Therefore, it is necessary to analyze and identify the most suitable control chart to overcome
the limitations of traditional control charts when dealing with overdispersed data.

With the introduction and application of the Laney p′ control chart, some researchers
have recently begun to investigate its performance. Ahsan et al. [26] used simulation to
evaluate and compare the in-control and out-of-control average run lengths for the p and
Laney p′ control charts. Their study aimed to determine whether the performance of the
Laney p′ control chart is superior to that of the p control chart.

Hagan and Li [27] evaluated the Phase II performance of the Laney p′ control chart
using a simulation approach. Their study allowed for variation in the sample size (n)
and process nonconforming rate (p) between samples. The study assumed that n and p
followed truncated normal distributions with a mean of µ and a standard deviation of µ/5
(or µ/3). When p was allowed to vary across subgroups, its simulated value of µ was either
0.1 or 0.5. When n was allowed to vary, its simulated value of µ varied from 10 to 2000. The
performance metric was ARL.

The studies of [26,27] assumed that the process parameters are known and evaluated
the performance of the control chart in Phase II. In other words, these studies did not take
into account the impact of parameter estimation errors on the performance of the control
chart. Furthermore, it is worth noting that the study conducted by Ahsan et al. [26] did not
consider the variation in the fraction of nonconforming items between samples.

Recently, Goedhart and Woodall [28] proposed a new method for calculating the
control limits of the p chart. They demonstrated that the Laney p′ chart does not perform
well when there are significant variations in subgroup sizes. Laney’s method [14] only
yields appropriate limits when there is no intersubgroup variation. Additionally, they
pointed out that the estimated control limits for the p′ chart are excessively wide for smaller
sample sizes and too narrow for larger sample sizes. They showed that their method is able
to handle situations involving varying subgroup sizes and intersubgroup variation.

3. Methods
3.1. Performance Metrics

The detection capability of a control chart is usually evaluated using the average
run length (ARL). The run length refers to the number of samples needed until the chart
indicates an out-of-control condition. The ARL represents the expected value of the run
length. There are two types of ARL: in-control ARL (ARL0) and out-of-control ARL (ARL1).
A control chart with a smaller in-control ARL is more sensitive or responsive to detecting
process shifts, but it also has a higher probability of Type I errors. Conversely, a control
chart with a larger out-of-control ARL is less sensitive or slower to detect process shifts,
resulting in a higher probability of Type II errors. A well-designed control chart should
have a small ARL1 when the process undergoes changes, while maintaining a large ARL0
when there are no changes in the process.

When the control chart parameters are known, the ARL is a constant value. For
example, in the case of using a 3-sigma control limit for the x chart, assuming a normal
distribution, the Type I error probability α is 0.0027. In this case, the ARL0 is 1/α, which
is equal to 370.37. This means that, on average, the control chart will signal a false alarm
every 370.37 samples when the process is actually in control.

When the parameters of the control chart are estimated from the samples, the ARL
becomes a random variable due to the influence of Phase I sampling [15]. When control
charts are constructed using estimated parameters, the average of the ARL (AARL) is
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commonly used as a measure of performance evaluation. However, AARL alone does not
capture the other important properties of ARL. Another significant measure is the standard
deviation of the ARL (SDARL), which reflects the practitioner-to-practitioner variability [16].
Practitioner-to-practitioner variability refers to the differences in Phase I data collected by
different users, resulting in different parameter estimates and consequently affecting the
performance of the control chart. Jones and Steiner [29] first proposed the SDARL metric to
study the estimation effect on the performance of the risk-adjusted CUSUM chart. Many
other authors used it in evaluating control chart performance when the parameters are
estimated [30–32]. In this study, we employed both the AARL and SDARL metrics when
assessing the performance of the p′ chart with estimated parameters.

When the process parameters are estimated, in order to achieve a stable in-control ARL
(ARL0), we need a sufficient amount of Phase I sample data so that the in-control AARL
value can approach ARL0 and should have a smaller value of SDARL. Zhang et al. [32]
suggested that the SDARL value should be within 10% of the expected in-control ARL
(ARL0). In general, for traditional variable control charts, when the process parameters
are known, it is possible to obtain the desired ARL0 by selecting appropriate control chart
parameter combinations [15,32]. However, for p and p′ control charts, where the sample
sizes and nonconforming rates may vary across samples, it becomes more challenging to
estimate the expected ARL0 accurately. Therefore, the criteria proposed by Zhang et al. [32]
may not necessarily be fully applicable to the performance evaluation process of p and p′

control charts in this study.

3.2. Experimental Setup

To investigate the impact of estimating process parameters, we estimated the unknown
parameters based on m Phase I samples of size n. The estimated parameters include the
in-control process mean p and σZ. In our study, we considered values of m ranging from
20 to 10,000. It is important to emphasize that the majority of the nonconforming rates
analyzed in this study are below 0.05, aiming to reflect the typical conditions found in the
general manufacturing industry. In contrast, Hagan and Li [27] examined nonconforming
rates of 0.1 and 0.5, which were considered relatively high for the general manufacturing
industry. After Phase I analysis, we constructed the Phase II control chart by substituting
the unknown parameters with their estimates derived from the generated Phase I samples.
We then evaluated the average run length (ARL) value using a simulation approach,
which involves 10,000 simulation runs. Finally, we calculate the average ARL (AARL) and
standard deviation of ARL (SDARL) by performing 10,000 simulation iterations, each with
a unique set of Phase I samples.

In this study, we assume that the between-sample variation comes from the variation in
the mean fraction nonconforming of each sample. The mean varies according to a uniform
distribution, denoted as U(a, b). A value sampled from the interval a to b is then used to
simulate the binomial random variates. Assuming that the number of samples collected in
Phase I is m, the simulation procedure used in this study includes the following steps:

1. Define the range of variation for the in-control (process under normal conditions) non-
conforming rate p as a uniform distribution U(pmin, pmax) and the range of variation
for n as a uniform distribution U(nmin, nmax).

2. Using the simulated values of pi and ni, we generate m independent Xi values from a
binomial distribution with parameters pi and ni. Then, we calculate pi = Xi/ni.

3. Calculate the average of the sample fraction nonconforming:

p =
∑m

i=1 Xi

∑m
i=1 ni

. (11)

The statistic p estimates the unknown fraction nonconforming p.
4. Calculate the control limits for the Laney p′ control chart using Equations (4)–(10).
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The above steps describe how to generate m sets of sample data for Phase I analysis.
Next, we generate Phase II data and evaluate the run length based on the control limits
mentioned above. Evaluating the ARL performance of the p or p′ control charts is not a
simple task. Both the sample size, n, and the process fraction nonconforming, p, will affect
the characteristics of the ARL. Additionally, the ARL of the p control chart exhibits ARL-
biased characteristics [9]. Under this characteristic, the in-control ARL is not the highest
point on the entire ARL curve. Figure 1 illustrates the ARL curve for the p control chart
with ARL-biased characteristics. The y-axis of the ARL curve in Figure 1 is displayed on a
logarithmic scale. In this example, the in-control fraction nonconforming is 0.04, and the
sample size for each group is n = 400, with ARL0 = 268.08. The traditional x control chart
exhibits ARL-unbiased characteristics. When the process undergoes abnormal changes, its
ARL (i.e., out-of-control ARL1) will be lower than the ARL when the process is in a normal
state (i.e., in-control ARL0).
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Figure 1. The ARL curve for the p control chart with ARL-biased characteristics.

Figure 2 illustrates the process for estimating the AARL and SDARL in this study. For
each set of Phase I data, this study conducted 10,000 experiments (j = 10,000) to estimate
the ARL. We computed a specific set of control limits for each Phase I dataset. This means
that throughout the 10,000 simulation runs conducted to obtain an ARL value, the same
control limits were applied in each experiment. As the data collected from Phase I may
vary, it reflects the variability among practitioners. This study generated 10,000 sets of
Phase I data (i = 10,000) to obtain the AARL and SDARL values.



Mathematics 2023, 11, 3411 8 of 20Mathematics 2023, 11, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 2. Illustration of the process for estimating AARL and SDARL in this study. 

4. Results and Discussion 
The aim of this study is to assess the performance of the Laney 𝑝𝑝′  control chart 

through various experiments. In this section, we present the results obtained from the 
simulation experiments. We investigate the effect of between-sample variation on the ARL 
performance. 

Firstly, we consider the performance of the traditional 𝑝𝑝 control chart and the Laney 
𝑝𝑝′ control chart under different sample sizes (𝑛𝑛) when the nonconforming rate varies be-
tween samples. In this experiment, we assume 𝑝𝑝~U(0.045, 0.055), which means the aver-
age is 0.05. When the sample sizes are 100, 150, 225, 300, and 350, the theoretical ARL0 
values of the 𝑝𝑝 chart are 233.96, 277.54, 422.76, 365.86, and 279.28, respectively. 

The results of the 𝑝𝑝 chart are presented in Table 1, while Table 2 displays the results 
of the Laney 𝑝𝑝′ chart. In general, as the number of Phase I samples increases, the SDARL 
becomes smaller. The results show that the use of a small number of Phase I samples to 
estimate the unknown parameters leads to a huge variability in the ARL values, resulting 
in a very poor chart performance. In this specific case, the variation in the nonconforming 
rate 𝑝𝑝 is not considered significant. It can be observed that the in-control AARL of the 𝑝𝑝 
control chart and Laney 𝑝𝑝′ control chart does not differ significantly when the number of 
samples 𝑚𝑚 is equal to or greater than 1000. However, when the number of samples 𝑚𝑚 is 
small, both the AARL and SDARL of the Laney 𝑝𝑝′ control chart will be higher compared 
to those of the traditional 𝑝𝑝 control chart. 

When the sample size 𝑛𝑛 is large, even if there is not much variation in the noncon-
forming rate 𝑝𝑝, the Laney 𝑝𝑝′ control chart will still exhibit higher AARL and SDARL val-
ues compared to the traditional 𝑝𝑝 control chart. This is evident by comparing column (e) 
of Table 1 to column (e) of Table 2. 

The results from Table 2 also highlight that when the sample size (𝑛𝑛) is small (𝑛𝑛≤300), 
the AARL of the Laney 𝑝𝑝′ control chart does not reach the ARL0 value of the traditional 
control chart. This observation further illustrates that the Laney 𝑝𝑝′ control chart may not 
adequately widen the control limits when the sample size is relatively small. However, 
when the sample size (𝑛𝑛) is increased to 350, the AARL of the Laney 𝑝𝑝′ control chart ex-
ceeds the theoretical ARL0 value when the number of samples (𝑚𝑚) is 10,000. This indi-
cates that the control limits are excessively widened in this scenario. 

Figure 2. Illustration of the process for estimating AARL and SDARL in this study.
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The aim of this study is to assess the performance of the Laney p′ control chart
through various experiments. In this section, we present the results obtained from the
simulation experiments. We investigate the effect of between-sample variation on the ARL
performance.

Firstly, we consider the performance of the traditional p control chart and the Laney p′

control chart under different sample sizes (n) when the nonconforming rate varies between
samples. In this experiment, we assume p~U(0.045, 0.055), which means the average is
0.05. When the sample sizes are 100, 150, 225, 300, and 350, the theoretical ARL0 values of
the p chart are 233.96, 277.54, 422.76, 365.86, and 279.28, respectively.

The results of the p chart are presented in Table 1, while Table 2 displays the results
of the Laney p′ chart. In general, as the number of Phase I samples increases, the SDARL
becomes smaller. The results show that the use of a small number of Phase I samples to
estimate the unknown parameters leads to a huge variability in the ARL values, resulting
in a very poor chart performance. In this specific case, the variation in the nonconforming
rate p is not considered significant. It can be observed that the in-control AARL of the p
control chart and Laney p′ control chart does not differ significantly when the number of
samples m is equal to or greater than 1000. However, when the number of samples m is
small, both the AARL and SDARL of the Laney p′ control chart will be higher compared to
those of the traditional p control chart.

When the sample size n is large, even if there is not much variation in the noncon-
forming rate p, the Laney p′ control chart will still exhibit higher AARL and SDARL values
compared to the traditional p control chart. This is evident by comparing column (e) of
Table 1 to column (e) of Table 2.

The results from Table 2 also highlight that when the sample size (n) is small (n ≤ 300),
the AARL of the Laney p′ control chart does not reach the ARL0 value of the traditional
control chart. This observation further illustrates that the Laney p′ control chart may not
adequately widen the control limits when the sample size is relatively small. However,
when the sample size (n) is increased to 350, the AARL of the Laney p′ control chart exceeds
the theoretical ARL0 value when the number of samples (m) is 10,000. This indicates that
the control limits are excessively widened in this scenario.
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Table 1. The effect of dispersion in p on the in-control AARL of the p chart.

(a) n = 100
p~U(0.045, 0.055)

(b) n = 150
p~U(0.045, 0.055)

(c) n = 225
p~U(0.045, 0.055)

(d) n = 300
p~U(0.045, 0.055)

(e) n = 350
p~U(0.045, 0.055)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL AARL SDARL

20 327.32 345.69 317.31 225.48 292.50 177.66 273.62 137.39 256.47 121.50
50 273.16 183.91 285.29 163.35 282.15 140.03 266.41 98.79 258.93 97.56

100 237.15 73.63 270.68 124.10 275.80 108.30 261.07 73.98 257.04 81.71
1000 215.75 2.17 246.06 2.47 289.11 83.16 284.55 20.20 225.40 38.15
2000 215.75 2.17 246.06 2.46 299.89 78.63 287.22 7.66 217.59 19.91
3000 215.75 2.17 246.06 2.46 304.11 76.64 287.59 3.64 215.46 4.76
4000 215.75 2.17 246.06 2.46 312.22 71.12 287.61 2.87 215.24 3.77
5000 215.75 2.17 246.06 2.46 315.80 68.64 287.41 2.88 215.00 2.16
6000 215.75 2.17 246.05 2.46 319.47 65.36 287.41 2.88 215.00 2.16
8000 215.75 2.17 246.03 2.45 324.38 60.31 287.41 2.88 215.00 2.16

10,000 215.75 2.17 246.03 2.45 328.23 56.46 287.41 2.87 214.98 2.16

Table 2. The effect of dispersion in p on the in-control AARL of the p′ chart.

(a) n = 100
p~U(0.045, 0.055)

(b) n = 150
p~U(0.045, 0.055)

(c) n = 225
p~U(0.045, 0.055)

(d) n = 300
p~U(0.045, 0.055)

(e) n = 350
p~U(0.045, 0.055)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL AARL SDARL

20 557.71 773.40 615.71 817.45 637.49 848.38 633.91 843.58 648.33 856.97
50 378.23 476.36 447.62 547.64 513.17 607.95 521.04 623.57 534.77 641.76

100 298.40 280.70 367.56 363.29 386.91 369.49 420.47 414.75 429.11 422.95
1000 222.77 57.94 262.76 81.59 306.10 93.02 313.45 100.04 327.46 104.59
2000 216.50 16.25 249.34 34.35 314.32 69.83 297.98 58.23 330.56 93.62
3000 215.89 4.83 246.33 12.92 323.63 62.56 293.33 40.41 331.92 93.53
4000 215.91 4.80 246.22 6.43 327.54 57.79 290.84 30.57 334.51 92.04
5000 215.90 4.80 246.06 2.47 334.13 49.20 289.46 22.29 335.87 92.32
6000 215.90 2.17 246.05 2.57 337.44 43.66 288.11 13.28 339.61 91.78
8000 215.89 2.17 246.03 2.52 341.44 35.82 287.65 8.17 346.51 89.92

10,000 215.89 2.17 246.03 2.50 343.85 29.35 287.41 2.87 346.83 90.15

Finally, there are some unusual phenomena observed in column (c) of Tables 1 and 2
that need to be explained. By observing Tables 1 and 2, it can be seen that under the
combination of n and p in column (c) of Table 1, the SDARL is noticeably larger than other
combinations. Furthermore, column (c) of Table 2 shows that the SDARL for the Laney p′

control chart is smaller than the traditional p control chart. After conducting an in-depth
investigation, we found that in column (c), under the combination of n and p, there may
or may not be a lower control limit. This causes an increase in the variability in in-control
ARL, resulting in an increase in SDARL. For columns (a) and (b) of Table 1, there are no
lower control limits under the combination of n and p. Furthermore, for columns (d) and (e)
of Table 1, both combinations of n and p have lower control limits. These phenomena result
in smaller variations in ARL for columns (a), (b), (d), and (e), indicating smaller values of
SDARL.

Next, we consider the impact on the performance of traditional p control charts and
Laney p′ control charts when the sample size n is fixed, and the nonconforming rate varies
within different ranges. We consider the case where the true fraction nonconforming
p = 0.05 and sample size n = 300. In this case, the ARL0 = 365.86. Table 3 presents the
in-control AARLs and SDARLs of the p control chart when the process parameters are
estimated. On the other hand, Table 4 shows the in-control AARLs and SDARLs for the
Laney p′ chart.
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Table 3. The effect of dispersion in p on the in-control AARL of the p chart with n = 300.

(a) n = 300
p = 0.05

(b) n = 300
p~U(0.04, 0.06)

(c) n = 300
p~U(0.025, 0.075)

m AARL SDARL AARL SDARL AARL SDARL

20 344.24 183.03 156.41 74.24 25.58 8.01
50 335.73 128.22 153.87 52.36 26.41 5.98

100 334.79 99.70 153.23 40.21 26.69 4.64
1000 362.66 24.61 164.61 13.35 28.59 2.37
2000 365.15 13.49 166.65 6.52 29.12 1.48
3000 365.85 3.63 166.96 2.84 29.26 1.07
4000 365.86 3.63 167.05 2.30 29.31 0.88
5000 365.85 3.63 167.06 2.29 29.34 0.67
6000 365.85 3.63 167.06 1.68 29.35 0.68
8000 365.85 3.63 167.06 1.68 29.35 0.67

10,000 365.85 3.63 167.06 1.68 29.35 0.67

Table 4. The effect of dispersion in p on the in-control AARL of the p′ chart with n = 300.

(a) n = 300
p = 0.05

(b) n = 300
p~U(0.04, 0.06)

(c) n = 300
p~U(0.025, 0.075)

m AARL SDARL AARL SDARL AARL SDARL

20 437.20 457.00 453.62 430.54 887.39 811.39
50 453.10 410.19 451.46 383.06 877.27 749.50

100 426.80 334.35 382.48 286.55 769.08 605.44
1000 330.55 97.61 310.78 93.00 530.47 154.53
2000 340.78 67.87 309.34 48.73 521.18 107.97
3000 349.09 52.39 310.31 33.40 521.80 88.73
4000 353.97 42.88 312.79 21.22 527.69 70.79
5000 358.30 34.91 312.91 17.90 531.23 62.25
6000 360.37 30.12 313.85 12.83 534.80 56.26
8000 362.85 22.74 314.17 9.28 541.07 46.54

10,000 364.31 17.57 314.51 6.47 546.08 37.61

From panel (a) of Table 3, when the number of samples, m, exceeds 3000, the AARL of
the p control chart approaches the theoretical ARL0 value of 365.86. This demonstrates the
high accuracy of the simulation program developed in this study.

Although the Laney p′ control chart is suitable for situations where the nonconforming
rate of the process is excessively dispersed, one may be interested in investigating its
performance when there is no variation in sample size n and process p. If m is small, one
can see from panel (a) of Table 4 that the p′ chart may tend to overadjust the control limits,
leading to the AARLs higher than the ARL0 when the fraction nonconforming remains
constant. When m is greater than 2000, the AARL is close to the true ARL value. This
can be explained by the fact that the estimate of σZ is more accurate when m increases.
When there is neither overdispersion nor underdispersion in the nonconforming rate, and
if the number of Phase I samples (m) is large, the AARL of the p′ control chart (panel (a) of
Table 4) is close to that of the p control chart (panel (a) of Table 3). However, the p′ control
chart exhibits a higher SDARL. This is because the p′ control chart requires an additional
estimation of σZ, leading to greater variability in its performance.

When the control chart parameters are estimated from Phase I samples, it is important
to investigate the influence of the number of samples, m, on the size of the SDARL. When
using control charts, it is generally recommended to have at least 20 or 25 Phase I samples
to estimate the unknown parameters [1]. However, in this particular case, even with
a significantly larger number of samples exceeding 20, the desired performance is not
achieved. For instance, when using 50 samples, the AARL of the p chart is 335.73, which
corresponds to approximately 91% of the desired ARL0. Additionally, the SDARL is 128.22,
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approximately 35% of the ARL0. To attain satisfactory performance, it is necessary to utilize
1000 samples, as this yields an AARL of 362.66 (around 99% of the desired ARL0) and an
SDARL of 24.61 (approximately 7% of the desired ARL0). In the case of the Laney p′ control
chart, utilizing 5000 samples is recommended, as it produces an AARL of 358.30 (about 98%
of the desired ARL0) and an SDARL of 34.91 (approximately 9.5% of the desired ARL0).
It is evident that when using the Laney p′ control chart, we require a larger number of
samples to meet the recommended requirements of Zhang et al. [32].

Next, we investigate the impact of overdispersion in the process fraction noncon-
forming on the p control chart. Overdispersion refers to the variation in data that exceeds
the assumed probability distribution. In this experiment, we assume that the average of
the fraction nonconforming is fixed, but the variability in the fraction nonconforming is
uniformly distributed.

From the results in Table 3, it can be observed that when the sample size n is fixed,
the AARL of the p control chart decreases as the variation in the nonconforming rate
increases. From Table 4, it can be seen that the AARL of the p′ control chart increases as
the variability in nonconforming rate increases. The AARL value has exceeded the case
when the nonconforming rate follows a binomial distribution (i.e., no overdispersion or
underdispersion), indicating that the control limits are excessively widened.

The above results also show that when there is overdispersion in p, even if the sample
size n is not very large, it will result in a much lower in-control ARL than the in-control
ARL value of the traditional p control chart. In other words, using a traditional p control
chart in this scenario would lead to an elevation in Type I error.

We will now examine situations where the sample sizes differ from those in the
previous experiment, while ensuring that the product of sample size and nonconforming
rate remains constant. Tables 5 and 6 display the AARLs and SDARLs of the p chart and
Laney p′ chart with a sample size of 3000 and an average fraction nonconforming of 0.005,
respectively. In this scenario, the ARL0 of the p chart is 290.73.

Furthermore, Tables 7 and 8 present the AARLs and SDARLs of the p chart and Laney
p′ chart, respectively, with a larger sample size of n = 30,000 and an average fraction
nonconforming of p = 0.0005. In this case, the ARL0 of the p chart is 284.51.

Table 5. The effect of dispersion in p on the in-control AARL of the p chart with n = 3000.

(a) n = 3000
p = 0.005

(b) n = 3000
p~U(0.004, 0.006)

(c) n = 3000
p~U(0.0025, 0.0075)

m AARL SDARL AARL SDARL AARL SDARL

20 344.11 182.17 159.46 77.60 27.19 8.93
50 332.13 140.89 157.20 59.37 28.20 7.14

100 326.68 119.57 154.37 49.13 28.46 6.10
1000 292.17 19.08 141.94 11.22 27.69 2.37
2000 290.89 2.89 140.82 1.96 27.38 0.99
3000 290.72 2.89 140.71 1.95 27.28 0.60
4000 290.88 2.91 140.72 1.95 27.25 0.28
5000 290.72 2.91 140.69 1.41 27.25 0.28
6000 290.72 2.91 140.69 1.41 27.25 0.27
8000 290.72 2.89 140.69 1.41 27.25 0.27

10,000 290.72 2.89 140.69 1.41 27.25 0.27
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Table 6. The effect of dispersion in p on the in-control AARL of the p′ chart with n = 3000.

(a) n = 3000
p =0.005

(b) n = 3000
p~U(0.004, 0.006)

(c) n = 3000
p~U(0.0025, 0.0075)

m AARL SDARL AARL SDARL AARL SDARL

20 434.30 462.21 423.47 416.02 515.65 422.09
50 427.05 403.96 423.08 369.48 583.49 394.31

100 391.80 322.65 372.33 274.48 548.70 344.05
1000 310.44 94.60 294.00 83.64 458.03 128.31
2000 301.02 58.22 279.74 62.55 443.30 89.45
3000 293.33 32.16 271.70 50.38 441.06 72.52
4000 292.97 25.08 267.09 41.90 439.20 54.13
5000 291.58 14.71 263.17 33.06 437.79 43.28
6000 291.11 11.27 260.31 27.67 439.11 35.13
8000 290.79 5.32 258.16 17.17 437.54 21.14

10,000 290.77 4.44 257.58 13.55 436.50 16.86

Table 7. The effect of dispersion in p on the in-control AARL of the p chart with n = 30,000.

(a) n = 30,000
p = 0.0005

(b) n = 30,000
p~U(0.0004, 0.0006)

(c) n = 30,000
p~U(0.00025, 0.00075)

m AARL SDARL AARL SDARL AARL SDARL

20 341.54 177.11 157.71 77.93 27.61 8.93
50 332.47 141.49 157.10 58.96 28.38 7.19

100 288.50 120.07 154.70 48.73 28.52 6.09
1000 288.06 24.65 140.32 13.35 27.63 2.46
2000 284.85 6.15 138.65 2.23 27.22 1.40
3000 284.63 2.86 138.47 1.39 27.11 0.90
4000 284.62 2.85 138.47 1.38 27.07 0.67
5000 284.63 2.83 138.48 1.39 27.05 0.60
6000 284.63 2.85 138.48 1.38 27.07 0.60
8000 284.59 2.86 138.46 1.40 27.06 0.60

10,000 284.64 2.82 138.48 1.38 27.07 0.59

Table 8. The effect of dispersion in p on the in-control AARL of the p′ chart with n = 30,000.

(a) n = 30,000
p = 0.0005

(b) n = 30,000
p~U(0.0004, 0.0006)

(c) n = 30,000
p~U(0.00025, 0.00075)

m AARL SDARL AARL SDARL AARL SDARL

20 443.59 472.94 433.71 448.74 523.35 494.67
50 432.40 403.23 407.10 394.53 566.80 458.88

100 398.18 324.28 361.43 301.76 548.09 397.36
1000 313.80 95.58 290.38 88.48 450.77 149.62
2000 297.08 61.10 276.36 68.14 438.84 106.54
3000 290.84 36.12 268.48 55.53 434.34 79.31
4000 288.15 25.19 263.76 48.42 431.65 65.04
5000 285.83 16.01 258.45 36.11 429.31 49.07
6000 285.46 11.96 257.07 32.07 427.98 37.20
8000 284.63 6.60 254.27 23.19 428.17 23.08

10,000 284.54 4.35 253.41 18.89 427.72 18.38

Upon comparing Tables 3–8, we observe that the conclusions drawn from Tables 3 and 4
are also applicable to Tables 5 and 6, as well as Tables 7 and 8. That is, when the sample
size remains constant and the variability in the process nonconforming rate increases, the
in-control AARLs of the traditional p control charts decrease. The p′ chart can address the
between-sample variation. The in-control AARLs are close to the advertised values. In
some cases, the AARLs may exceed the advertised value.
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Next, we consider the scenario where both the sample size, n, and the nonconforming
rate, p, are allowed to vary between samples. Table 9 shows the results of the traditional p
control chart, while Table 10 presents the results of the Laney p′ control chart. By comparing
Table 5 with Tables 6 and 9 with Table 10, we can observe that the variation in sample size
(n) does not have a significant impact on the AARL performance of both the traditional p
control chart and the Laney p′ control chart. However, it is worth noting that when both n
and p vary, it can lead to an increased variability in parameter estimation, as evidenced by
the increase in SDARL.

Table 9. The effect of dispersion in n and p on the in-control AARL of the p chart.

(a) n~U(2400, 3600)
p =0.005

(b) n~U(2400, 3600)
p~U(0.004, 0.006)

(c) n~U(2400, 3600)
p~U(0.0025, 0.0075)

m AARL SDARL AARL SDARL AARL SDARL

20 330.38 167.73 154.36 72.09 26.40 8.17
50 323.90 123.73 151.30 51.96 27.56 6.44

100 312.67 88.46 151.45 40.00 27.68 4.77
1000 303.19 27.92 146.13 12.33 27.88 1.74
2000 302.58 21.15 146.12 9.74 27.88 1.42
3000 302.55 16.79 146.01 7.04 27.86 1.10
4000 302.51 16.64 146.01 6.44 27.88 1.10
5000 302.49 14.32 145.92 5.58 27.89 0.93
6000 302.34 11.55 145.80 5.08 27.92 0.87
8000 302.30 10.53 145.76 4.64 27.92 0.82

10,000 302.27 9.72 145.73 4.43 27.90 0.80

Table 10. The effect of dispersion in n and p on the in-control AARL of the p′ chart.

(a) n~U(2400, 3600)
p =0.005

(b) n~U(2400, 3600)
p~U(0.004, 0.006)

(c) n~U(2400, 3600)
p~U(0.0025, 0.0075)

m AARL SDARL AARL SDARL AARL SDARL

20 471.28 478.12 429.25 455.93 503.63 488.42
50 429.90 400.32 408.95 393.01 568.92 453.98

100 395.38 315.21 373.32 293.14 551.73 402.27
1000 309.67 78.91 291.21 72.93 446.84 127.65
2000 304.46 52.31 285.86 49.15 440.38 89.36
3000 304.04 43.16 284.72 39.19 435.17 71.80
4000 303.23 37.83 283.12 34.93 430.66 61.52
5000 302.45 34.38 282.52 29.67 430.46 57.64
6000 301.03 30.64 282.43 28.04 429.92 51.35
8000 301.02 26.24 281.85 22.92 429.43 44.11

10,000 300.10 24.17 280.99 21.08 430.92 41.88

Next, we set a fixed number of samples for the Phase I dataset and examine the
influence of sample size on the in-control AARL and SDARL for the p control chart. In this
experiment, we consider a wider range of variations in the sample size. Based on previous
experiments, it has been found that when the number of samples is 1000 or more, the AARL
and SDARL of the p control chart yield better results. Therefore, we fix the number of
samples at 1000 and investigate the impact of sample size on AARL and SDARL when
there are variations in the nonconforming rate between samples. Table 11 summarizes the
results of the experiment.
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Table 11. The effect of sample size n on the in-control AARL of the p chart.

p~U(0.25, 0.75) p~U(0.05, 0.15) p~U(0.03, 0.09) p~U(0.025, 0.075) p~U(0.015, 0.045)

n AARL SDARL AARL SDARL AARL SDARL AARL SDARL AARL SDARL

50 4.82 0.24 83.76 2.04 109.63 42.97 127.84 27.85 143.21 31.89
100 2.46 0.02 41.89 6.77 77.85 16.97 70.47 1.16 113.07 26.67
300 1.53 0.01 8.06 0.42 21.37 1.55 28.59 2.37 45.69 10.74

1000 1.23 0.01 2.31 0.03 3.68 0.09 4.60 0.15 9.89 0.70
1500 1.18 0.01 1.87 0.02 2.56 0.04 3.00 0.06 5.40 0.21
3000 1.12 0.00 1.49 0.01 1.76 0.01 1.91 0.02 2.62 0.04

15,000 1.05 0.00 1.17 0.00 1.24 0.01 1.27 0.01 1.39 0.01
30,000 1.03 0.00 1.12 0.00 1.15 0.00 1.18 0.00 1.25 0.01

From the table, we can observe that the in-control AARL of the traditional p control
chart is very small, far below the theoretical values of the 3-sigma p control chart. This
is due to the impact of overdispersion. As the sample size increases, the influence of
overdispersion on the in-control AARL becomes more significant. In other words, when
there is a high degree of variation in the fraction nonconforming between samples, the
reduction in AARL for the p control chart becomes more substantial as n increases.

Finally, we compare the out-of-control AARL and SDARL of the p chart and Laney
p′ chart. The magnitude of shift considered is represented by a multiple k of σp. If the
in-control nonconforming rate varies between U(a, b), the range of variation for the out-of-
control mean is U(a, b) + kσp. After estimating the control limits using a set of Phase I data,
the estimation of the out-of-control ARL is performed. The AARL and SDARL performance
of the traditional p chart and the Laney p′ chart are summarized in Tables 12 and 13,
respectively. In this comparison, the number of Phase I samples (m) for the traditional p
chart and the Laney p′ chart is 1000 and 3000, respectively, with a fixed sample size of 3000.
The selection of m values for the p chart and the Laney p′ chart is based on the following
rationale. According to Table 5, it is evident that when the value of m is 1000 or higher, the
SDARL for the p control chart stays within 10% of the expected in-control ARL. Similarly,
Table 6 shows that the Laney p′ control chart exhibits a similar behavior when the m value
is 3000 or above. Tables 12 and 13 also include the in-control AARL and SDARL values for
ease of comparison.

From Tables 12 and 13, it is observed that both the p chart and Laney p′ chart exhibit a
decrease in AARL as the magnitude of shift increases. When the nonconforming rate is kept
fixed among samples, from column (a) of Tables 12 and 13, we can see that the AARLs of
the traditional p control chart and the Laney p′ control chart are very close, but the SDARLs
of the Laney p′ chart are still greater than those of the p chart. As explained earlier, this is
because the Laney p′ control chart requires an additional estimation of σZ, resulting in an
increased variability in ARL. By comparing columns (b) and (c) of Tables 12 and 13, we can
observe significant differences in the in-control and out-of-control performance between
the traditional p control chart and the Laney p′ control chart. This is due to variations in the
nonconforming rates among different samples, indicating excessive process dispersion. The
datasets generated based on the scenarios described in columns (b) and (c) of Table 12 have
been checked using Minitab statistical software (Version 19, Minitab LLC, State College,
PA, USA) and the diagnostic method described in [17]. This confirms the presence of
overdispersion. Additionally, comparing column (d) of Tables 12 and 13, we can notice that
the in-control and out-of-control performance of the two control charts are very similar.
The diagnostic method described in [17] confirms that overdispersion does not exist.
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Table 12. AARL and SDARL performance of the p chart with m = 1000.

(a)
p = 0.005

(b)
p~U(0.004, 0.006)

(c)
p~U(0.0025, 0.0075)

(d)
p~U(0.0005, 0.0015)

Shift AARL SDARL AARL SDARL AARL SDARL AARL SDARL

0.0 292.17 19.08 141.94 11.22 27.69 2.37 107.29 13.82
1.0 22.35 1.72 17.40 0.88 8.71 0.61 14.98 1.44
1.5 9.30 0.58 8.15 0.36 5.40 0.31 7.70 0.66
2.0 4.78 0.24 4.51 0.17 3.67 0.18 4.60 0.34
2.5 2.90 0.10 2.86 0.08 2.67 0.10 3.09 0.19
3.0 2.02 0.06 2.04 0.04 2.07 0.07 2.28 0.11

Table 13. AARL and SDARL performance of the p′ chart with m = 3000.

(a)
p = 0.005

(b)
p~U(0.004, 0.006)

(c)
p~U(0.0025, 0.0075)

(d)
p~U(0.0005, 0.0015)

Shift AARL SDARL AARL SDARL AARL SDARL AARL SDARL

0.0 293.33 32.16 271.70 50.38 441.06 72.52 110.70 9.54
1.0 22.52 1.77 26.54 3.42 56.25 7.48 15.32 0.81
1.5 9.34 0.61 11.55 1.25 25.98 3.02 7.85 0.28
2.0 4.80 0.25 5.97 0.52 13.71 1.34 4.68 0.16
2.5 2.91 0.11 3.58 0.24 8.06 0.67 3.14 0.09
3.0 2.03 0.06 2.42 0.12 5.19 0.36 2.31 0.06

Based on the above comparison, this study summarizes the advantages and disadvan-
tages of the p control chart and the Laney p′ control chart as follows. While the calculation
of the p control chart is relatively simple, it tends to have a higher Type I error when the
nonconforming rate varies between samples. On the other hand, the Laney p′ control chart
has the disadvantage of requiring an estimation of the variation in the nonconforming rate
between samples. This typically requires a larger number of samples to achieve an accurate
parameter estimation. When the number of samples m is small, the SDARL for the Laney
p′ control chart is higher compared to the traditional p control chart. If there is minimal
variation in the nonconforming rate between samples, the control limits of the Laney p′

control chart closely resemble those of the traditional p control chart. However, due to
the need for estimating between-sample variation, the variability in its performance also
increases. Additionally, the Laney p′ control chart addresses the issue of overdispersion by
widening the control limits. This study found that the Laney p′ control chart can indeed
reduce Type I errors caused by overdispersion. However, in some cases, this approach may
result in excessively wide control limits, thereby reducing its ability to detect changes in
the nonconforming rate.

5. Applications of the Laney p′ Chart in Manufacturing Processes

In previous studies [2–5], researchers have pointed out that the healthcare industry
often experiences the phenomenon of overdispersion due to its extremely large sample sizes.
However, overdispersion also frequently occurs in the general manufacturing industry,
which offers numerous opportunities for the application of Laney p′ control charts. This
section will utilize real cases and data collected from the industry to explain the reasons for
having such large sample sizes and demonstrate how to apply Laney p′ control charts to
address the issue of overdispersion and obtain reasonable results. The examples are from
the PCB and IC subtractive manufacturing processes. In the process of circuit board and
chip substrate manufacturing, a panel can be divided into multiple strips, with each strip
containing numerous units. Inspection can be conducted either at the strip level or the unit
level in these processes. The size of each sample represents the total number of strips (or
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units) inspected within a week (or a batch). When calculating the nonconforming rate, a
large sample size will be involved.

5.1. Example 1

During the ball placement process of a ball grid array (BGA), the operator first uses
an automated optical inspection (AVI) machine to scan the bump area of the BGA. The
AVI machine compares the scanned data against an image file or predefined criteria to
determine if the bumps meet the required specifications. Any captured images showing
abnormal bumps are further examined by operators using the verify and recheck system
(VRS) machine. The VRS operator views the magnified images displayed on the VRS screen
(at a 32×magnification).

If the bump size of the solder balls within the location marked by the AVI is higher
or lower than the adjacent solder balls, they are classified as either large-sized balls or
small-sized balls. Considering the nature and severity of the product, if the VRS machine
confirms the presence of any large or small balls, regardless of their quantity, the unit is
considered nonconforming.

The quality engineer responsible for process improvement decided to set up a control
chart in order to improve the fraction of nonconforming units produced by this process.
In this application, the 100% inspection approach is adopted. The nonconforming rate
is calculated by dividing the number of nonconforming units found per lot by the total
number of units inspected in each lot. In this specific case, the sample sizes represent the
total number of units inspected in each lot. However, it is important to note that this value
is not constant. The number of units in each lots varies depending on the part number,
typically ranging from 1800 to 7000 units. In the following presentations, the p chart and
Laney p′ chart were produced using Minitab statistical software.

The quality control engineer gathered data from 20 lots to establish a p control
chart. The data are shown in Table 14. Figure 3a presents a traditional p control chart
for the 20 lots. The sample fraction nonconforming from each sample is plotted on this
chart. The control limits of the p control chart vary as a result of employing the 100%
inspection method and the variability in daily production output. The data demonstrate a
significant amount of overdispersion. The p control chart indicates many points beyond
the control limits. However, the analysis of these points does not reveal any reasonable
assignable causes for them. The diagnostic method described in [17] confirmed the presence
of overdispersion. As a result, the engineer decided to use the Laney p′ control chart.
Figure 3b displays the Laney p′ control chart, which shows that all points are within the
control limits. This suggests a stable process with no assignable causes present. Thus, the
engineer has concluded Phase I of the control usage.
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Table 14. Data for Example 1.

Sample
Number Phase

Sample Size
(Number of Inspected

Units)

Number of
Nonconforming

Units

Sample Fraction
Nonconforming

1 I 5400 54 0.01000
2 I 5255 62 0.01180
3 I 5675 128 0.02256
4 I 5235 122 0.02330
5 I 2355 14 0.00594
6 I 4315 58 0.01344
7 I 5155 48 0.00931
8 I 5560 60 0.01079
9 I 5720 82 0.01434

10 I 2500 68 0.02720
11 I 5095 78 0.01531
12 I 2870 36 0.01254
13 I 6000 56 0.00933
14 I 3845 60 0.01560
15 I 1995 32 0.01604
16 I 5070 124 0.02446
17 I 2995 75 0.02504
18 I 4705 38 0.00808
19 I 2480 66 0.02661
20 I 6500 148 0.02277
21 II 5255 62 0.01180
22 II 2995 72 0.02404
23 II 4705 38 0.00808
24 II 2480 36 0.01452
25 II 6500 232 0.03569

Next, the engineer collected Phase II data to monitor the production process. From
Figure 3b, it is evident that Sample 25 plots outside the upper control limit, indicating a
significant increase in the process nonconforming rate. Subsequently, a process diagnosis
must be conducted to identify the assignable causes and initiate improvements. There are
several reasons for the generation of large and small balls in this process. The investigation
of Sample 25 revealed that the assignable cause is the variation in incoming material. During
ball placement, when the substrate magnification matches the steel plate magnification, µ-
balls can smoothly fit into the solder mask openings. However, if there is a variation in the
magnification of incoming materials (with some substrates being larger or smaller), it can
lead to an improper alignment between the steel plate and the substrate. This misalignment
causes some balls to fit properly while others do not. As a consequence, the balls cannot
accurately land in the solder mask opening, leading to ball misalignment issues.

5.2. Example 2

A PCB lithography process consists of several steps, including preprocessing, lamina-
tion, exposure, etching, and finishing. In this process, the nonconforming rate caused by
dirt particles is an important quality indicator. The process utilizes a negative-type dry film
that polymerizes and hardens when exposed to ultraviolet (UV) light. After lamination is
completed, if there are dirt particles adhering to the substrate, the image will be masked
during exposure. The unexposed areas will not polymerize or harden, and during develop-
ment, the dry film is removed (developed), exposing the underlying copper. During the
etching stage, the copper layer will be etched away by the etching solution, resulting in
nonconformities such as open circuits, nicks, and pinholes.

The quality control engineer collected daily data to create a p control chart with the
aim of improving the production process. In this application, the inspection method used is
100% inspection. The current quality control specification states that if any nonconformities
are confirmed on a strip, that strip is considered nonconforming. The nonconforming
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rate is calculated by dividing the number of nonconforming strips found per day by the
total number of strips inspected each day. The number of strips in each panel varies
depending on the part number, typically ranging from 8 to 12 strips. The production
capacity is approximately 28,000 to 35,000 panels per day. To establish a Phase I control
chart, preliminary data were collected over a period of 25 days. The data are shown in
Table 15, and the traditional p control chart is plotted in Figure 4a. The p control chart
exhibits variable control limits due to the implementation of 100% inspection and the
fluctuations in daily production output. In this specific case, the data demonstrate a
significant amount of overdispersion due to the large sample size (200,000 to 400,000 strips
per day).

Table 15. Data for Example 2.

Sample
Number Phase

Sample Size
(Number of Inspected

Units)

Number of
Nonconforming

Units

Sample Fraction
Nonconforming

1 I 210,000 1480 0.00705
2 I 268,500 1933 0.00720
3 I 272,500 1934 0.00710
4 I 274,700 2554 0.00930
5 I 364,500 2560 0.00702
6 I 279,000 1841 0.00660
7 I 280,000 2576 0.00920
8 I 276,250 2513 0.00910
9 I 269,750 2778 0.01030
10 I 374,350 2358 0.00630
11 I 264,950 2255 0.00851
12 I 276,800 1651 0.00596
13 I 228,700 1829 0.00800
14 I 277,550 2386 0.00860
15 I 220,000 1475 0.00670
16 I 272,500 1934 0.00710
17 I 274,500 2532 0.00922
18 I 364,500 2625 0.00720
19 I 268,600 2354 0.00876
20 I 364,500 2460 0.00675
21 I 279,000 1841 0.00660
22 I 280,000 2576 0.00920
23 I 268,500 1833 0.00683
24 I 269,750 2581 0.00957
25 I 328,250 2423 0.00738
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Figure 4. Control charts for Example 2: (a) the traditional p control chart; (b) the Laney p′ control
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An examination of the p control chart reveals that there are many points outside the
control limits. Out of the 25 points, 23 points exceed the control limits. This can lead to a
misconception that the process is influenced by many assignable causes and is out of control.
The occurrence of data points falling outside the control limits can imply the potential
existence of assignable causes that warrant investigation and corrective action. However,
after conducting a comprehensive analysis of the process, it was determined that the process
remains in control, with no identifiable assignable causes present. This phenomenon has
been pointed out by Mohammed and Laney [19], who noted that overdispersion caused
by large sample sizes may lead to the identification of an inappropriately large number of
data points indicating assignable cause variation.

The engineer confirmed the necessity of using the Laney p’ chart by utilizing the
diagnostic method described in [17]. The Laney p′ control chart is shown in Figure 4b, with
control limits adjusted for overdispersion. This control chart reveals that all points fall
within the control limits, indicating a stable process without any assignable causes. Based
on this observation, the engineer adopted the Laney p′ chart for Phase II usage.

6. Conclusions

In this study, we employed simulation to investigate the performance of the traditional
p and Laney p′ control charts when the parameters are estimated. Both charts were
evaluated and compared in terms of AARL and SDARL. Overdispersion was accounted
for by allowing for between-sample variation in the nonconforming rate (p). Additionally,
variations between samples in both the sample size (n) and the nonconforming rate of the
process were also considered.

This study found that the Laney p′ control chart can indeed reduce Type I errors
caused by overdispersion, but it may also result in excessively wide control limits and
an increased risk of Type II errors. Our results show that the p′ chart requires a much
larger amount of Phase I data than previously recommended in the literature in order to
sufficiently reduce the variation in the chart performance. These research findings can
serve as a valuable reference for practitioners.

Future research can be conducted in several directions. Firstly, a broader range
of combinations of n and p should be investigated to achieve a more comprehensive
understanding. Furthermore, the methodology presented in this study can be extended to
evaluate the effectiveness of the Laney U′ control chart. A more comprehensive assessment
of its performance will facilitate its practical implementation and promotion in various
industries.
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