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Abstract: This paper proposes a new instrumental-type estimator of quantile regression models for
panel data with fixed effects. The estimator is built upon the minimum distance, which is defined
as the weighted average of the conventional individual instrumental variable quantile regression
slope estimators. The weights assigned to each estimator are determined by the inverses of their
corresponding individual variance–covariance matrices. The implementation of the estimation
has many advantages in terms of computational efforts and simplifies the asymptotic distribution.
Furthermore, the paper shows consistency and asymptotic normality for sequential and simultaneous
asymptotics. Additionally, it presents an empirical application that investigates the income elasticity
of health expenditures.
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1. Introduction

Panel data not only captures the individual heterogeneity inherent in cross-sectional
data but also offers valuable insights into the dynamics of time series data. Quantile
regression effectively captures the relationship between the independent variable X and
the dependent variable Y, enabling a comprehensive understanding of how covariates
systematically influence the location, scale, and shape of the conditional distribution of the
response. Moreover, distinguishing it from the ordinary least squares method, quantile
regression does not necessitate any assumptions about the overall distribution.

The quantile regression model applied to panel data has the capability to compre-
hensively describe the conditional distribution of the response variable and effectively
manage variability. When endogeneity is disregarded, three estimation approaches can
be employed for quantile regression in panel data with fixed effects: penalty estimation,
two-step estimation, and minimum distance estimation.

The penalty estimation primarily involved the addition of a penalty term to the
objective function. Koenker [1] introduced a comprehensive methodology for estimating
quantile regression models in longitudinal data through the utilization of l1 regularization
techniques. It was highlighted that shrinkage could offer advantages in managing the
variability arising from the estimation of fixed effects parameters. The selection of the l1
penalty maintained the linear programming structure and preserved the sparsity of the
resulting design matrix. Nevertheless, the mentioned article did not provide a method
for selecting the penalty parameter. Lamarche [2] theoretically demonstrated that there
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was an optimal penalty parameter for the penalized quantile regression in panel data
with fixed effects. As mentioned earlier, the utilization of l1 shrinkage provides several
statistical and computational advantages. However, when the number of panel subjects,
represented by N, is large, the calculation of this kind of penalty estimation becomes
rather complicated. Building upon Koenker [1], Gu and Volgushev [3] proposed a linear
quantile regression method which allowed the researcher to learn the particular group
structure of the latent effects together with common parameters of interest in the model.
Galvao et al. [4] formalized the properties of bootstrap inference methods for quantile
regression panel data models with fixed effects. They investigated a random-weighted
bootstrap and demonstrated that it could be used to construct confidence intervals and
perform inference for the parameters of interest.

The primary concept behind two-step estimation is to remove the fixed effects in the
initial step, followed by employing simple quantile regression on the transformed data
in the second step. Canay [5] introduced a two-step estimator for quantile regression

model with fixed effects. In the first step, compute η̂i = 1
N

T
∑

t=1
(yit − x′it β̂), where N is

the number of panel subjects and T is the number of observation times, yit represents
the response variable for subject i at time t, xit denotes a vector of observable variables,
β represents the parameter of interest, and β̂ stands for a

√
NT-consistent estimator of

β. Additionally, ηi denotes the individual effect. Estimate β by a quantile regression of
ŷit = yit− η̂i on xit in the second step. Asymptotic properties of the two-step estimator were
presented in the paper. It is worth noting that the two-step estimation method eliminates
the fixed effects in the initial step. This approach leads to a significant reduction in the
number of estimated parameters in quantile regression and avoids the need to select penalty
parameters. However, compared to yit, the new variable ŷit has changed the meaning of
the dependent variables in the original regression model, making the discussion of the
large sample properties of the estimators more complex. Chen and Huo [6] revisited the
estimator proposed by Canay [5] and pointed out that the bias of the estimator due to
the estimation of fixed effects was erroneously omitted in his asymptotic analysis. They
proposed a two-step estimation method based on smoothed quantile regression that was
easy to implement. At the same time, this paper rigorously derived the asymptotic bias
of the estimation method and proposed a correct statistical inference method based on
bias correction.

Galvao and Wang [7] developed a novel minimum distance quantile regression (MD-
QR) estimator for panel data quantile regression model. The MD-QR estimator is defined
as the weighted average of the individual quantile regression slope estimators, where
the weights are determined by the inverses of their corresponding individual variance–
covariance matrices. The proposed estimator exhibits efficiency within the class of min-
imum distance estimators. Moreover, it exhibits fast computational performance, partic-
ularly for large cross-sections. However, it should be noted that based on the definition
of MD-QR, the model cannot adequately accommodate time-invariant independent vari-
ables. Furthermore, the MD-QR estimator does not account for endogenous issues. Gal-
vao et al. [8] proved that unbiased asymptotic normality of both the fixed effects quantile
regression (FE-QR) and MD-QR estimators under conditions on N, T that were very close.
This result represented a significant advancement in the existing theory and showed that
quantile regression was applicable to the same type of panel data (in terms of N, T) as other
nonlinear models.

Chernozhukov and Hansen [9–11] extended the results of Koenker and Bassett [12]
for the quantile regression (QR) model with all exogenous variables to a model with
endogeneity when instruments were available. They proposed an instrumental variable
quantile regression (IVQR) estimator that appropriately modified the conventional quantile
regression. In this paper, considering the endogenous problems we extend the results of
Galvao and Wang [7] and Chernozhukov and Hansen [9–11], combining the minimum
distance estimator and instrumental variable quantile regression.
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With considering the endogeneity, there has been growing work at the three types of
estimation. Harding and Lamarche [13] gave the instrumental variable quantile regression
with fixed effects (IVFEQR) estimator to overcome the endogenous problem, where they
allowed the endogenous variables to be correlated with unobserved factors affecting the
response variables. Galvao and Montes-Rojas [14] also developed an instrumental variables
estimator for quantile regression in panel data with fixed effects aiming to mitigate the bias
caused by the presence of measurement error (endogeneity) in the model. They showed
IVFEQR estimator and proposed its asymptotic properties. Galvao and Montes-Rojas [15]
proposed penalized quantile regression for dynamic panel data, utilizing instrumental vari-
ables to address the endogeneity issue. Galvao [16] adapted instrumental variable approach
to investigate a dynamic panel model. Harding and Lamarche [17] further explored the
static fixed effect panel data model using Huasman–Taylor instrumental variables. Zhang
et al. [18] studied a penalized instrumental variables quantile regression for spatial panel
model with fixed effects. They shrank the individual fixed effects to a common value with
a tuning parameter, aiming to control additional variability and enhance the accuracy of
parameter estimation. Besstremyannaya and Golovan [19] reviewed various methods for
estimating longitudinal models for quantile regression, they pointed out that method of
smoothed quantile regression could be considered as a way to mitigate the asymptotic bias
of the estimator in short panels. Furthermore, there has been a growing body of research
focusing on quantile regression for panel data, see, e.g., [20–24].

In this paper, we propose a minimum distance instrumental variable quantile regres-
sion (MD-IVQR) estimator for panel data with fixed effects to resolve biased parameter
estimation caused by endogenous variables and to simplify cumbersome computation
caused by large N and T. The proposed estimator expands upon the minimum distance
quantile regression estimator and is defined as a weighted average of the individual in-
strumental variable quantile regression slope estimators. The weights are determined by
taking the inverses of the corresponding individual variance–covariance matrices. As a
result, MD-IVQR can be constructed from a series of classical instrumental variable quantile
regressions. MD-IVQR estimation splits the data into smaller parts and estimates each
of them individually instead of solving a single larger optimization problem, making the
approach computationally simple to implement. We also study the asymptotic properties of
the MD-IVQR estimator. The consistency results for the MD-IVQR estimator are presented
in Theorems 1 and 2, while the limiting distributions of MD-IVQR estimator under different
assumptions are given in Theorems 3 and 4. The validity of the proposed approach is
demonstrated through Monte Carlo simulations conducted under various parameter sets.
We compare the bias and root mean squared error (RMSE) of the proposed estimator with
those of the IVFEQR estimator developed by Harding and Lamarche [13] as well as the
MD-QR estimator proposed by Galvao and Wang [7]. We also compare the computing time
for the IVFEQR estimator and MD-IVQR estimator.

The remainder of the paper is structured as follows. Section 2 introduces the MD-IVQR
estimator for panel data models with fixed effects. Section 3 delves into the asymptotic
behavior of the MD-IVQR estimator. Section 4 provides a detailed description of the Monte
Carlo experiment. In Section 5, we apply the proposed method to investigate the income
elasticity of health expenditures using panel data from 166 countries between 1995 and 2016.
The results of this application are presented to illustrate the effectiveness of the proposed
approach. Finally, Section 6 summarizes the findings and conclusions of this study.

2. Model and Methods
2.1. Basic Model

This paper considers the following model,

yit = d′itα + x′itβ + ηi + uit, i = 1, · · · , N; t = 1, · · · , T (1)

where N is the number of panel subjects and T is the number of observation times, yit
is the response variable for subject i at time t, dit is a vector of endogenous variables
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that is correlated with unobserved factors affecting the response variable, xit is a vector
of exogenous variables, α and β represent the parameters of interest, and ηi denotes the
individual effect and uit is the error term.

It is convenient to write model (1) in matrix form as,

y = dα + xβ + Zη+ u, (2)

where y = (yit) is a NT × 1 matrix, d = (dit) is a NT × dim(α) matrix, x = (xit) is a
NT× dim(β) matrix, Z = IN ⊗ lT , lT is a T× 1 vector of ones, IN is the identity matrix of
order N, η = (η1, ..., ηN)

′ is the N × 1 vector of individual specific effects or intercepts, and
u = (uit) is a NT × 1 matrix. Note that Z represents an incidence matrix that identifies the
N distinct individuals in the sample.

We assume that the τ-th quantile of the error uit is equal to zero. We consider the
following model for the τ-th conditional quantile functions of yit,

Qyit(τ|dit, xit, Zi) = d′itα(τ) + x′itβ(τ) + Z′iη(τ), (3)

where Zi is the i-th column element of matrix Z, used to identify the individual effect ηi.

2.2. IVFEQR Estimator

Note that the endogenous variable dit is correlated with the random error item uit, this
situation will cause biased estimation. Therefore, researchers consider using instrumental
variables to reduce bias, see Harding and Lamarche [13] and Galvao and Montes-Rojas [14].

The IVFEQR estimator proposed by Harding and Lamarche [13] (also referred to in
Galvao and Montes-Rojas [14]) is defined as follows:

α̂ = arg min
α∈A
{γ̂(α)′Aγ̂(α)},

for a given positive definite matrix A and (η̂(α), β̂(α), γ̂(α)) solves

min
η,β,γ

T

∑
t=1

N

∑
i=1

ρτ(yit − d′itα− x′itβ− z′itη−ω′itγ), (4)

where A denotes compact parameter set, ωit is a vector of the available instrumental
variables, γ is the coefficient of the instrumental variables, and ρτ(u) = u(τ − I(u < 0))
is the check function and I(·) is the indicator function (see, e.g., [12]). The instrument
ωit needs to satisfy the following two conditions: (i) instruments ωit can impact dit, and
dim(ωit) ≥ dim(dit); (ii) ωit is independent of the random error.

2.3. MD-IVQR Estimator

Because of the endogeneity, we cannot eliminate the fixed effects by transforming
xit, dit and yit to deviations from individual means to reduce the estimated parameters.
That is, for instrumental variable quantile regression, we are required to deal directly
with the full problem, which means when N, T and p (the dimension of dim(ω)+dim(α))
are large, there are a large number of parameters that need to be estimated. Moreover,
given a suitable set of values

{
αj, j = 1, . . . , J

}
, the estimators obtained through Formula (4)

essentially correspond to the FE-QR estimators ([1]). In other words, in order to obtain
IVFEQR estimators, we need to calculate a series of FE-QR estimators. However, FE-
QR estimator involves optimization with large number of parameters to be estimated,
making the problem computationally cumbersome, and often intractable. Motivated by the
practical challenges of implementing FE-QR, Galvao and Wang [7] presented an efficient
minimum distance quantile regression estimator for panels with fixed effects which was
simple to implement.

Inspired by Galvao and Wang [7], we propose a minimum distance instrumental
variable quantile regression estimator for model (1) to reduce the bias caused by the
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presence of endogeneity and to simplify cumbersome computation. The proposed estimator
is a weighted combination of the IVQR estimators that can be constructed from a series of
conventional instrumental variable quantile regressions. Thus, the estimation approach is
computationally convenient and simple to implement in many typical applications.

Let θ = (α′, β′)′, we consider a minimum distance instrumental variable quantile
regression (MD-IVQR) estimator, denoted as θ̂MD−IVQR, which is defined as follows:

θ̂MD−IVQR = (
N

∑
i=1

V−1
i )−1

N

∑
i=1

V−1
i θ̂i, (5)

where θ̂i = (α̂′i, β̂
′
i)
′ is the IVQR estimator of slope coefficient for each individual using the

time-series data, and Vi denotes the associated variance–covariance matrix of θ̂i for each
individual. As we can see, the MD-IVQR estimator is defined as the weighted average
of the conventional IVQR slope estimators, with weights given by the inverses of the
corresponding individual variance-covariance matrices.

Specifically, the IVQR estimator θ̂i is defined as follows. Define

α̂i = arg min
α∈A
{γ̂i(α)

′Aγ̂i(α)},

where A is any uniformly positive definite matrix, β̂i(α), γ̂i(α) and η̂i(α) represent the
estimated coefficients of the covariates dit and xit, as well as the estimated values of
individual fixed effect for each individual given α, with

(β̂i(α), η̂i(α), γ̂i(α)) := arg min
β,ηi ,γ

QiT(τ, α, β, ηi, γ),

QiT(τ, α, β, ηi, γ) =
1
T

T

∑
t=1

ρτ(yit − d′itα− x′itβ− ηi −ω′itγ),

ωit is a vector of the available instrument instrumental variables, which is related to dit but
dependent on uit.

The IVQR estimator is given by

θ̂i := (α̂′i, β̂
′
i)
′ := (α̂′i, β̂i(α̂i)

′)′. (6)

Moreover, obtaining the IVQR estimator involves the following three steps.
Step 1: For a given quantile τ, it is necessary to define a suitable set of values {αj, j =

1, ..., J; }. This involves performing the τ-quantile regression of yit − d′itαj on (xit, ωit) to
obtain the ordinary QR estimators of β, ηi, γ :

(β̂i(α), η̂i(α), γ̂i(α)) := arg min
β,ηi ,γ

QiT(τ, α, β, ηi, γ). (7)

Step 2: Choose α̂ from the set of values| {αj, j = 1, ..., J} that minimizes a weighted
distance function defined on γ, aiming to bring the value closest to zero:

α̂i = arg min
α∈A
{γ̂i(α)

′ Â(α)γ̂i(α)},

where Â(α) is defined in Chernozhukov and Hansen [11].
Step 3: Subsequently, the estimation of β, denoted as β̂i(α̂i), can be obtained.
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However, in applications, the estimator θ̂MD−IVQR, defined in (5), is infeasible unless
Vi is known for every individual. Thus, it is suggested to use the corresponding consistent
estimator V̂i to replace the unknown Vi. Then, the MD-IVQR estimator is given by

θ̂MD−IVQR = (
N

∑
i=1

V̂−1
i )−1

N

∑
i=1

V̂−1
i θ̂i. (8)

Actually, the proposed MD-IVQR estimator is a product of a simple optimization
problem. Under the restrictions,

ξ − lN ⊗ θ = 0,

where ξ = (θ′1, · · · , θ′N), θi is a (dim(α) + dim(β))× 1 vector containing the slope coeffi-
cients for each individual i, lN denotes an N-vector of ones, and θ is (dim(α) +dim(β))× 1
vector of parameters of interest form (3). The restriction states that all the slope coefficients
from different individuals are the same. The estimated value of ξ is denoted as ξ̂, where
ξ̂ = (θ̂

′
1, · · · , θ̂

′
N)
′ and the definition of θ̂i can be found in (6). The restriction ξ̂− lN ⊗ θ = 0

cannot be exactly satisfied, so we need to obtain its least-square solution. Thus, we consider
minimizing the following quadratic optimization problem

min
θ

(ξ̂ − lN ⊗ θ)TU(ξ̂ − lN ⊗ θ),

where U is a positive definite matrix. Under independence across individuals, we can
simplify U by diagonalizing it, i.e., U = diag(U1, · · · , UN). Thus, the above optimization
can be written as

min
θ

N

∑
i=1

(θ̂i − θ)TUi(θ̂i − θ). (9)

The Equation (9) can be solved using the following expression:

θ̂ = (
N

∑
i=1

Ui)
−1

N

∑
i=1

Uiθ̂i, (10)

This solution is analogous to the MD-IVQR estimator (8), where the MD-IVQR es-
timator replaces Ui with the inverse of the estimated variance-covariance matrix of the
individual regression parameter, denoted as V̂−1

i .
In addition, when Ui takes different values, one can obtain the class of minimum

distance estimators, denoted by M. As mentioned in Galvao and Wang [7], the opti-
mal weights among all the estimators inM are the inverse of the asymptotic variance–
covariance matrices of the slope regression quantiles. This means that the estimator defined
in (8) is the most efficient estimator in M. In other words, θ̂MD−IVQR has the smallest
asymptotic variance-covariance matrix among all the estimators inM. For the proof of the
inverse of the covariance matrices being optimal weights, see Rao [25], Serfling [26], and
Hsiao [27].

3. Asymptotic Theory

Now we briefly discuss the asymptotic properties of the MD-IVQR estimator. The
existence of the parameter ηi will raise some new issues for the asymptotic analysis of
estimator as N tends to infinity. We investigate the asymptotic properties of the MD-IVQR
estimator when both T and N tend towards infinity, either sequentially or simultaneously.
The sequential asymptotics, denoted by (T, N)seq → ∞, is defined by taking T to infinity
first, followed by N → ∞. The simultaneous asymptotics, denoted by (T, N)→ ∞, means
that T and N tend to infinity at the same time. In order to establish the asymptotic properties
of the MD-IVQR estimator, we impose the following regularity conditions.

(A1) (yit, dit, xit) is independent across i, and i.i.d. within each i.
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(A2) For all τ, (α(τ), β(τ)) ∈ intA×B, and A×B is compact and convex. Let
θ(τ) = (α′(τ), β′(τ))′, and k = dim(θ) = dim(α) + dim(β).

(A3) There is a constant M such that max
1≤i≤N,1≤t≤T

‖dit‖ < M, max
1≤i≤N,1≤t≤T

‖xit‖ <

M, max
1≤i≤N,1≤t≤T

‖ωit‖ < M.

(A4) For each i, let Yi = (yi1, · · · , yiT) be a T-vector, Di = (di1, · · · , diT) be a dim(α)×
T matrix, Xi = (xi1, · · · , xiT) be a dim(β)× T matrix, Wi = (ωi1, · · · , ωiT) be a dim(γ)× T
matrix and eT be a T × 1 vector of ones. Denote x̃i = [X′i , eT ]

′, β̃i = (β′, ηi)
′, x̌i = [W ′i , x̃′i]

′.
For each i, ∂E[I(Yi < D′iα + x̃′i β̃i + W ′i γ)x̌i(τ)]/∂(β̃

′
i, γ′) has full rank at each α in A.

(A5) ∂E[I(Yi < D′iα + x̃′i β̃i)x̌
′
i(τ)]/∂(α′, β̃

′
i) has full rank at (α′(τ), β′(τ), ηi(τ))

′.
(A6) For each i, the function (α, β, ηi) 7→ E[τ− I(Yi < αDi + Xiβ + ηi)x̌′i(τ)] is one-to-

one over A×B ×N .
(A7) Let Fi(u|D, X, W) be the conditional distribution function of uit = yit − d′itα−

x′itβ− ηi given dit = D, xit = X, ωit = W and have conditional density fi(u|D, X, W). The
conditional density fi(u|dit, xit, ωit) is continuously differentiable. There exist 0 < CL <
CU < ∞ such that fi(u|dit, xit, ωit) ≤ CU and fi(0|dit, xit, ωit) ≥ CL for i ≥ 1; there exists
C f > 0 such that | f (1)i (u|dit, xit, ωit)| ≤ C f .

(A8) Given α ∈ A, ϑi(α) = (ηi(α), β′(α), γ′(α))′ := arginfEQiT(τ, α, β, ηi, γ). For each
δ > 0,

εδ = inf
i≥1

inf
‖ϑi(α)‖=δ

E[
∫ x̃′ϑi(α)

0
{Fi(s|xit, ωit)− τ}ds] > 0.

(A9) Define $i = (α′, β′, ηi, γ′)′, x̃∗ it = (d′it, x′it, 1, ω′it)
′, there exists δω > 0 such that

min
1≤i≤N

mineig(ω̃i) ≥ δω, where ω̃i = E(x̃∗ itx̃∗
′
it)

Conditions (A1) is commonly seen in the quantile regression literature. Condition
(A2) restricts the compactness on the parameter space of θ. Such a condition is needed
since the objective function is not convex in θ. Condition (A3) requires the restriction
boundary conditions of the variables. Condition (A3) also guarantees that ω̃i exists and has
a uniform bound. Condition (A4) is sufficient for the estimates (β(α, τ), ηi(α, τ), γ(α, τ)) to
be asymptotically normal. Condition (A5) requires that each matrix has full rank. Condition
(A6) imposes that global identifiability must hold. Condition (A5) and Condition (A6) are
required to carry out the direct inference but are not required in the dual approach, as
discussed in Chernozhukov and Hansen [10]. Condition (A7) imposes the smoothness and
boundedness of the conditional density and its derivatives. Condition (A8) is important for
the parameters’ identification. Condition (A9) assures that ω̃−1

i is bounded uniformly for
each i.

In applications, it is necessary to estimate the variance–covariance matrices since they
are typically unknown. Since the estimation of Vi depends on the conditional densities and
the conditional densities, which are also unknown, we study the kernel estimation of the
Vi. Let {hT} and {hN} denote sequences of positive numbers (bandwidths). When T and
N tend to infinity sequentially, we propose the following condition.

(A10) V̂i = Vi + op(1) for some hT ↓ 0 uniformly across i and Th2
T → ∞ as T → ∞,

hT is a bandwidth. Assume that (N−1
N
∑

i=1
V−1

i )−1 → V, where V := lim
N→∞

(N−1
N
∑

i=1
V−1

i )−1

exists and is nonsingular.
(A10’) V̂i = Vi + Op(T−1/2h−1/2

N ) for some hN ↓ 0 uniformly across i and lim
N→∞

N
ThN

=

0 as N → ∞, hN is a bandwidth. Assume that (N−1
N
∑

i=1
V−1

i )−1 → V, where V :=

lim
N→∞

(N−1
N
∑

i=1
V−1

i )−1 exists and is nonsingular.

Later in the paper, we will discuss examples that satisfy both conditions (A10) and
(A10’).
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First, we show the consistency results for the MD-IVQR estimators in Theorems 1
and 2.

Theorem 1. Under conditions (A1)–(A8) and (A10),

θ̂MD−IVQR
p→ θ,

as (T, N)seq → ∞.

Theorem 2. Under conditions (A1)–(A8) and (A10’),

θ̂MD−IVQR
p→ θ,

as (T, N)→ ∞ and logN
T → 0.

The proofs of Theorems 1 and 2 can be found in Appendices A.1 and A.2, respectively.
Next, we give the limiting distributions of MD-IVQR estimator under sequential

and simultaneous limits in Theorems 3 and 4. For the sequential limits, denoted by
(T, N)seq → ∞, we let T diverge to infinity first, and then N → ∞. For the simultaneous

limits, we denote (T, N)sim → ∞ when (T, N)→ ∞ and N2(log N)
T | log (log N)0.5

T0.5 |2 → 0.

Theorem 3. Under conditions (A1)–(A10), as (T, N)seq → ∞,

√
NT(θ̂MD−IVQR − θ)

d→ N(0, V),

where V = lim
N→∞

1
N

N
∑

i=1
V−1

i , Vi = Ξ1ṼiΞ>1 , Ξ1 = [Ik×k|0k×1], Ṽi = (K′i , L′i)
′Si(K′i , L′i), εi =

Yi − D′iα(τ)− x̃′i β̃i(τ), Si = τ(1− τ)E[x̌i x̌′i], Ki = (J′i,αHi Ji,α)
−1 J′i,α Hi, Hi = J̄′i,γ A[α(τ)] J̄i,γ,

Li = J̄′
i,β̃i

Mi, Mi = I − Ji,αKi, Ji,α = E[ fi(0|x̃i, Wi, Di)x̌iD′i ], and [ J̄′
β̃i

, J̄′γ] is a partition of

Ji,ψ := (E[ fi(0|x̃i, Wi)x̌i x̌′i])
−1 such that J̄′

i,β̃i
is a dim(β̃i) × dim(β̃i, γ) matrix and J̄′i,γ is a

dim(γ)× dim(β̃i, γ) matrix.

Theorem 4. Under conditions (A1)–(A9) and (A10’) , as (T, N)sim → ∞,

√
NT(θ̂MD−IVQR − θ)

d→ N(0, V),

where V is defined in Theorem 3.

The proofs of Theorems 3 and 4 can be found in Appendices A.3 and A.4, respectively.
Here are some remarks of Theorems 3 and 4. First, when dim(γ) = dim(α), the choice

of A does not affect asymptotic variance, and Vi has the simple vision

Vi = Ξ1 J−1
i,θ Si(J′i,θ)

−1Ξ>1 ,

where Si is defined above and J′i,θ = E[ fi(0|x̃i, Wi, Di)x̌i[D′i , x̃′i]]. This is particularly conve-
nient since the variance formula Vi becomes simple once the instrument Wi is collapsed to
the same dimension as Di.

Second, if ̂̃Vi satisfies ̂̃Vi = Ṽi + op(1) for each i, then we can obtain V̂i = Vi + op(1)

as Vi = Ξ1ṼiΞ>1 and V̂i = Ξ1
̂̃ViΞ>1 . Following Koenker’s [28] analysis for ordinary QR,

Chernozhukov and Hansen [11] gave the estimating variance ̂̃Vi that satisfied ̂̃Vi = Ṽi +
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op(1). The components of ̂̃Vi that need to be estimated include Ji,α, Ji,ψ and Si. They can be
estimated as follows:

Ŝi =
1
T

T

∑
t=1

ŝit ŝ′it, Ĵi,α =
1
T

T

∑
i=1

[K(ε̂it/hT)/hT ]x̌it[d′it, x̃′it]
′, Ĵi,ψ =

1
T

T

∑
i=1

[K(ε̂it/hT)/hT ]x̌itx̌′it,

where ε̂it := Yit − d′itα̂(τ)− x′it β̂(τ)− η̂i, ŝit = [τ − 1(ε̂it < 0)]x̌it, x̌it =
[
ω′it, x′it

]′, hT is a
bandwidth chosen such that hT → 0 and Th2

T → ∞ as T → ∞, K(·) is a kernel function.
When dim(γ)=dim(α), following Galvao and Wang’s [7] analysis for ordinary MD-QR,

the estimating variance satisfying condition (A10’) is defined as follows:

τ(1− τ)Ξ1(
1
T

T

∑
t=1

KhN (ε̂it)x̌it[d′it, x̃′it])
−1 1

T

T

∑
t=1

x̌itx̌′it(
1
T

T

∑
t=1

KhN (ε̂it)[d′it, x̃′it]
′x̌′it)

−1Ξ>1 ,

where ε̂it := Yit − d′itα̂(τ)− x′it β̂(τ)− η̂i, hN is a bandwidth chosen such that hN → 0 and
N

ThN
→ 0 as N → ∞, KhN (·) is defined in Kato [29].
In Theorems 3 and 4, we provide the limiting distributions for both sequential and

simultaneous asymptotics. It is noteworthy that Theorems 3 and 4 demonstrate that
the MD-IVQR estimator possesses the same limiting distribution in both sequential and
simultaneous asymptotic scenarios. The reasons underlying this observation are explained
in Galvao and Wang [7]. However, the two asymptotic properties primarily differ in terms
of the divergence rates of T and N that are required. For the sequential limits asymptotics,
we begin with letting T tend to infinity, followed by N. The proofs of the sequential limits
entail great mathematical simplifications by drawing on the conclusions of predecessors,
such as Chernozhukov and Hansen [11]. In contrast, the simultaneous asymptotics entail
stringent requirements on the growth rate of T, which should tend to infinity faster than
N2 log N. Consequently, the proof for the simultaneous asymptotics is relatively complex.

4. Monte Carlo Simulation

The samples are generated from the following model,

yit = ηi + ditα + xitβ + uit,

vit = a ∗ vit−1 + εit + b ∗ εit−1,

xit = ϕκi + vit,

ηi = φx̄i + εi,

where x̄i = T−1
T
∑

t=1
xit, dit = yit−1, κi ∼ U[0, 1] and εi ∼ N(0, 1). In the simulations, we

fix ϕ = 1, φ = 0.5, a = 0.6, b = 0.2, α = 0.5, β = 1. We generate εit and uit from the
same distributions, which are Gaussian distribution N(0, 1), t distribution with 3 degrees
of freedom t(3) and Chi-squared distribution with 3 degrees of freedom χ2(3). In the
generation process, we set vi,−50 = 0 and yi,−50 = 0, and discard their respective first 50
observations, using the observations t = 0 through T for the estimation. The design of the
experiment carried here is based on Galvao [30] and Galvao [16]. As mentioned in [31],
both random effects and fixed effects models exhibit endogeneity issues in dynamic panel
data models because the lagged dependent variable yit−1 is correlated with the disturbance,
even if it is assumed that uit is not itself autocorrelated. Thus, we use ωit = xit−1 as an
instrument variable. The choice of the values of xit lagged one periods as an instrument
variable has been used in previous studies, such as Galvao [30] and Galvao [16]. We set the
number of replications to 1000.

For the sake of comparing the performance and efficiency between different methods,
we compare the bias, RMSE of the following estimators: the instrumental variables estima-
tor for quantile regression with fixed effects (IVFEQR) as in Harding and Lamarche [13];
the minimum distance quantile regression estimator (MD-QR) as in Galvao and Wang [7]
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and the proposed MD-IVQR estimator. In the simulations, we report results considering
{N} = {50, 75, 100}, {T} = {50, 100, 200}, and quantiles τ = {0.25, 0.50, 0.75}. As the true
value of α is 0.5, we generate a series of αj values from 0.3 to 0.7 in steps of 0.01 in the
estimation process. In practice, we suggest first calculating the QR or MD-QR estimator
and then setting a series of αj values near this estimate in the initial step.

Moreover, in quantile regression, the error term uit follows a general distribution F,

and the derivative of the quantile function d F−1(τ)
dτ is referred to as the sparsity function

(see [32]). Therefore, to examine whether the finite sample performance of the estimator
is affected by sparsity function estimation in the weights, we calculate both the true and
estimated sparsity functions within the corresponding variance–covariance matrix for
the MD-IVQR and MD-QR estimators. We denote the MD-IVQR using the true sparsity
as MDIVT and the MD-IVQR using the estimated sparsity as MDIVE. For MDIVE, we
estimate the variance-covariance matrix using kernel estimation with the Gaussian kernel
function. Following Galvao and Wang [7], we set the bandwidth as h = 1.3hHS, where
hHS represents the Hall–Sheather bandwidth. Similarly, the MD-QR using the true sparsity
is denoted as MDT, while the MD-QR using the estimated sparsity is abbreviated as MDE.
Given the table layout and size, we abbreviate IVFEQR as IVFE.

4.1. Bias and RMSE

Table 1 presents the bias and RMSE of the estimators for α and β when uit ∼ N(0, 1). In
terms of the bias of α, it is evident that the IVFE, MDIVE, and MDIVT estimators outperform
the MDE and MDT estimators. This implies that the methods using IV yield superior
estimation results. The RMSE results are consistent with the bias findings. The RMSE of
the MDE and MDT estimators is generally larger than that of the other three estimators.

Regarding the coefficient of the exogenous variable β, the overall results obtained by
the five estimators do not significantly differ from each other. However, when N and T
are small, the MDE and MDT estimators perform noticeably worse than the other three
estimators. Furthermore, the RMSE of the MDIVT estimator is smaller than that of MDIVE,
and the RMSE of the MDT estimator is also smaller than that of MDE. Nevertheless, the
impact of sparsity estimation diminishes as the sample size increases. In other words, the
estimation results of MDIVE and MDIVT estimators do not vary significantly with the
increase in sample size. Whether the sparsity function is estimated or known, it does not
significantly affect the estimation performance as the sample size grows.

Furthermore, as noted by Galvao and Wang [7], it is observed that the bias decreases as
T increases for all estimators. However, this reduction in bias does not occur as N increases
due to the incidental parameter problem. For a fixed N, the bias and RMSE of the five
estimators decrease as T increases. Similarly, for a fixed T, the bias and RMSE of the MDIVE
and MDIVT estimators tend to decrease with an increase in N. Meanwhile, there is little
disparity in the estimation effects on the parameters at different quantiles.

Table 2 displays the bias and RMSE of estimators for α and β when uit ∼ t(3). The
results are comparable to those obtained from the N(0, 1) distribution. The MDIVE and
MDIVT estimators outperform the MDE and MDT estimators, and exhibit similar perfor-
mance to the IVFE estimators.

Table 3 provides the the bias and RMSE of estimators for α and β when uit ∼ χ2(3). The
results demonstrate similarities to those obtained from the N(0, 1) and t(3) distributions at
the 0.25 and 0.5 quantiles. However, the estimation results are relatively poorer at higher
quantile points.
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Table 1. Bias and RMSE of estimators for α and β when uit ∼ N(0, 1).

τ N T
α β

IVFE MDE MDT MDIVE MDIVT IVFE MDE MDT MDIVE MDIVT

0.25

Bias

50
50 −0.001 −0.012 −0.017 0.006 0.002 −0.003 0.022 0.010 0.002 −0.003
100 −0.003 −0.006 −0.008 0.003 −0.001 0.004 0.012 0.009 0.001 0.001
200 0.000 −0.003 −0.004 0.002 0.001 −0.001 0.003 0.002 −0.001 −0.001

75
50 0.000 −0.009 −0.015 0.005 0.003 0.000 0.013 0.010 0.001 −0.003
100 0.001 −0.004 −0.006 0.004 0.003 −0.001 0.010 0.006 −0.001 −0.002
200 −0.001 −0.003 −0.004 0.001 0.001 0.000 0.004 0.003 0.001 −0.001

100
50 −0.002 −0.011 −0.015 0.004 0.002 0.002 0.021 0.013 0.005 −0.002
100 0.000 −0.004 −0.007 0.004 0.002 −0.001 0.009 0.007 −0.001 −0.001
200 0.001 −0.003 −0.004 0.002 0.001 −0.001 0.007 0.004 0.000 0.000

RMSE

50
50 0.013 0.027 0.025 0.019 0.014 0.021 0.044 0.027 0.032 0.025
100 0.010 0.014 0.015 0.012 0.012 0.014 0.027 0.020 0.022 0.017
200 0.008 0.010 0.009 0.009 0.008 0.011 0.017 0.013 0.015 0.013

75
50 0.010 0.017 0.020 0.014 0.012 0.012 0.026 0.019 0.020 0.018
100 0.007 0.012 0.011 0.011 0.009 0.011 0.021 0.016 0.019 0.015
200 0.005 0.007 0.007 0.007 0.006 0.008 0.013 0.010 0.011 0.009

100
50 0.009 0.018 0.020 0.013 0.011 0.015 0.032 0.023 0.023 0.019
100 0.008 0.011 0.011 0.012 0.009 0.012 0.019 0.016 0.018 0.015
200 0.006 0.008 0.007 0.008 0.007 0.006 0.013 0.009 0.012 0.010

0.5

Bias

50
50 −0.002 −0.014 −0.015 0.002 0.002 0.001 0.014 0.012 0.002 −0.003
100 −0.001 −0.008 −0.006 0.002 0.002 0.002 0.007 0.006 −0.002 0.000
200 0.000 −0.004 −0.004 0.000 0.000 0.000 0.004 0.003 −0.001 0.000

75
50 0.001 −0.016 −0.017 0.004 0.003 0.000 0.017 0.015 −0.003 −0.004
100 0.000 −0.006 −0.007 0.002 0.002 −0.001 0.005 0.006 −0.003 −0.003
200 0.000 −0.005 −0.004 0.001 0.000 0.001 0.005 0.005 −0.001 −0.001

100
50 −0.001 −0.017 −0.017 0.001 0.002 0.001 0.009 0.011 −0.005 −0.004
100 −0.001 −0.008 −0.009 0.001 0.001 0.001 0.009 0.008 0.000 −0.001
200 0.000 −0.004 −0.004 0.001 0.000 0.001 0.004 0.005 −0.001 −0.001

RMSE

50
50 0.014 0.022 0.023 0.017 0.015 0.021 0.031 0.029 0.027 0.024
100 0.011 0.014 0.013 0.013 0.012 0.014 0.019 0.016 0.019 0.015
200 0.007 0.009 0.008 0.008 0.007 0.011 0.014 0.013 0.013 0.012

75
50 0.010 0.021 0.020 0.013 0.012 0.014 0.026 0.022 0.019 0.017
100 0.008 0.010 0.011 0.008 0.009 0.012 0.018 0.015 0.015 0.014
200 0.006 0.008 0.008 0.006 0.006 0.008 0.011 0.009 0.009 0.008

100
50 0.010 0.022 0.022 0.012 0.011 0.012 0.020 0.020 0.018 0.015
100 0.007 0.011 0.011 0.008 0.007 0.010 0.016 0.013 0.012 0.011
200 0.006 0.007 0.007 0.007 0.007 0.009 0.010 0.009 0.009 0.009

0.75

Bias

50
50 0.004 −0.017 −0.014 0.004 0.006 −0.003 0.004 0.005 −0.004 −0.002
100 0.001 −0.011 −0.010 0.003 0.003 −0.001 0.001 0.006 −0.004 −0.002
200 −0.001 −0.004 −0.003 0.001 0.001 0.002 0.001 0.003 −0.003 0.000

75
50 0.001 −0.020 −0.014 0.003 0.003 0.001 0.011 0.015 −0.003 −0.002
100 0.001 −0.010 −0.007 0.001 0.002 0.003 0.009 0.008 −0.001 0.002
200 0.000 −0.005 −0.003 0.001 0.001 −0.002 0.006 0.007 −0.001 −0.001

100
50 0.000 −0.016 −0.012 0.001 0.002 0.002 0.015 0.014 0.001 0.000
100 0.000 −0.012 −0.010 0.000 0.001 0.000 0.009 0.008 0.000 0.000
200 0.001 −0.005 −0.004 0.000 0.000 0.000 0.003 0.002 0.000 0.000

RMSE

50
50 0.013 0.027 0.022 0.015 0.015 0.020 0.035 0.028 0.030 0.025
100 0.010 0.018 0.016 0.014 0.012 0.014 0.025 0.020 0.028 0.018
200 0.007 0.010 0.009 0.009 0.008 0.009 0.014 0.012 0.015 0.012

75
50 0.009 0.026 0.019 0.013 0.012 0.013 0.031 0.026 0.023 0.019
100 0.008 0.015 0.012 0.010 0.010 0.011 0.019 0.016 0.016 0.013
200 0.006 0.009 0.007 0.007 0.007 0.009 0.011 0.010 0.012 0.012

100
50 0.010 0.023 0.019 0.013 0.012 0.014 0.024 0.020 0.025 0.019
100 0.007 0.015 0.013 0.009 0.009 0.008 0.017 0.016 0.014 0.012
200 0.005 0.008 0.008 0.007 0.006 0.008 0.011 0.011 0.012 0.010
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Table 2. Bias and RMSE of estimators for α and β when uit ∼ t(3).

τ N T
α β

IVFE MDE MDT MDIVE MDIVT IVFE MDE MDT MDIVE MDIVT

0.25

Bias

50
50 0.001 −0.008 −0.007 0.004 0.004 0.001 0.009 0.005 0.001 −0.004

100 −0.001 −0.004 −0.003 0.003 0.001 0.003 0.004 0.004 0.000 0.000
200 0.000 −0.002 −0.003 0.001 0.000 0.000 0.003 0.002 0.000 0.000

75
50 −0.001 −0.004 −0.010 0.005 0.003 0.001 0.009 0.007 0.002 −0.004

100 −0.001 0.001 −0.004 0.003 0.000 0.001 0.000 0.003 −0.002 −0.001
200 0.000 −0.003 −0.003 0.002 0.001 0.000 0.003 0.003 0.001 −0.001

100
50 0.001 −0.007 −0.007 0.006 0.004 −0.003 0.002 0.003 −0.003 −0.004

100 0.000 −0.006 −0.004 0.003 0.001 0.000 0.003 0.004 −0.001 −0.002
200 0.000 −0.002 −0.002 0.001 0.001 0.000 0.003 0.002 0.001 −0.001

RMSE

50
50 0.013 0.017 0.015 0.015 0.013 0.018 0.026 0.018 0.025 0.019

100 0.010 0.011 0.008 0.012 0.011 0.016 0.023 0.014 0.023 0.015
200 0.007 0.007 0.005 0.008 0.007 0.009 0.014 0.008 0.017 0.009

75
50 0.013 0.013 0.013 0.017 0.014 0.018 0.023 0.016 0.024 0.016

100 0.008 0.008 0.007 0.012 0.008 0.012 0.016 0.010 0.020 0.012
200 0.006 0.007 0.005 0.006 0.005 0.008 0.015 0.007 0.016 0.008

100
50 0.009 0.010 0.010 0.015 0.010 0.013 0.015 0.013 0.022 0.016

100 0.007 0.006 0.007 0.010 0.007 0.009 0.012 0.010 0.014 0.008
200 0.005 0.005 0.004 0.006 0.005 0.008 0.010 0.006 0.011 0.007

0.5

Bias

50
50 −0.003 −0.007 −0.008 −0.002 0.002 0.002 0.008 0.007 0.003 0.001

100 0.001 −0.003 −0.003 0.001 0.001 0.000 0.005 0.002 0.001 −0.001
200 0.000 −0.002 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 −0.001

75
50 −0.001 −0.005 −0.006 0.001 0.002 0.002 0.003 0.006 −0.001 −0.002

100 −0.001 −0.003 −0.003 0.001 0.001 0.002 0.003 0.004 −0.001 0.000
200 0.000 −0.001 −0.001 0.000 0.000 −0.001 0.000 0.000 0.000 0.000

100
50 −0.002 −0.007 −0.008 0.000 0.001 0.004 0.007 0.008 0.001 −0.001

100 −0.001 −0.003 −0.004 0.000 0.001 0.001 0.003 0.003 0.001 0.000
200 0.000 −0.001 −0.002 0.000 0.000 0.001 0.000 0.001 0.000 0.000

RMSE

50
50 0.013 0.013 0.011 0.014 0.013 0.019 0.022 0.018 0.023 0.019

100 0.008 0.008 0.007 0.011 0.009 0.012 0.014 0.011 0.014 0.012
200 0.007 0.005 0.003 0.008 0.007 0.009 0.010 0.006 0.012 0.008

75
50 0.010 0.011 0.011 0.012 0.011 0.014 0.018 0.015 0.017 0.015

100 0.009 0.007 0.006 0.010 0.009 0.013 0.012 0.009 0.014 0.011
200 0.005 0.004 0.003 0.006 0.005 0.008 0.009 0.006 0.009 0.008

100
50 0.009 0.010 0.010 0.010 0.009 0.013 0.014 0.014 0.014 0.012

100 0.006 0.008 0.007 0.007 0.006 0.008 0.010 0.008 0.011 0.008
200 0.004 0.005 0.004 0.005 0.004 0.006 0.006 0.005 0.008 0.006

0.75

Bias

50
50 0.002 −0.012 −0.007 0.002 0.004 0.000 0.005 0.006 −0.005 −0.002

100 −0.001 −0.007 −0.005 −0.002 0.001 0.001 0.002 0.004 −0.002 −0.001
200 0.000 −0.003 −0.002 −0.001 0.001 0.000 0.000 0.001 −0.001 −0.001

75
50 0.002 −0.012 −0.009 0.002 0.003 −0.001 0.004 0.008 −0.006 −0.005

100 0.002 −0.004 −0.002 0.002 0.003 −0.002 0.001 0.002 −0.004 −0.004
200 0.001 −0.004 −0.002 −0.001 0.000 −0.002 0.003 0.002 0.000 −0.002

100
50 −0.001 −0.015 −0.009 −0.003 0.001 −0.001 0.005 0.006 −0.005 −0.003

100 −0.002 −0.007 −0.005 −0.001 0.000 0.001 0.002 0.003 −0.003 −0.002
200 0.001 −0.003 −0.002 0.001 0.000 −0.001 0.002 0.003 −0.002 −0.001

RMSE

50
50 0.014 0.018 0.015 0.017 0.014 0.019 0.028 0.020 0.028 0.021

100 0.009 0.011 0.009 0.013 0.010 0.013 0.019 0.012 0.022 0.013
200 0.008 0.008 0.006 0.012 0.008 0.010 0.015 0.008 0.017 0.011

75
50 0.011 0.017 0.013 0.015 0.012 0.014 0.020 0.015 0.023 0.014

100 0.008 0.010 0.007 0.012 0.009 0.010 0.018 0.010 0.020 0.013
200 0.006 0.008 0.005 0.009 0.006 0.008 0.014 0.008 0.014 0.008

100
50 0.009 0.020 0.012 0.015 0.010 0.012 0.021 0.014 0.023 0.015

100 0.006 0.010 0.007 0.009 0.006 0.009 0.017 0.009 0.017 0.010
200 0.006 0.006 0.004 0.007 0.006 0.007 0.013 0.007 0.014 0.007
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Table 3. Bias and RMSE of estimators for α and β when uit ∼ χ2(3).

τ N T
α β

IVFE MDE MDT MDIVE MDIVT IVFE MDE MDT MDIVE MDIVT

0.25

Bias

50
50 −0.002 −0.008 −0.007 0.003 0.000 0.001 0.009 0.010 −0.010 0.001
100 0.000 −0.005 −0.004 0.002 0.001 0.000 0.004 0.006 −0.007 0.001
200 0.001 −0.004 −0.001 0.003 0.001 0.000 0.000 0.003 −0.009 0.000

75
50 0.000 −0.009 −0.008 0.004 0.000 0.001 0.012 0.014 −0.010 0.006
100 0.001 −0.006 −0.004 0.003 0.001 0.000 0.007 0.008 −0.008 0.001
200 0.000 −0.003 −0.002 0.002 0.000 0.000 −0.001 0.003 −0.007 0.001

100
50 0.001 −0.009 −0.007 0.005 0.002 0.001 0.014 0.012 −0.012 0.002
100 0.000 −0.005 −0.003 0.004 0.000 0.000 0.005 0.006 −0.010 0.001
200 0.001 −0.002 −0.002 0.002 0.001 −0.001 0.001 0.003 −0.008 0.000

RMSE

50
50 0.015 0.015 0.011 0.018 0.017 0.019 0.032 0.023 0.029 0.017
100 0.009 0.009 0.008 0.011 0.010 0.012 0.025 0.014 0.019 0.010
200 0.007 0.006 0.004 0.006 0.005 0.010 0.015 0.010 0.017 0.011

75
50 0.011 0.014 0.011 0.012 0.012 0.016 0.024 0.022 0.024 0.015
100 0.009 0.009 0.007 0.010 0.010 0.011 0.023 0.013 0.014 0.011
200 0.006 0.005 0.004 0.005 0.004 0.008 0.012 0.007 0.012 0.007

100
50 0.009 0.013 0.010 0.011 0.010 0.012 0.023 0.020 0.018 0.013
100 0.006 0.009 0.005 0.006 0.006 0.010 0.014 0.009 0.016 0.008
200 0.005 0.004 0.003 0.005 0.005 0.008 0.009 0.008 0.011 0.007

0.5

Bias

50
50 −0.001 −0.018 −0.014 0.011 0.000 0.003 0.010 0.013 0.016 0.001
100 −0.002 −0.008 −0.006 0.008 −0.001 0.000 0.000 0.006 −0.011 0.000
200 0.000 −0.006 −0.004 0.005 0.000 −0.001 −0.001 0.004 0.000 0.000

75
50 −0.002 −0.019 −0.016 0.012 −0.001 0.004 0.013 0.019 0.025 0.003
100 0.000 −0.010 −0.008 0.008 0.000 0.001 0.005 0.011 −0.007 0.002
200 0.000 −0.004 −0.003 0.003 0.000 0.000 0.000 0.003 0.000 0.001

100
50 0.000 −0.016 −0.014 0.011 0.001 −0.003 −0.003 0.009 −0.011 −0.003
100 0.000 −0.008 −0.007 0.008 0.000 −0.001 −0.001 0.006 0.007 0.000
200 −0.001 −0.003 −0.003 0.002 0.000 0.002 0.000 0.005 0.000 0.001

RMSE

50
50 0.013 0.026 0.019 0.019 0.014 0.019 0.050 0.030 0.055 0.023
100 0.010 0.015 0.012 0.013 0.011 0.014 0.030 0.018 0.035 0.017
200 0.007 0.009 0.008 0.009 0.007 0.010 0.023 0.014 0.023 0.012

75
50 0.011 0.024 0.020 0.017 0.012 0.017 0.040 0.030 0.051 0.022
100 0.009 0.013 0.010 0.011 0.009 0.013 0.022 0.018 0.033 0.015
200 0.006 0.009 0.006 0.008 0.005 0.008 0.017 0.013 0.021 0.009

100
50 0.011 0.021 0.017 0.015 0.010 0.015 0.029 0.030 0.043 0.019
100 0.007 0.012 0.009 0.010 0.007 0.011 0.020 0.017 0.031 0.011
200 0.005 0.006 0.005 0.009 0.007 0.008 0.015 0.011 0.022 0.010

0.75

Bias

50
50 −0.001 −0.033 −0.024 0.023 0.000 −0.003 0.016 0.015 0.029 −0.003
100 0.000 −0.016 −0.012 0.012 0.000 −0.001 −0.011 0.010 0.012 −0.002
200 0.002 −0.010 −0.008 0.004 0.001 0.000 0.000 0.004 0.006 −0.002

75
50 0.000 −0.040 −0.025 0.026 0.003 −0.005 0.025 0.024 0.018 −0.002
100 −0.002 −0.014 −0.014 0.013 −0.001 0.001 −0.007 0.009 0.012 −0.002
200 0.000 −0.005 −0.004 0.002 0.000 0.000 −0.003 0.001 0.004 0.000

100
50 0.001 −0.029 −0.022 0.019 0.004 −0.001 0.007 0.016 0.017 −0.006
100 0.000 −0.015 −0.011 0.010 0.002 0.000 0.006 0.009 0.012 −0.005
200 0.000 −0.006 −0.005 0.005 0.001 −0.001 −0.005 0.005 0.006 −0.002

RMSE

50
50 0.017 0.043 0.035 0.031 0.015 0.018 0.068 0.053 0.076 0.034
100 0.010 0.026 0.018 0.022 0.011 0.014 0.057 0.032 0.063 0.022
200 0.008 0.016 0.010 0.011 0.008 0.011 0.036 0.021 0.041 0.021

75
50 0.012 0.036 0.028 0.025 0.016 0.021 0.072 0.044 0.074 0.030
100 0.009 0.021 0.017 0.018 0.008 0.013 0.050 0.032 0.065 0.019
200 0.003 0.006 0.005 0.013 0.007 0.009 0.032 0.016 0.032 0.014

100
50 0.011 0.037 0.026 0.023 0.011 0.015 0.058 0.042 0.071 0.026
100 0.007 0.023 0.015 0.016 0.007 0.009 0.043 0.020 0.057 0.016
200 0.005 0.013 0.009 0.011 0.005 0.009 0.030 0.019 0.034 0.014

It is worth mentioning that, contrary to the findings of Galvao and Wang [7], we
observe that MDIVT’s estimation results are no longer always better than MDIVE’s. The
reason is that when solving the model, we first give a suitable set of values α, and then we
analyze the new y instead of the original model. From the above analysis, on the one hand,
we can find that MDIVT is better than MDIVE in most cases, while on the other hand, the
effects of sparsity estimation diminish as the sample size increases.
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Finally, we conducted an analysis to assess the bias in the MDIVE estimators for α
as α varies. Considering N = T = 100, τ = 0.5 and assuming uit ∼ N(0, 1), we obtained
estimates of the bias in the MDIVE estimators for different α values ranging from 0.2 to 0.8
with a step size of 0.05. The results of the bias estimation for the MDIVE estimators of α
are presented in Figure 1. Notably, the figure demonstrates that the bias falls within the
range of -0.0025 to 0.0035. Additionally, it is worth mentioning that incorporating xit−1 as
an instrumental variable exhibited minimal impact on the bias of the MDIVE estimators
across different α values. These findings align with the results reported by Galvao [16].
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Figure 1. Bias of the MDIVE estimators for α when α varies.

4.2. Estimation Speed

As discussed by Galvao and Wang [7], the estimation procedure for FE-QR models
can be quite cumbersome, as is the case with IVFEQR models, which we have previously
discussed. Consequently, we propose using MD-IVQR as an alternative estimator because
it is both straightforward to implement and computationally feasible.

In order to compare the computing time for IVFEQR and MD-IVQR estimators, the
durations of IVFEQR and MD-IVQR estimations in a simulation for various levels of N and
T where we estimate the above model for one particular quantile (τ = 0.5) are presented.
The code of IVFEQR is provided by Harding and Lamarche on their respective websites.
We compare the time in terms of three quantities: user, system, and elapsed. User time
gives the CPU time spent by the current process and system time gives the CPU time spent
by the kernel (the operating system) on behalf of the current process. Elapsed time is in our
best interests and gives the time charged to the CPU(s) for one replication of the simulation.
In addition, the processor of computer we use is an Intel Core i5-5257U cpu@2.70 GHz
RAM 8.00 GB and the program is implemented using R 3.1.1.

Table 4 illustrates the durations (in seconds) of the IVFEQR and MD-IVQR estimations
in a simulation for sample sizes N, T ∈ {50, 100, 150, 250, 300, 450}. From Table 4, we can see
that when N, T are more than 150, the duration of MD-IVQR estimation is less than IVFEQR
estimation. With the increase of N and T, the durations of MD-IVQR estimation and
IVFEQR estimation both increase, and the duration of IVFEQR estimation is significantly
more than that of MD-IVQR estimation. That is, the duration of MD-IVQR estimation
increases slowly, while the duration of IVFEQR increases more obviously. The significant
disparity in the computational time required for estimating the parameters, as discussed in
Galvao and Wang [7], arises from the distinct approach employed by IVFEQR estimation
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and MD-IVQR estimation. IVFEQR estimation tackles a single, larger optimization problem,
whereas MD-IVQR estimation subdivides the data into smaller segments and estimates
them individually.

Table 4. The durations of IVFEQR and MD-IVQR estimations in a simulation for various levels of N
and T.

IVFEQR MD-IVQR

User System Elapsed User System Elapsed

N = T = 50 3.97 1.13 5.62 5.67 0.39 6.45
N = T = 100 9.00 1.55 10.89 10.99 0.63 11.77
N = T = 150 18.16 2.47 21.80 15.86 0.58 16.86
N = T = 250 84.44 19.25 108.00 39.06 0.63 40.31
N = T = 300 147.63 35.28 186.66 49.03 1.11 50.75
N = T = 450 421.64 96.61 525.32 59.05 1.29 60.93

Furthermore, by holding N and T fixed separately, we observe whether the dura-
tion of the estimation is more sensitive to T or N. Table 5 shows the durations (in
seconds) of the IVFEQR and MD-IVQR estimations in a simulation for sample sizes
T ∈ {50, 100, 250, 500, 750, 1000} with fixed N. With the increase in time, T, the dura-
tion of both estimation procedures increase, but both are relatively flat. While from Table 6
with fixed T, we can see that as N increases, the duration of computing each estimator
increases, although the increment is mild for MD-IVQR, it is drastic for IVFEQR. When N is
greater than 250, IVFEQR consumes significantly more computing time than MD-IVQR. By
comparison of Tables 5 and 6, it can be concluded that both estimators demonstrate greater
sensitivity to variations in the size of N|. In addition, MD-IVQR is much less sensitive to
sample size than IVFEQR.

Table 5. The durations of IVFEQR and MD-IVQR estimations in a simulation for various levels of T
when N = 100.

IVFEQR MD-IVQR

N = 100 User System Elapsed User System Elapsed

T = 50 6.27 1.55 8.08 10.33 0.64 11.28
T = 100 8.58 1.32 10.47 11.07 0.39 11.93
T = 250 7.95 2.50 20.71 13.23 0.67 14.08
T = 500 31.77 4.76 37.39 19.76 0.80 21.28
T = 750 48.42 13.9 68.13 21.22 0.90 23.23
T = 1000 54.92 12.94 68.96 35.95 0.58 37.67

Table 6. The durations of IVFEQR and MD-IVQR estimations in a simulation for various levels of N
when T = 100.

IVFEQR MD-IVQR

T = 100 User System Elapsed User System Elapsed

N = 50 5.34 1.00 6.53 5.41 0.55 6.28
N = 100 8.64 1.33 10.78 10.65 0.45 11.77
N = 250 29.02 5.20 34.50 27.11 0.55 28.10
N = 500 78.34 17.72 96.09 38.89 0.23 39.16
N = 750 202.97 43.34 246.52 59.61 0.52 60.14
N = 1000 432.44 66.79 499.68 77.63 0.83 78.48

In summary, when the sample size N and time series length T are sufficiently large,
IVFEQR requires substantially more computation time compared to MD-IVQR. Both esti-
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mators are more sensitive to the magnitude of N rather than T. Therefore, when dealing
with a large sample, particularly for large N, it is advisable to use the MD-IVQR estimator.

5. Application

In this section, we demonstrate the effectiveness of our new approach by applying
it to investigate the income elasticity of health expenditure. The substantial increase
in healthcare spending has presented a challenge for many countries, and the growing
proportion of healthcare expenditures as a share of GDP is an important economic trend.
We apply our approach to a panel of data from 166 countries spanning from 1995 to 2016:
the healthcare expenditure dataset.

The literature has extensively examined the strong and positive relationship between
GDP and health expenditures. Notable studies include Newhouse [33], Gerdtham and
Jönsson [34], Moran and Simon [35], Murphy and Robert [36], Farag et al. [37], Ace-
moglu et al. [38], and Tian et al. [39]. Farag et al. [37] employed fixed effects and in-
strumental variables models to investigate the income elasticity of health care spending
in developed and developing countries. They noted that endogeneity may arise due to
unobservable variables driving both health expenditures and income. Acemoglu et al. [38]
analyzed the income elasticity of health expenditure by using global oil prices as an instru-
ment for local area income. Their study used time-series variation in oil prices between
1970 and 1990, interacted with cross-sectional variation in oil reserves across different areas
of the Southern United States.

Like Acemoglu et al. [38], the panel data model can be established as

ln chit = α ln cgdpit + ηi + uit, (11)

where i = 1, · · · , 166 indicates different countries and regions, and t = 1, · · · , 22 indicates
different years, ηi denotes regional heterogeneity. Variable descriptions are summarized in
Table 7. One advantage of the above modeling is that it can control the unobserved country
factors. The result of Hausman test shows that the fixed effects model is preferred.

Table 7. Variable descriptions.

Variable Definition Data Sources

ln ch log of health expenditure per capita World Health Organization
ln cgdp log of GDP per capita Worldbank Indicators
ln pop log of total population Worldbank Indicators
ln oilprice log of oil price West Texas Intermediate series

indensity the total amount of oil reserves U.S. Energy Information Administrationin country or region

To address concerns of endogeneity, we propose using instrumental variables in
estimating our model, while Farag et al. [37] used the share of agriculture in the economy
and primary school net enrollment ratio as instruments for income, these may not be
appropriate. The primary school net enrollment ratio reflects higher national human
capital and income, but also higher education levels that may lead to increased medical
expenditure. Instead, following Acemoglu et al. [38], we consider using global oil prices
interacted with cross-sectional oil reserves as instruments. The use of oil shocks as an
instrument for GDP began with Bruckner et al. [40]. In this study, the instrument we
used is the least squares projection of ln cgdp on the instruments ln oilpricet−1 × indensityi
and ln pop, where the total amount of oil reserves, indensityi is calculated as estimated
remaining reserves plus total cumulative oil production as of 1995.

The estimation results are illustrated in Figure 2. The findings indicate that the
estimated income elasticity of medical expenditure at each quantile is greater than 1,
which is consistent with the results of previous studies by Newhouse [33], Gerdtham and
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Jönsson [34], and Murphy and Robert [36]. Furthermore, the income elasticity of medical
expenditures at medium quantiles is larger than those at low and high quantiles.
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Figure 2. The MD-IVQR estimators at different quantiles. (The shaded area in the figure represents
the 95% confidence interval).

To investigate the impact of oil-rich countries on our estimation results, we exclude
them from our analysis as oil price fluctuations may be influenced by their oil production.
According to the BP Statistical Review of World Energy 2017, OPEC’s proven oil reserves
in 2016 accounted for approximately 71.5% of the world’s total. Additionally, we divide the
166 countries in our dataset into two groups: OPEC and non-OPEC. As shown in Figure 3,
the estimated income elasticity of medical expenditure for non-OPEC countries is around
1.11–1.15, consistent with the findings presented in Figure 2. Furthermore, similar to our
previous results, the income elasticity of health expenditures for low and high quantiles
is lower than that for medium quantiles. For OPEC countries, the estimated income
elasticity of medical expenditures is mostly below 1. However, the estimates increase with
the quantile.
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Figure 3. The MD-IVQR estimators for OPEC and non OPEC at different quantiles. (The shaded area
in the figure represents the 95% confidence interval).

To account for different stages of economic development across countries, we divide
the 166 countries in our dataset into two groups: OECD and non-OECD, representing
developed and developing economies, respectively. As shown in Figure 4, the estimated
income elasticity of health expenditure for OECD countries is approximately 1.14–1.18,
whereas for non-OECD economies, it is around 1.04–1.08. Our findings suggest that OECD
countries have a relatively higher elasticity of health expenditure compared to non-OECD
countries, indicating that the income elasticity of medical expenditure may increase as
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a country’s economic development improves. This result is consistent with the findings
of Farag et al. [37], who found that healthcare spending is less responsive to changes
in income in low-income countries and more responsive to changes in middle and high-
income countries.
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Figure 4. The MD-IVQR estimators for OECD and non OECD at different quantiles. (The shaded
area in the figure represents the 95% confidence interval).

6. Conclusions

In this paper, we propose a minimum distance instrumental variable quantile regres-
sion (MD-IVQR) estimator for panel data with fixed effects, to address the biased parameter
estimation problem caused by endogenous variables and to simplify cumbersome compu-
tations due to large N and T. The MD-IVQR estimator is defined as a weighted average of
conventional individual instrumental variable quantile regression slope estimators, where
the weights are given by the inverses of the corresponding individual variance-covariance
matrices. This estimator is a modification of the MD-QR that can be constructed from a
series of conventional instrumental variable quantile regressions. The MD-IVQR estimator
combines the advantages of the MD-QR estimator and the IVQR estimator, making it
computationally convenient and simple to implement in many typical applications.

We give the asymptotic properties of the MD-IVQR estimator in large samples, con-
sidering both sequential and simultaneous limits. For the sequential limits asymptotics,
we first let T tend to infinity, and then N. However, for the simultaneous asymptotics, we
strengthen conditions and require T to tend to infinity faster than N2 log N. Monte Carlo
experiments show that the estimation results with the use of IV perform much better for
α. Furthermore, the computing time of the MD-IVQR is similar to that of IVFEQR when
N and T are not large (less than 150). However, when N and T are large enough, IVFEQR
consumes significantly more computing time than MD-IVQR.

Finally, we apply the proposed method to analyze the income elasticity of health ex-
penditure. Our results indicate that the estimated income elasticity of medical expenditure
at each quantile is greater than 1.
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Appendix A. Proofs

Appendix A.1. Consistency of θ̂MD−IVQR under Sequential Asymptotics

For convenience we collect important definitions below. Let ϑi = (η′i , β′, γ′)′, x∗it =
(1, x′it, ω′it)

′. Define

MiT(α, ϑi, τ) = 1
T

T
∑

t=1
ρτ(yit − d′itα− x∗

′
it ϑi), Mi(α, ϑi, τ) = EMiT(α, ϑi, τ),

ϑ̂i(α, τ) ≡ (η̂i(α, τ), β̂
′
i(α, τ), γ̂′i(α, τ))′ ≡ arg infMiT(α, ϑi, τ),

ϑi(α, τ) ≡ (ηi(α, τ), β′(α, τ), γ′(α, τ))′ ≡ arg inf Mi(α, ϑi, τ),
∆iT(α, ϑi, τ) = MiT(α, ϑi, τ)−MiT(α0, ϑi(α), τ),
WiT [α] := γ̂i(α, τ)′ Â(α)γ̂i(α, τ), W[α] := γ(α, τ)′A(α)γ(α, τ),
α̂(τ) ≡ arg inf

α∈A
WiT [α], α∗ ≡ arg inf

α∈A
W[α],

ϑ̂i(τ) = (η̂i(τ), β̂
′
i(τ), γ̂′i(τ))

′ ≡ ϑ̂i(α̂i(τ), τ),
ϑi(τ) = (ηi(τ), β′(τ), 0)′ ≡ ϑi(α(τ), τ).
The following Lemma shows the consistency of the IVQR estimator and its large

sample property.

Lemma A1. Let θ̃i = (α′, β′, ηi) = (α′, β̃
′
i)
′, and ̂̃θi = (α̂′, β̂

′
, η̂i)

′ = (α̂′, ̂̃β′i) is the instrumental
quantile regression estimator for each individual time-series data. Under conditions (A1)–(A7), for
each i, ̂̃θi

p→ θ̃i; and

√
T(̂̃θi − θ̃i)

d→ N(0, Ṽi), Ṽi = (K′i , L′i)
′Si(K′i , L′i),

where, for x̌i = [W ′i , x̃′i]
′ and εi = Yi − D′iα(τ) − x̃′i β̃i(τ), Si = τ(1 − τ)E[x̌i x̌′i],

Ki = (J′i,α Hi Ji,α)
−1 J′i,αHi, Hi = J̄′i,γ A[α(τ)] J̄i,γ, Li = J̄′

i,β̃i
Mi, Mi = I − Ji,αKi,

Ji,α = E[ fεi (0|x̃i, Wi, Di)x̌iD′i ], and [ J̄′
β̃i

, J̄′γ] is a partition of Ji,ψ := (E[ fεi (0|x̃i, Wi)x̌i x̌′i])
−1

such that J̄′
i,β̃i

is a dim(β̃i)× dim(β̃i, γ) matrix and J̄′i,γ is a dim(γ)× dim(β̃i, γ) matrix.

Proof of Lemma A1. Lemma A1 implies the Proposition 2 of Chernozhukov and Hansen [11].
We verify the conditions for each individual i. Conditions R1 and R2 of Chernozhukov
and Hansen [11] are implied by condition (A1) and condition (A2); condition R3 of Cher-
nozhukov and Hansen [11] is implied by condition (A7); conditions R4-R6 of Chernozhukov
and Hansen [11] are implied by conditions (A4)–(A6). Therefore, the lemma follows.

Proof of Theorem 1. As Lemma A1 turns out, ̂̃θi is consistent, ̂̃θi
p→ θ̃i. We can obtain that

θ̂i
p→ θ as T → ∞ for each i. Moreover, by condition (A10), V̂i

p→ Vi for each i, it follows
that for fixed N, as T → ∞

θ̂MD−IVQR = (
N

∑
i=1

V̂−1
i )−1

N

∑
i=1

V̂−1
i θ̂i

p→ (
N

∑
i=1

V−1
i )−1

N

∑
i=1

V−1
i θ = θ.

Thus, we can obtain that θ̂MD−IVQR
p→ θ as (T, N)seq → ∞.

Remark A1. As mentioned in Galvao and Wang [7], it is worth noting that condition (A10) is not
really necessary. The convergence of V̂i to any specific value is not crucial, as long as θ̂i remains
consistent as T approaches infinity. This is because the equality on the right-hand side would hold
under such circumstances.

Appendix A.2. Consistency of θ̂MD−IVQR under Joint Asymptotics

In order to establish Theorem 2, we first prove the following lemma.
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Lemma A2. Under conditions (A1)–(A7), max
1≤i≤N

||θ̂i(τ) − θ(τ)|| p→ 0 as (N, T) → ∞ and

log N
T → 0.

Proof of Lemma A2. Step 1 (Identification) Chernozhukov and Hansen [10,11] showed
that (α(τ), β̃i(τ)) uniquely solves the limit problem E[τ− 1I(Yi < αDi + Xiβ + ηi)x̌i(τ)] =
0 for each i and τ. That is to say, for each i and τ, α∗(τ) = α(τ) and β̃i(α

∗(τ), τ) = β̃i(τ).
Step 2 (Consistency) For each α, recall ϑi(α) ≡ arg inf Mi(α, ϑi) and fix any δ > 0.

Let Bi(δ) := {ϑ : ||ϑ − ϑi(α)||1 ≤ δ}, the ball with center ϑi(α) and radius δ, For each
ϑi /∈ Bi(δ), define ϑ̃i = riϑi + (1− ri)ϑi(α), where ri = δ

||ϑi−ϑi(α)||1
. So ϑ̃i ∈ ∂Bi(δ) :=

{ϑ : ||ϑ − ϑi(α)||1 = δ}, the boundary of Bi(δ). Due to the convex nature of the objective
function, we can deduce that

ri{MiT(α, ϑi)−MiT(α, ϑi(α))}
≥ MiT(α, ϑ̃i)−MiT(α, ϑi(α))

= E[∆iT(α, ϑ̃i)] + (∆iT(α, ϑ̃i)− E[∆iT(α, ϑ̃i)])

> εδ + (∆iT(α, ϑ̃i)− E[∆iT(α, ϑ̃i)]), (A1)

the last inequality is derived from the identity established by Knight [41], in conjunction
with Condition (A8). Thus, we obtain the inclusion relation

{ max
1≤i≤N

sup
α
||ϑ̂i(α)− ϑi(α)||1 > δ}

(a)
⊆{MiT(α, ϑi) ≤MiT(α, ϑi(α)), 1 ≤ ∃i ≤ N, ∃ϑis.t. sup

α
||ϑi − ϑi(α)|| > δ}

(b)
⊆

N⋃
i=1

{ sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑi)− E[∆iT(α, ϑi)]| ≥ εδ}.

The validity of Relation (a) is established by the definition of ϑ̂i(α) ≡ arg infMiT(α, ϑi).
Relation (b) holds according to the inequality on the rightmost side of line (A1). Hence, we
can conclude that

P{ max
1≤i≤N

sup
α
||ϑ̂i(α)− ϑi(α)||1 > δ}

≤ P{
N⋃

i=1

sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑi)− E[∆iT(α, ϑi)]| ≥ εδ}

≤
N

∑
i=1

P sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑi)− E[∆iT(α, ϑi)]| ≥ εδ}

≤ N max
1≤i≤N

P{ sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑi)− E[∆iT(α, ϑi)]| ≥ εδ}.

Hence, if we are able to demonstrate that

max
1≤i≤N

P{ sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑ)− E[∆i(α, ϑ)]| ≥ εδ} = o(1/N).

the proof of the lemma is completed. Without loss of generality, we may assume that
ϑi(α) = 0 for each α and i. Then, Bi(δ) is independent of i and write Bi(δ) = B(δ) for
simplicity. In addition, the function g(ϑ) := ρτ(u− x′ϑ)− ρτ(u) has the following property,
|g(ϑ1)− g(ϑ2)| ≤ CM||ϑ1 − ϑ2|| for some fixed C > 0 by the identity of Knight (1998). Let
κ := CM.
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Since the closed ball B(δ) is compact, there exist K balls with centers ϑ j, j = 1, · · · , K,
and radius ε

3κ such that the collection of them covers Bδ. Therefore, for any ϑ ∈ Bδ, there is
some j ∈ 1, · · · , K such that

|∆iT(α, ϑ)− E∆i(α, ϑ)| − |∆iT(α, ϑ j)− E∆i(α, ϑ j)|
≤ |∆iT(α, ϑ)− E∆i(α, ϑ)− ∆iT(α, ϑ j) + E∆i(α, ϑ j)|
≤ |∆iT(α, ϑ)− ∆iT(α, ϑ j)|+ |E∆i(α, ϑ)− E∆i(α, ϑ j)|

≤ CM
ε

3κ
+ CM

ε

3κ

≤ 2ε

3
.

It then follows that for any ε > 0, sup
ϑi−ϑi(α)||≤δ

|∆iT(α, ϑ)−E∆i(α, ϑ)| ≤ max
1≤i≤K

|∆iT(α, ϑj)−

E∆i(α, ϑ j)|+ 2ε
3 , and

P{ sup
||ϑi−ϑi(α)||≤δ

|∆iT(α, ϑ)− E∆i(α, ϑ)| > ε}

≤ P{ max
1≤i≤K

|∆iT(α, ϑ j)− E∆i(α, ϑ j)|+ 2ε

3
> ε}

= P{ max
1≤i≤K

|∆iT(α, ϑ j)− E∆i(α, ϑ j)| > ε

3
}

≤
K

∑
i=1

P{|∆iT(α, ϑ j)− E∆i(α, ϑ j)| > ε

3
}.

Since the data are independently and identically distributed (i.i.d.) within each indi-
vidual, it follows that the inequality on the rightmost side is less than or equal to

2K exp{− ε2T
18M2C2δ2 } = O(exp(−T)),

by Hoeffding’s inequality. Because log N
T → 0, it follows that O(exp(−T)) = o(1/N). Thus,

we have
P{ max

1≤i≤N
sup

α
||ϑ̂i(α)− ϑi(α)||1 > δ} = 0.

That is
max

1≤i≤N
sup

α
||ϑ̂i(α)− ϑi(α)||

p→ o(1)(∗)

i.e., max
1≤i≤N

sup
α
‖ γ̂i(α)− γ(α) ‖ p→ o(1), which implies max

1≤i≤N
sup

α
|WiT(α)−W(α)| p→ o(1)

where W(α) is continuous in α over A. It therefore follows by the consistency argument

for extremum estimators that max
1≤i≤N

α̂i
p→ α, which by (∗) implies that max

1≤i≤N
||η̂i − ηi||

p→ 0,

max
1≤i≤N

||β̂i − β|| p→ 0 and max
1≤i≤N

||γ̂i(α̂i) − 0|| p→ 0. Therefore, max
1≤i≤N

|| ˆ̃θi − θ̃i||
p→ 0 as

(N, T)→ ∞ and the lemma follows.

Having Lemma A2 at our disposal, we proceed to prove Theorem 2.
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Proof of Theorem 2. It follows that

θ̂MD−IVQR − θ = (
N

∑
i=1

V̂−1
i )−1

N

∑
i=1

V̂−1
i (θ̂i − θ)

= (
N

∑
i=1

V̂−1
i )−1

N

∑
i=1

V̂−1
i (op(1))

= op(1).

The last equality holds because max
1≤i≤N

‖ θ̂i − θi ‖= op(1) by Lemma A2.

Appendix A.3. Asymptotic Normality of θ̂MD−IVQR under Sequential Asymptotics

Proof of Theorem 3. As the Proposition 2 of Chernozhukov and Hansen [11], for each
individual i, √

T(̂̃θi − θ̃i)
d→ N(0, Ṽi), Ṽi = (K′i , L′i)

′Si(K′i , L′i).

Define Ξ1 = [Ik×k|0k×1], where k = dim(α) + dim(β) = dim(θ). We begin by fixing
N and allowing T to approach infinity. Consequently, it follows that

√
NT(θ̂MD−IVQR − θ) = (

1
N

N

∑
i=1

V̂−1
i )−1 1√

N

N

∑
i=1

V̂−1
i Ξ1

√
T(̂̃θi − θ̃i)

d→ (
1
N

N

∑
i=1

V−1
i )−1 1√

N

N

∑
i=1

V−1
i Ξ1N(0, Ṽi)

= (
1
N

N

∑
i=1

V−1
i )−1 1√

N

N

∑
i=1

N(0, V−1
i ).

The second line in the display above holds because
√

T(̂̃θi − θ̃i)
d→ N(0, Ṽi) and

V̂i
p→ Vi for each i as T → ∞ by Condition (A10) and Slutsky’s theorem. The third line

holds because Ξ1
√

T(̂̃θi − θ̃i) =
√

T(θ̂i − θ).

Now let N tend to infinity, and we obtain ( 1
N

N
∑

i=1
V−1

i )−1 p→ V. Moreover, by Lyapunov

Central Limit Theorem, it follows that

1√
N

N

∑
i=1

N(0, V−1
i )

d→ N(0, V−1).

Hence, by Slutsky Theorem, we obtain the desired result

√
NT(θ̂MD−IVQR − θ)

d→ N(0, V).

Appendix A.4. Asymptotic Normality of θ̂MD−IVQR under Joint Asymptotics

Let $i = (α′, β′, ηi, γ′)′, x̃∗ it = (d′it, x′it, 1, ω′it)
′, denote GiT($i) := 1

T

N
∑

i=1
ψτ(yit −

x̃∗′it$i)x̃∗ it, Gi($i) := E(GiT($i)), where ϕτ := τ − 1{u ≤ 0}. According to Lemma B.2 of
Chernozhukov and Hansen [10] , we know that for each i and for any sup

τ
||$̂i− $i|| = op(1),

it is the case that sup
τ
||[GiT($̂i)−GiT($i)]− [Gi($̂i)−Gi($i)]|| = op(1). Then the following

Lemma gives the order of max
1≤i≤N

[GiT($̂i)−GiT($i)]− [Gi($̂i)− Gi($i)].
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Lemma A3. If max
1≤i≤N

‖ $̂i − $i ‖= Op(δN), where lim
N→∞

δN = 0, then under then under

Conditions (A1)–(A9) and (A10’), we have max
1≤i≤N

[GiT($̂i)−GiT($i)]− [Gi($̂i)− Gi($i)] =

Op(dN), where dN =
logδN

T ∨
√

δN |logδN |
T .

Proof of Lemma A3. Without loss of generality, we assume that $i = 0 for all i. Let
g$(X∗it) = [1{uit ≤ 0} − 1{uit − x̃∗′it$ ≤ 0}]x̃∗′it, where X∗it = (uit, x̃∗′it). Then, we have

GiT($̂i)−GiT(0) =
1
T

T

∑
t=1

(τ − 1{yit − x̃∗′it$̂i ≤ 0})x̃∗′it −
1
T

T

∑
t=1

(τ − 1{yit ≤ 0})x̃∗′it

= − 1
T

T

∑
t=1

[1{uit − x̃∗′it$̂i ≤ 0} − 1{uit ≤ 0}]x̃∗′it

=
1
T

T

∑
t=1

g$̂(X∗it).

So, the claim to be proved becomes max
1≤i≤N

T
∑

t=1
[g$̂i

(X∗it)− E[g$̂(X∗it)|$=$̂i
] = Op(Tdn).

Let g̃iδN = {g$̂i
(X∗it)− E[g$̂(X∗i1)] :‖ $ ‖≤ δN}. Thus, we need to show that max

1≤i≤N
EZi =

Op(Tdn), where Zi :=‖
T
∑

t=1
g(X∗it) ‖g̃iδN

.

In order to use Proposition B.1. of Kato et al. [42], we verify the conditions for
g̃iδN of Proposition B.1. of Kato et al. [42]. First, it is pointwise measurable, and is
bounded by 8M. Since the g∞ := {g$ : $ ∈ Rp} class is a VC subgraph class and
g̃iδN ⊂ {g− E[g(X∗it)] : g ∈ g∞}. By Lemma 2.6.15 of van der Vaart and Wellner [43], there
exist constant A ≥ 3

√
r and v ≥ 1 independent of i and N, for every 0 < ε < 1 and

every probability measure Q, N(8Mε, g̃iδN , L2(Q)) ≤ ( A
ε )

v holds. Moreover, Eg$(X∗it)
2 =

E[|Fi(x̃∗
′
it$i|x̃∗ it) − Fi(0|x̃∗ it)|x̃∗

2
it] is bounded by 8Cu M3δN . That is to say, g̃iδN satisfies

all the conditions of Proposition B.1. of Kato et al. [42] with U = 8M + 8CuTM3δN and
σ2 = 8Cu M3δN . So, we have max

1≤i≤N
EZi = Op(TdN).

Lemma A4. Under condition of Lemma A3, we have max
1≤i≤N

‖ $̂i − $i ‖= Op(
√

log N
T ).

Proof of Lemma A4. Gi($̂i) around $i and by Lemma 2.12 of van der Vaart [44], we have

Gi($̂i) = Gi($i) +
∂Gi($i)

∂$i
($̂i − $i) + Op(($̂i − $i)

2).

Notice that γ̃i =
∂Gi($i)

∂$i
, it then follows that

$̂i − $i = γ̃−1
i

(
Gi($̂i)− Gi($i) + Op(($̂i − $i)

2)
)

= γ̃−1
i

(
−GiT($̂i)− (Gi($̂i)− Gi($i))− (GiT($̂i)−GiT($i)) +GiT($̂i) + Op(($̂i − $i)

2)
)

= −γ̃−1
i GiT($̂i)− γ̃−1

i [(GiT($̂i)−GiT($i))− (Gi($̂i)− Gi($i))] + γ̃−1
i GiT($̂i)

+ γ̃−1
i Op(($̂i − $i)

2).

Because of the computational property of instrument variable quantile regression
estimators, GiT($̂i) = Op(

1
T ) for each i, therefore by Lemma 3 of Galvao and Wang [7],

max
1≤i≤N

‖ $̂i − $i ‖ is bounded by

const.× [ max
1≤i≤N

‖ GiT($̂i) ‖ + max
1≤i≤N

‖ (GiT($̂i)−GiT($i))− (Gi($̂i)−Gi($i)) ‖] +Op(
1
T
)
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with probability approaching one.
We first show that max

1≤i≤N
‖ GiT($̂i) ‖ is bounded. First, For any fixed K > 0,

P{ max
1≤i≤N

||Gi($i)|| >
√

log N
T

K} ≤
N

∑
i=1

P{||Gi($i)|| >
√

log N
T

K} ≤ 2N1− K2

8M2

by Hoeffding’s inequality. Hence we obtain max
1≤i≤N

‖ GiT($̂i) ‖= Op(
√

log N
T ).

Then, we show that

max
1≤i≤N

‖ (GiT($̂i)−GiT($i))− (Gi($̂i)− Gi($i)) ‖= op(

√
log N

T
).

Like Lemma A3, without loss of generality, we set $i = 0 for1 ≤ i ≤ N. Thus, it is
sufficient to present that

max
1≤i≤N

‖ 1
T

T

∑
t=1

[g$̂i
(X∗it)− E[g$̂(X∗it)|$=$̂i

] ‖= op(

√
log N

T
).

The above claim is equivalent to that for any ε > 0,

P( max
1≤i≤N

‖ 1
T

T

∑
t=1

g$̂i
(X∗it)− E[g$̂(X∗it)|$=$̂i

] ‖> ε

√
log N

T
) = o(1).

So, it is worthwhile to prove that

max
1≤i≤N

P(‖ 1
T

T

∑
t=1

g$̂i
(X∗it)− E[g$̂(X∗it)|$=$̂i

] ‖> ε

√
log N

T
) = o(

1
N
). (])

Using Proposition B.2. of Kato et al. [42], by setting s =
√

2 log N, we obtain

P{Zi ≥ EZi +
√

4 log N{8TCu M3δN + (16M + 16TCu M3δN)EZi}+
2 log N

3

(8M + 8TCu M3δN)} ≤
1

N2 ,

where Zi := ||
T
∑

t=1
g(X∗it)||g̃iδN

. Therefore,

P{Zi ≥ max
1≤i≤N

EZi +
√

4 log N{8TCu M3δN + (16M + 16TCu M3δN) max
1≤i≤N

EZi}

+
(16M + 16TCu M3δN) log N

3
} ≤ 1

N2 ,

It is worth noting that Lemma A3 demonstrates that max
1≤i≤N

EZi ≤ const.× (log δN +√
TδN | log δN |), thus for fixed ε > 0, we can find δN sufficiently small and n0 such that

when N ≥ n0, max
1≤i≤N

EZi +
√

4 log N{8TCu M3δN + (16M + 16TCu M3δN) max
1≤i≤N

EZi} +

2 log N
3 (8M + 8TCu M3δN) ≤ ε

√
T log N holds. That is, for any ε > 0, there is a suffi-

ciently small δ > 0 such that

P(||
T

∑
t=1

g(X∗it)||g̃iδN
> ε

√
T log N) = o(

1
N
).
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Given that the IVQR estimators exhibit uniform consistency, we can obtain (]). There-

fore we have max
1≤i≤N

‖ $̂i − $i ‖= Op(
√

log N
T ).

Remark A2. By Lemmas A3 and A4 we have proved, we have that

dN =
(log N)1/4

√
| log δN |

T3/4
.

Proof of Theorem 4. Let Ξ := [Ik×k|0k×(q+1)], where k = dim(α) + dim(β) = dim(θ) and
q = dim(γ), and consider the following

√
NT(θMD−IVQR − θ)

= (
1
N

N

∑
i=1

V̂−1
i )−1(

√
N

N

N

∑
i=1

V̂−1
i Ξ
√

T($̂i − $i))

=

(
(

1
N

N

∑
i=1

V̂−1
i )−1 + Op(T−1/2h−1/2

N )

)(√
N

N

N

∑
i=1

V−1
i Ξ
√

N($i − $i) + Op(N−1/2T−1/2h−1/2
N )

)

=

(
1
N

N

∑
i=1

V−1
i )−1

√
N

N

N

∑
i=1

V−1
i Ξ
√

N($̂i − $i) + Op(N−1/2T−1/2h−1/2
N )

)
.

By Lemma A4, we have for each i,

θ̂i − θ = −Ξγ̃−1
i GiT($i) + Op(dN) + Op(

1
T
) + Ξγ̃−1

i Op(($̂i − $)2)

= −Ξγ̃−1
i GiT(θi) + Op(dN).

Therefore, it follows that
√

N
N

N

∑
i=1

V−1
i Ξ
√

T($̂i − $) = −
√

N
N

N

∑
i=1

V−1
i Ξ
√

Tγ̃−1
i GiT($i) + Op(

√
NTdN).

The second term is op(1) according to the assumption regarding the relative rates of N
and T in the theorem. As for the first term, applying the Lyapunov central limit theorem

implies that it converges in distribution to N(0, lim
N→∞

1
N

N
∑

i=1
V−1

i ). Consequently, by utilizing

Slutsky’s theorem and condition (A10’),

√
NT(θ̂MD−IVQR − θ)

d→ N(0, V).

as (N, T)→ ∞ and
√

NTdN → 0.
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