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Abstract: In Electronic Toll Collection (ETC) systems, accurate gantry topology data are crucial for
fair and efficient toll collection. Currently, inaccuracies in the topology data can cause tolls to be
based on the shortest route rather than the actual distance travelled, contradicting the ETC system’s
purpose. To address this, we adopt a novel Gradient Boosting Decision Tree (GBDT) algorithm,
Light Gradient Boosting Machine (LightGBM), to dynamically update ETC gantry topology data
on highways. We use ETC gantry and toll booth transaction data from a province in southeast
China, where ETC usage is high at 72.8%. From this data, we generate a candidate topology set
and extract five key characteristics. We then use Amap API and QGIS map analysis to annotate
the candidate set, and, finally, apply LightGBM to train on these features, generating the dynamic
topology. Our comparison of LightGBM with 14 other machine learning algorithms showed that
LightGBM outperformed the others, achieving an impressive accuracy of 97.6%. This methodology
can help transportation departments maintain accurate and up-to-date toll systems, reducing errors
and improving efficiency.

Keywords: highway; ETC gantry; topology dynamic generation; LightGBM
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1. Introduction

Highways play a pivotal role in the modern transportation system, offering convenient
transit services that fuel economic growth across various countries and regions. With soci-
etal advancement and technological evolution, toll collection methods on these highways
are continually being modernized. Among these is the Electronic Toll Collection (ETC) sys-
tem, which is renowned for its efficiency and which has been increasingly adopted across
nations and regions. However, during practical implementation, the ETC system still faces
numerous challenges, such as toll-related issues stemming from inaccurate topological data.
This research aims to address this issue, proposing a method for the dynamic updating of
the topological data of highway ETC gantries.

Serving as a pivotal piece of infrastructure within the realm of transportation, the
highway gantry system gleans data via the On-Board Unit (OBU) and Roadside Unit (RSU)
devices. The OBU, an electronic device mounted on vehicles, functions to communicate
with the highway toll collection system. In contrast, the RSU, situated at highway toll booths
or gantries, interacts with the OBU, facilitating automatic toll collection. The objective
behind the installation of gantries is to compute the actual mileage traversed by vehicles.
The gantry system operates by scanning the OBU mounted on vehicles, logging the vehicle’s
travel distance and time. By calculating the length of each gantry topological path that the
vehicle traverses on the highway and the per-kilometer travel cost, the system determines
the appropriate toll. According to the requirements of the “Implementation Plan for the
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Full Promotion of Differentiated Toll Collection on Highways”, China is actively promoting
the reform of differentiated toll collection on highways to further improve the efficiency
and service level of the highway network, reduce the cost of highway travel, and promote
cost reduction and efficiency improvement in the logistics industry. To this end, China
is implementing a series of strategies, including thoroughly summarizing the experience
of differentiated toll collection pilot projects on highways, fully considering factors such
as the structure and operating characteristics of local road networks, choosing suitable
differentiated toll collection methods, innovating service models, and scientifically and
accurately formulating differentiated toll collection schemes [1]. In addition, differentiated
toll collection is being implemented by road section, mainly implementing flexible and
diverse differentiated tolls on road sections where ordinary national and provincial trunk
roads or urban roads are severely congested but parallel highways have small traffic flow,
road sections where the traffic volume differs greatly between parallel highways, and road
sections where the traffic volume is significantly lower than the design capacity. Although
there have been some studies on the toll collection of highways, there are few studies on
how to support these differentiated toll collection strategies better through efficient and
accurate dynamic updates of topological data. In the domain of ETC gantry topology
generation research, Cai and Yi et al. [2] introduced a pioneering approach known as
the “Arch-Bridge topology.” This method entails the generation of an initial topology
candidate set through the analysis of discrete ETC data, followed by the identification and
examination of abnormal topology features. Subsequently, the Dijkstra algorithm is applied
to optimize the topology, resulting in a comprehensive ETC gantry topology.

A noteworthy limitation of their approach lies in their static nature, as they lack the
capability for dynamic updates. Unlike our proposed methodology, which enables the real-
time adjustment and refinement of gantry topology based on dynamically changing road
network conditions, the Arch-Bridge topology is confined to performing solely static up-
dates without considering real-time traffic variations. However, the topological information
of highway ETC gantries is far from static. For instance, the addition or decommissioning
of roads may lead to permanent changes in gantry topology, while road maintenance or
unexpected events may cause temporary changes. This can result in inaccuracies in the
topological data within some vehicle transaction data, thus making it impossible to calcu-
late tolls based on the distance traveled. Instead, tolls are charged based on the shortest
distance. This method of toll collection can lead to many problems. Firstly, it could result
in financial losses, as drivers might be required to pay for distances that are longer or
shorter than the actual distance traveled. Charging more is unfair to commercial vehicles
that frequently use highways, and charging less can also lead to financial losses for ETC
administrators. This method of toll collection deviates from the original intention of the
ETC system, which is to provide drivers with more convenient, faster, and more accurate
toll services. Secondly, the research on ETC gantry topology can provide richer application
scenarios for intelligent transport systems. For example, based on the topological infor-
mation of the ETC gantry, more refined applications, such as traffic condition prediction,
congestion detection, and route planning, can be developed to provide drivers with more
convenient travel services. At the same time, it can also provide optimization solutions
for the fields of public transportation and logistics, reduce operational costs, and improve
transportation efficiency.

To address the current issues in the dynamic update of highway ETC gantry topol-
ogy, and to enhance the quality and efficiency of intelligent highway services, this paper
proposes a method for dynamically generating highway ETC gantry topology based on
LightGBM. Specifically, the method first generates a candidate set of gantry topology using
the highway ETC transaction data of a province in China with a high ETC usage rate of
72.8% [3], extracts the candidate topology, and filters out incorrect topology. Then, five
feature dimensions are extracted from each topology, including Topology Traffic Volume
(TTV), Topological Passage Rate (TPR), Normalized Start Rate (NSR), Normalized End Rate
(NER), and Topology Distance (TD). Next, by combining the Amap API [4] and QGIS [5]
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map analysis, the candidate topology set is marked, with real existing topology marked as
1 and non-existing topology marked as 0. In this case, the dynamic generation of gantry
topology can be transformed into a typical binary classification problem in machine learn-
ing. This study uses supervised learning algorithms (such as SVM, Naive Bayes, Logistic
Regression, etc.), tree model algorithms (such as LightGBM, RF, XGBoost, etc.), and ensem-
ble learning algorithms (such as AdaBoost, Bagging, etc.) for the dynamic generation of
gantry topology.

Our research makes the following key contributions:

• Introduction of an innovative methodology for dynamic updating of highway gantry
topology based on ETC transaction data.

• Rectification of prevalent inaccuracies in topology data within vehicle transaction
records, leading to more accurate fee computation for actual traversed distances.

• Utilization of the LightGBM model to facilitate dynamic updating of the gantry topol-
ogy with an impressive accuracy rate of 97.6%.

• Universally applicable methodology and framework for dynamically updating high-
way ETC gantry topology, demonstrating extensive applicability and scalability.

The remainder of this paper is structured as follows. An exhaustive literature review
graces Section 2. In Section 3, we expound upon the methodologies pertaining to data
preprocessing and extraction of candidate topology sets, as well as dynamic generation
techniques for gantry topology. Experiments along with a comprehensive analysis of
the results form the substance of Section 4. Lastly, a cogent summary encapsulating the
novelties and constraints of our research, along with a glance into future possibilities,
concludes our discourse.

2. Literature Review

Within our research domain, which involves the dynamic generation of ETC gantry
topology, there is currently a lack of directly related work due to the innovative and unique
nature of this issue. As a result, we often draw upon methods and theories from other
disciplines to inspire new perspectives and identify novel solutions. In this context, we have
consulted related literature from fields such as “remote sensing image recognition methods”
and “spatio-temporal trajectory data mining.” Both of these areas have extensive research
experience and significant achievements in dealing with large-scale, complex, and dynamic
data. Their methodologies provide us with insightful perspectives. The inspiration drawn
from their methods guides our direction and shapes our solutions, thereby enriching the
results of our research.

2.1. Remote Sensing Image Recognition Method

Road network generation methods from remote sensing imagery can be broadly
categorized as: (1) image-segmentation-based, (2) feature-extraction-based, and (3) methods
reliant on machine learning and deep learning approaches.

Image segmentation involves dissecting remote sensing images into various regions,
each comprising pixels with similar characteristics, such as color, intensity, or texture. After
segmentation, the recognized road regions can be interconnected to formulate the road net-
work. The Snake model, as proposed by Kass et al. [6], signifies a pivotal milestone. In their
model, an energy function was defined on the image contour sketched by the user, then ad-
justed iteratively to converge the image contour at the minimum energy. Despite requiring
human intervention, this method effectively addresses noise and large gaps in road images.
This approach was further adopted in remote sensing imagery by Péteri and Ranchin [7]
and Laptev et al. [8] with their multi-resolution Snake models for road extraction. Subse-
quent research, like the work of Gruen and Li [9], amalgamated a semi-automatic road
extraction strategy utilizing wavelet decomposition for road sharpening alongside a model-
driven linear feature extraction method based on dynamic programming. These methods
could tackle more intricate road networks. While requiring human intervention, these
methods successfully dealt with noise and large gaps in road images.
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Regarding feature-extraction-based road recognition, these techniques identify road
regions and generate the road network by extracting features like texture, edges, and
color information from remote sensing images. For instance, Mokhtarzadeh and Zoej [10]
employed artificial neural networks for the detection of roads within high-resolution
satellite images, verifying the impact of disparate input parameters on the network’s
capability, thereby determining the superior network architecture. Moreover, Yager and
Sowmya [11] were the trailblazers in utilizing support vector machines(SVM) to extract
roads from remote sensing imagery based on road edges. While this technique boasts
commendable integrity, its accuracy remains relatively inferior. The methods of feature
extraction are incredibly sensitive to image quality and feature selection, with inappropriate
features potentially resulting in imprecise identification. Although this methodology can
utilize the abundant feature information within remote sensing imagery, it may encounter
difficulties with low-resolution or subpar quality images.

In recent years, methods anchored in machine learning and deep learning have gar-
nered attention. These methodologies train models to recognize and extract road regions,
creating the road network using machine learning and deep learning algorithms. Deep
learning has shown marked effectiveness in handling complex tasks, especially in remote
sensing image processing. Mnih and Hinton [12] were the pioneers in applying deep
learning techniques to extract road information from high-resolution aerial photographs.
He et al. [13] blazed a new trail for training deep neural networks to tackle the vanishing
gradient problem, proposing a deep residual learning framework and integrating iden-
tity mapping to streamline the training process. In addition, Saito et al. [14] successfully
recognized roads and buildings in raw remote sensing imagery in an innovative manner,
achieving commendable results on a road dataset from Massachusetts. The fruitful ap-
plication of Fully Convolutional Networks (FCN) [15] in the semantic segmentation of
high-resolution remote sensing imagery [16] is also noteworthy. Deep learning has also
played an indispensable role in a myriad of complex remote sensing image tasks, such
as automatic object detection [17], semantic labeling of satellite imagery [18], and image
classification [19]. U-Net has also shown significant progress in road extraction studies.
Inspired by U-Net’s successful application in medical image processing, the U-Net model
designed by Keramitsoglou et al. [20] has substantially enhanced the handling of complex
road networks for road extraction tasks. However, these methodologies still demand a high
quality and quantity of training data and computational resources, posing a challenge that
has yet to be resolved.

2.2. Spatio-Temporal Trajectory Data Mining

In recent years, with the growing prevalence of vehicle GPS data, numerous re-
searchers have begun to exploit these real-time and precise data to generate maps and
road network models. The primary methodologies include: (1) Cluster-Based Approach,
(2) Kernel Density Estimation (KDE), and (3) Intersection Linking.

The technique of cluster analysis, which includes clustering algorithms like K-means,
is utilized in interpreting GPS sample points, consequently extracting basic points and
edges of the road map. These elements are then assembled to create a road network.
Initial explorations by Wagstaff and his colleagues [21] demonstrated the potential of this
technique for identifying lanes from low-precision GPS data. They later designed a spatial
clustering algorithm that independently inferred the map’s connectivity structure sans
initial inputs, thereby augmenting the process of lane division and merging [22]. In a mining
environment devoid of clear road boundaries or lane markings, Worrall S and Nebot E [23]
successfully adapted clustering algorithms, illustrating the method’s wide-ranging utility
and resilience. DBSCAN-centric point clustering techniques have also demonstrated their
significance in map matching studies [24]. Edelkamp and Schrodl [25] took the pioneering
step of employing K-means clustering on the position of trajectory samples. Each cluster’s
center was considered a road node, and the subsequent connection of these nodes resulted
in a comprehensive road network. Chen C and his team [26] introduced “Traj-Meanshift”,
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a noise reduction algorithm and a graph-oriented road segment clustering algorithm
specifically for de-noising GPS data points to attain precise information processing. They
further proposed a new graph-based road segment clustering algorithm that capitalized on
prior knowledge of road smoothness to boost the precision and effectiveness of clustering.
Huang J and his group [27] employed an ASCDT-based spatial clustering technique and
assimilated spatial semantic data to construct roads and their topological relationships.
Cluster analysis techniques are adept at handling vast quantities of GPS data without the
need for intricate preprocessing. However, the outcome’s quality is contingent upon the
density and quality of the GPS data. Sparse or sub-standard data might compromise the
accuracy of the generated road network.

Kernel Density Estimation (KDE) [28], a principal technique frequently enlisted for
spatial data scrutiny and visualization, fundamentally aims at decoding and prognosticat-
ing potential event paradigms. In contemporary research, KDE has been synergistically
harnessed in the realm of road network generation. Initially, KDE transmutes individual
instances or trajectories into a discretized graphic representation, reflecting the density of
samples or segments per pixel entity. It implements binary thresholds to actualize road
binary illustrations within certain regions, thereby discovering central arterial lines of roads
through an array of methodologies such as Voronoi segmentation. Researchers such as
Fu Z and his colleagues [29] have successfully constructed an efficacious road network,
circumventing the necessity for auxiliary parameter amendments, by employing kernel
density analysis, Hidden Markov Models, and map matching techniques. Uduwaragoda E
and his team [30] utilized non-parametric Kernel Density Estimation (KDE) to scrutinize
the probability density distribution of trajectory nodes, subsequently generating geospatial
representations containing lane centerlines. Similarly, Kuntzsch C and others [31] inte-
grated heuristic methodologies with generative modeling, employing KDE to reconstruct
an optimized rendition of road maps. Neuhold R and collaborators [32] utilized KDE to
process low-precision GPS data, thereby accurately identifying lane centerlines for various
road categorizations. KDE, by estimating the location and morphology of roads based
on GPS data density, demonstrates an inherent adaptability to a broad spectrum of road
types and structures. Furthermore, the KDE methodology is not contingent on a specific
clustering algorithm, thus affording substantial flexibility during the processing of GPS
data. Nonetheless, the KDE approach necessitates the selection of appropriate kernel
functions and bandwidth parameters, which could require profound technical knowledge.
Moreover, if the GPS data exhibit a heterogenous distribution, the precision of the KDE
output may be compromised.

The Intersection Connection approach begins by identifying vertices at road inter-
sections, subsequently establishing connections between these vertices and edges based
on trajectory characteristics to detect road junctions. By interpolating the geometric con-
figurations of trajectories, intersections are interconnected, thus creating and updating
road networks. Huang Y and his team [33] deployed a priori knowledge regarding in-
tersection typologies and turn restrictions for the detection of road segments. Deng and
colleagues [34] proposed a clustering methodology predicated on hotspot analysis and
Delaunay triangulation aimed at spatial coverage detection of road intersections. The
accuracy of intersection detection was enhanced by the generation of structural models
via K-segmentfit and common subsequence amalgamation. Wu J and others [35] proposed
an intersection recognition mechanism founded on an augmented X-means algorithm,
successfully implemented for the identification of road network intersections in Shenyang,
Liaoning Province, China. Xie X and colleagues [36] introduced a novel intersection defini-
tion, delineating intersections as loci connecting three or more different directional road
segments, and employed the Longest Common Subsequence (LCSS) for intersection detec-
tion under this definition. They managed to effectively identify intersections by discerning
common sub-trajectories of multiple GPS trajectories. Fathi and Krumm [37] were among
the pioneers who utilized Intersection Connection techniques for cartographic construction,
revolutionizing the field with their groundbreaking research and attracting further scholarly
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attention and investigation. In subsequent research, they incorporated image processing
techniques [35], performing skeletonization on binary trajectory matrices and conducting
local “sub-path” detection. Finally, they employed Kernel Density Estimation (KDE) for
the identification of road intersections, thereby offering a novel toolkit for intersection
recognition and analysis. Karagiorgou and Pfoser [38] devised a heuristic algorithm capable
of “bundling” trajectories in the vicinity of intersection nodes, thereby connecting these
trajectories. Pu M and others [39] proposed a novel bi-stage road intersection detection
framework dubbed RIDF composed of trajectory quality enhancement and intersection
extraction. Zhao L and his team [40] pioneered calibration of road intersection impact area
topology by introducing a tri-stage calibration framework, denoted as CITT. Qing R and
colleagues [41] proposed a GPS trajectory-based road intersection detection methodology
that leverages temporal–spatial feature extraction and their interactions to amplify the
accuracy of intersection detection. Liu Y and his team [42] utilized the (xDeepFM) model to
extract geometric and spatial features from GPS data, and integrated density-based spatial
clustering of applications with noise (DBSCAN) and Delaunay triangulation for cluster
and intersection radius computations, thereby enhancing the accuracy of road intersection
recognition. The intersection connection method is adept at handling extensive GPS data
and adapts well to dynamically changing road network environments. However, its re-
liance on intersection detection could be problematic if the GPS data quality is poor or if the
data are sparse. Furthermore, for rural or mountainous roads with no distinct intersections,
the intersection connection method might struggle to generate accurate road networks.

In a recent research endeavor, Cai and Yi et al. [2] presented a groundbreaking topol-
ogy called the Arch-Bridge topology. This innovative construct offers a paradigm shift in
the definition of highway network structures. It creates an initial topology candidate set
via processing discrete ETC data, meticulously mines and analyzes anomalous topological
features, and optimizes them utilizing Dijkstra’s algorithm. The experimental results show
superior performance in terms of recall, precision, F1 score, and the efficiency of topology
generation. This seminal work has profoundly impacted our research, upon which we have
further developed. Although this investigation has significantly contributed to topology
generation, it exclusively accommodates updates in response to permanent topological
changes and does not facilitate dynamic topology generation. Consequently, a comprehen-
sive analysis and synthesis of various road network generation methodologies indicate that
extant approaches either overemphasize static road network structure analysis, thus strug-
gling to accurately track dynamic topological changes, or rely heavily on voluminous data
and computational resources, limiting their practicality. Therefore, there is an exigent need
for an innovative methodology that leverages a stable data source and efficiently captures
real-time dynamic changes in the road network topology. To address these limitations, the
paper at hand proposes a new method that employs real-time ETC data and the LightGBM
algorithm to construct a dynamic generation model for ETC gantry topology, effectively
mitigating the main limitations of the existing methodologies.

Our method generates and dynamically updates highway gantry topology informa-
tion, providing accurate segment information to mitigate the economic losses of highway
managers and ETC operators. This approach can offer the intelligent transportation domain
a simplistic yet efficacious tool to compensate for the deficiencies of existing methods and
enhance traffic management efficiency as well as the precision of segmented toll collection.

3. Methodology
3.1. Data Introduction and Relevant Explanation

The experimental dataset utilized in this study originates from the transaction records
of an ETC system on a highway in a certain province of China from 1 to 5 June 2021. This
includes transaction data from ETC gantries, entry toll booths, and exit toll booths, all
of which are collectively referred to as ETC Transaction Data. Approximately 31 million
transaction records were collected, involving around 1.33 million vehicles. These vehicles
include four types of passenger vehicles, six types of freight vehicles, and six types of
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specialized operation vehicles. The classification of these vehicles is based on their purpose,
structure, size, and passenger or freight capacity, following the Chinese transportation
industry standard JT/T 489-2019, “Vehicle Classification of Toll for Highway” [43]. The four
categories of passenger vehicles are classified according to their approved seating capacity:
Category 1 (up to 9 seats), Category 2 (10–19 seats), Category 3 (20–39 seats), and Category 4
(40 seats and above). The six categories of freight vehicles are classified according to the total
number of axles, length, and maximum permitted total mass, specifically including vehicles
with 2, 3, 4, 5, 6, and more than 6 axles (for oversized transport vehicles). The six categories
of specialized operation vehicles are similarly classified according to the total number of
axles, length, and maximum permitted total mass. The first five categories follow the same
classification method as freight vehicles, while the sixth category includes vehicles with
no less than six axles. The ETC gantry transaction data (GData) encompasses anonymized
vehicular identifiers, transactional timestamps, error codes related to transactions, and
journey identifiers, supplemented by data pertaining to the gantry’s identification number,
name, type, and geographic coordinates (as shown in Table 1). The ETC entry toll booth
data (EnData) includes anonymized vehicle identification, the identification number, names,
types, and geographic coordinates of the entry toll booths, as well as the transactional
timestamps, journey identifiers, and transaction error codes (as shown in Table 2). Similarly,
the ETC exit toll booth data (ExData) includes anonymized vehicle identification, the
identification number, names, types, and geographic coordinates of the exit toll booths,
as well as the transactional timestamps, journey identifiers, and transaction error codes
(as shown in Table 3). Through in-depth analysis and mining of these data, we can better
understand the characteristics of the highway gantry topology and provide robust support
for dynamically updating the gantry topology.

Table 1. Description of partial fields in ETC gantry transaction data.

Index Field Name Field Properties Example

1 GantryID gantry id number 340E11
2 GantryName gantry name Jinhai to Nanzhou
3 GantryType gantry type 2

4 GantryCor gantry geographic
coordinates (119.308, 25.888)

5 OBUid vehicular identifiers 1452687261
6 PassID journey identifiers 0142***561

7 TradeTime transactional
timestamps 2021/6/1 12:00:00

8 ErrorCode transaction error
codes 1

This table shows the descriptions of some ETC transaction data fields. PassID serves as a unique identifier used
to precisely locate each journey; the ErrorCode field is used to record the status of each transaction, where 0
represents a normal transaction, and 1 signifies an abnormal transaction. In addition, OBUid is used to uniquely
identify the OBU device number of a vehicle.

Table 2. Description of partial fields in ETC entrance toll booth data.

Index Field Name Field Properties Example

1 EnBoothID entrance booth id number 2100
2 EnBoothName entrance booth name Jinhai toll booth
3 EnBoothType entrance booth type 0

4 EnBoothCor entrance booth geographic
coordinates (118.318, 26.778)

5 OBUid vehicular identifiers 1452687261
6 PassID journey identifiers 0142***561
7 TradeTime transactional timestamps 2021/6/1 12:00:00
8 ErrorCode transaction error codes 1
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Table 3. Description of partial fields in ETC exit toll booth data.

Index Field Name Field Properties Example

1 ExBoothID exit booth id number 2100
2 ExBoothName exit booth name Jinhai toll booth
3 ExBoothType exit booth type 1

4 ExBoothCor exit booth geographic
coordinates (118.316, 26.767)

5 OBUid vehicular identifiers 1452687261
6 PassID journey identifiers 0142***561
7 TradeTime transactional timestamps 2021/6/1 12:00:00
8 ErrorCode transaction error codes 1

In our analysis of ETC transaction data, we identified numerous fields with analogous
attributes, such as identifiers, names, and types, across three datasets. Concurrently, these
datasets share common fields, including transaction timestamps, geographic coordinates,
PassID, and transaction error codes. These similarities aid in our comprehension and
exploration of the relationships among these data, thereby facilitating the integration of
data from ETC gantries and toll stations.

3.2. Preprocessing of ETC Transaction Data
3.2.1. Data Cleaning and Data Fusion

Data preprocessing is a vital step in data mining and analysis, capable of eliminating
invalid data, reducing noise interference, and enhancing the accuracy and efficiency of data
analysis. This section introduces how to preprocess ETC transaction data, including the
filtering of error codes and transaction IDs, providing critical data support for subsequent
updates to gantry topology.

Anomaly Removal: In the realm of ETC transactional data, anomalies may emerge that
are attributable to equipment malfunctions or a plethora of diverse factors. Detrimental
meteorological phenomena, impairment of hardware integrity, software dysfunctions,
electromagnetic disruptions, network inconsistencies, and thermal overloads constitute
potential confounding variables that could jeopardize the operational efficacy of RSUs and
OBUs. Such circumstances may instigate instances within the ETC transactional dataset
that significantly stray from the anticipated or normative patterns. For these divergent
instances, the Errorcode field is designated as 1 during the data upload phase. To uphold
the precision and authenticity of the ensuing data analysis, data entries where the Errorcode
field is denoted as 1 are meticulously and preemptively excised from the dataset.

Related Data Filtering: The highway transaction data includes two types of transaction
data, ETC and MTC (Manual Toll Collection). To concentrate on the transaction data of
ETC gantries and toll booths, we need to filter out data unrelated to ETC. In this study,
data starting with 01 in PassID were retained because a PassID beginning with 01 indicates
that the data are ETC transaction data. Such filtering ensures that we focus only on data
relevant to the research objectives, improving the specificity of the analysis.

After data cleaning, we used the SQL UNION ALL statement to merge the GData,
EnData, and ExData into a single result set containing all data. Next, the merged data were
sorted by PassID and TradeTime. Finally, the sorted result set was grouped by PassID.
Through this integration, we obtained an ETC transaction data fusion data (EFusionData)
containing ETC gantry data, ETC entry toll booth data, and ETC exit toll booth data.

In the ETC fused transaction data (EFusionData), we standardized the names of fields
with similar attributes. Herein, we collectively referred to gantries and toll stations as ETC
nodes (EtcNode). Based on this concept, the following fields were extracted: node ID, node
name, node type, node geographic coordinates, transaction time, vehicle identification, and
journey identifier. Importantly, since we removed data with a transaction error code of 1,
only data with a transaction error code of 0 remained in the fusion table, so we discarded
the transaction error code field in the data fusion table. Additionally, we need to explain
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the node type. There are four types of nodes, namely, entry toll booths, exit toll booths,
intraprovincial gantries, entry provincial boundary gantries, and exit provincial boundary
gantries, represented by numbers 0, 1, 2, 3, and 4, respectively. Table 4 shows the fields
of the ETC transaction data fusion table, as well as their descriptions and examples. The
detailed process of data cleaning and fusion is depicted in Algorithm 1.

Table 4. Description of fields in ETC transaction fusion data.

Index Field Name Field Properties Example

1 NodeID node id number 34E102
2 NodeName node name Jinhai toll booth
3 NodeType node type 1
4 NodeCor node geographic coordinates (118.456, 26.657)
5 TradeTime transactional timestamps 2021/6/1 12:00:00
6 OBUid vehicular identifiers 1452687261
7 PassID journey identifiers 0142***561

Algorithm 1 ETC Data Cleaning and Fusion

Input: GData, EnData, ExData
Output: EFusionData
1: GData = GData[GData[‘Errorcode’] != 1] # Anomaly Removal
2: GData = GData[GData[‘PassID’].startswith(‘01′)] # Related Data Filtering
3: EFusionData = UNION_ALL(GData, EnData, ExData) # Data Fusion
4: EFusionData = EFusionData.sort_by(‘PassID’, ‘TradeTime’).group_by(‘PassID’) # Sorting and
Grouping
5: # Standardization of field names
6: For each transaction in EFusionData:
7: transaction.rename_fields(NodeID, NodeName, NodeType, NodeCor, TradeTime, OBUid,
PassID)
8: transaction.encode_node_types(0,1,2,3,4)
9: End For

3.2.2. Generation of ETC Vehicle Trajectory Set

Upon obtaining the ETC transaction fusion table, we can construct the driving trajec-
tories of each vehicle on the highway according to the order of vehicle transaction records.
This trajectory information includes the journey identifier (PassID), the transaction time
at each passed node, the ID of each passed node, the name of each passed node, the type
of each passed node, and the topology section passed. In Table 5, we present an example
of a vehicle trajectory data table. The detailed procedure for generating the ETC Vehicle
Trajectory Set is outlined in Algorithm 2.

Table 5. An example of a ETC Vehicle Trajectory Set.

PassID Index Transit Node
Transaction Time

Transit Node
ID Transit Node Name Transit Node

Type

Transit
Topological

Segment

0142***561

1 2021-06-01 08:00:00 2100EN Zhongnan Jinghai Booth 0
2 2021-06-01 09:00:00 350001 Jinghai to Xijin Hub 2 2100EN–350001
3 2021-06-01 10:00:00 350003 Xijin Hub to Dongcheng 2 350001–350003
4 2021-06-01 11:00:00 350005 Dongcheng to Xiyu Hub 2 350003–350005
5 2021-06-01 12:00:00 350007 Xiyu Hub to Nancheng 2 350005–350007

6 2021-06-01 13:00:00 2200EX Zhongnan Nancheng
Booth 1 350007–2200EX
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Algorithm 2 Generation of ETC Vehicle Trajectory Set

Input: EFusionData
Output: ETC Vehicle Trajectory Set (EVTSet)
1: EVTSet = Initialize empty list #
2: Unique_PassID_List = ExtractUniquePassID(EFusionData)
3: For each PassID in Unique_PassID_List:
4: Transactions = ExtractTransactions(EFusionData, PassID) # Get transactions related to
current PassID
5: Sorted_Transactions = SortTransactions(Transactions) # Sort transactions by time
6: Vehicle_Trajectory = GenerateVehicleTrajectory(Sorted_Transactions) # Generate trajectory
from transactions
7: Append Vehicle_Trajectory to EVTSet

3.3. Extraction of ETC Gantry and Toll Booth Node Set

After data preprocessing, we analyzed transaction data from ETC gantries, entry toll
booths, and exit toll booths to extract ETC nodes, forming a node set of ETC gantries and
toll booths, hereinafter referred to as the ETC node set. We selected gantries and in-province
toll booths in normal operation to ensure that the extracted node set represents devices in
actual operation, which facilitates further analysis. Through transaction data analysis, we
identified and extracted valid gantry and toll booth nodes. We excluded the toll booths
with abnormal ID codes, abandoned toll booths, and out-of-province toll booths. During
the selection process, we found discrepancies between the entry toll booth set and the
exit toll booth set. The booths in the discrepancies only had identifiers in the transaction
data but no names, and, in fact, did not exist. This could be due to these toll booths being
boundary toll booths, identifier changes, or names not displayed during maintenance. We
eliminated these aberrant data. Ultimately, the ETC node set includes 1805 nodes, including
1051 gantry nodes and 754 toll booth nodes (378 entry toll booth nodes and 376 exit toll
booth nodes), as shown in Figure 1. This ETC node set is the foundation for subsequent
topology candidate set generation (Table 6).
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Table 6. Statistical count of ETC tollgate and toll booth nodes.

Category Number of Nodes

Gantry Nodes 1051
Entry Toll Booth Nodes 378
Exit Toll Booth Nodes 376

Total 1805

3.4. Extraction and Selection of Candidate Topologies Set

Before proceeding to the extraction of the topological candidate set, it is paramount to
familiarize ourselves with the basic topological structure that characterizes highways. This
structure is a composite of ETC gantries, toll booths, and the highway lanes themselves.
As depicted in Figure 2a, we utilize TB to represent toll booths, with TBex and TBex

denoting the exit and entrance toll booths, respectively. G signifies ETC gantries, with Gul

and Gdl representing the gantries on the upward and downward lanes, respectively. A
typical ETC topological structure is constituted by these nodes, along with the directional
segments linking them. Following the procurement of the ETC vehicle trajectory and node
datasets, we were equipped to generate a preliminary set of topological candidates. This
assemblage was extracted from the sequential pairing of adjacent nodes within the vehicle
trajectory dataset, which resulted in a comprehensive count of 31,379 potential topologies.
Subsequently, the candidate set of topologies underwent data preprocessing to screen and
eliminate a substantial number of erroneous topologies. Erroneous topologies include the
following categories:

1. Topologies not included in the ETC node set: In these topologies, the starting or
ending point, or both, are not part of the node set. Thus, these topologies can be
directly eliminated.

2. Circular topologies: As depicted in Figure 2b, in these topologies, the start and end
nodes are identical. This type of erroneous topology can be easily removed.

3. Bidirectional topologies (Figure 2c): These candidate topologies feature nodes from
the upward (downward) lane that directly reach nodes of the downward (upward)
lane.

4. Topologies terminating at toll booth entrances (Figure 2d): Similar to the case of
topologies originating from exits, these topologies conclude at a toll booth entrance.

5. Topologies originating from toll booth exits (Figure 2e): These topologies commence
from a toll booth exit. However, in actual trajectories, toll booth exits typically appear
at the end, hence such topologies do not exist.

6. Topologies from an entrance toll booth to an exit toll booth (Figure 2f): These candidate
topologies commence from an entrance toll booth and conclude at an exit toll booth.
However, in actual trajectories, several gantries must be passed between the entrance
and exit toll booths, rendering such topologies clearly erroneous and subject to direct
elimination.

7. Topologies incorporating out-of-province toll booths (Figure 2g): These topologies
feature a toll booth node outside the province as the starting point or endpoint. In
the figure, the toll station outside the province is OTB. Due to the presence of inter-
provincial ETC transaction data in the actual dataset, topologies may contain nodes of
out-of-province toll booths. These nodes can be easily identified as their toll booth
names differ from those of in-province nodes, despite having identical IDs.

Utilizing the aforementioned rules, we successfully identified and eliminated a sub-
stantial number of erroneous topologies, thus ensuring the accuracy of our analytical
results. Following preprocessing, we retained a total of 13,598 topologies. Nevertheless,
among these, 10,166 topologies had a vehicle traffic volume of less than 5 within a 7-day
period and were confirmed as invalid topologies following inspection. Upon elimination
of these invalid topologies, we retained 3432 valid topologies. These valid topologies form
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our candidate set of topologies; in Table 7, we present the fields of the candidate set of
topologies, as well as their descriptions and examples.
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Table 7. Description of fields in ETC topology data.

Index Field Name Field Properties Example

1 Topology topology array [‘350E01’, ‘350E03’]
2 StartID start node id 350E01
3 EndID end node id 350E03
4 StartName start node name Jinhai to Nanzhou
5 EndName end node name Nanzhou to Xicheng
6 StartType start node type 2
7 EneType end node type 2

8 StartCor start node geographic
coordinate (118.2434, 24.6884)

9 EndCor end node geographic
coordinate (118.4107, 24.7195)

10 TrafficVolume topology traffic
volume 257,396

11 TopologyDistance topology route
distance 18,561 (m)

Herein, ‘Traffic Volume’ is derived based on the number of vehicles that traversed this topology within a 5-day
period according to the vehicle trajectory dataset, and ‘Topology Distance’ is the planned route distance obtained
from the Amap (Amap Map) API, using the geographic coordinates of the starting and ending nodes.

3.5. Feature Vector Modeling

In the analysis of the candidate topology set, we considered five feature dimensions:
Topology Traffic Volume (TTV), Topological Passage Rate (TPR), Normalized Start Rate
(NSR), Normalized End Rate (NER), and Topology Distance (TD). Taking the topology (a, b)
as an example, we will illustrate the calculation methods for these features.

• Topology Traffic Volume (TTV): TTV, as a basic indicator of traffic flow, can reflect
the importance of the topology in the traffic system. By analyzing this feature, we
can understand the traffic differences in different topologies. TTV is calculated using
Equation (1), where Ti(a, b) represents the number of trajectories of topology (a, b) on
the i-th day, and N represents the number of days considered. In this study, N = 5.

TTV(a, b) =
N

∑
i=1

Ti(a, b) (1)

• Topological Passage Rate (TPR): To calculate this feature, first, we calculate the number
of trajectories containing both nodes a and b within a 5-day span, regardless of whether
these two nodes are directly connected. We refer to this as the Coexisting Nodes
Trajectory Volume (CNTV). The calculation formula for CNTV is shown in Equation (2),
where Ci(a, b) represents the number of trajectories containing nodes A and B on the
i-th day. The reason for choosing the TPR feature is that some topologies may have
a large number of erroneous transactions or omissions, resulting in a high value of
CNTV. By calculating the ratio of CNTV to TTV, we can more accurately assess the
possibility of each topology in actual work. Then, we calculate the Topological Passage
Rate, through the formula TPR = TTV/CNTV.

CNTV(a,b) =
N

∑
i=1

Ci(a, b) (2)

TPR(a,b) =
TTV(a,b)

CNTV(a,b)
(3)

• Normalized Start Rate (NSR): In the actual high-speed ETC gantry topology, each
starting node has 1 to 4 endpoints, and the rest of the topologies are likely to be
generated by erroneous data. Therefore, by calculating the proportion of the traffic
of candidate topology (a, b) in all the topologies starting from a, we can evaluate the
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possibility of this topology in actual work. Therefore, NSR is one of the crucial features
for evaluating the existence probability of a topology. The computation formula for
NSR is as shown in Equation (4), where M denotes the number of end nodes reached
by the initial node a in the candidate topology.

NSR(a,b) =
TTV(a,b)

∑M
j=1 TTV(a,j)

(4)

• Normalized End Rate (NER): NER is the normalized rate of the end node, calculating
the ratio of the traffic of topology (a, b) to the total traffic of all topologies ending at b.
Since one end node may be connected to multiple start nodes, we need to consider
all in-degree topologies of this end node. The calculation of NER is similar to that of
NSR, but it is grouped by end node b. The computation formula for NSR is as shown
in Equation (5).

NER(a,b) =
TTV(a,b)

∑M
j=1 TTV(j,b)

(5)

Topology Distance (TD): TD refers to the path distance between two gantries or toll
booth nodes in the ETC highway system, which is used for traffic management and cost
calculation. Its calculation is denoted as TD(a,b).

These five features allow us to construct the feature vector of candidate topology, as in
Equation (6), and assess their likelihood of actual existence in the traffic system.

v(a, b) =
{

TTV(a,b), TPR(a,b), NSR(a,b), NER(a,b), TD(a,b)

}
(6)

3.6. Authenticity Verification and Accuracy Annotation of Candidate Topologies

Prior to deploying the LightGBM model for the dynamic updates of gantry topologies,
it is necessary to substantiate the authenticity and annotate the accuracy of each candidate
topology, to affirm their legitimate existence and correctness. The benchmarks for existence
verification encapsulate: (1) No other gantries or toll booths should be present on the road
the trajectory of the topology; (2) No actions indicative of highway exit should be observed
within the topology trajectories. In order to attain these benchmarks, we initially utilize
the AMap API to gather the trajectory data for each candidate topology. Following this,
we project each topology trajectory along with the ETC node set onto the QGIS map, and,
through visual inspection, we determine whether any candidate topology trajectories pass
through other nodes or exhibit cases of highway exit. If a topology trajectory complies
with the aforementioned criteria, it is validated as a legitimate topology. Otherwise, it is
designated as a flawed topology.

3.7. Dynamic Generation Method of Highway ETC Gantry Topology Based on LightGBM

LightGBM, an efficient Gradient Boosting Decision Tree (GBDT) algorithm, was pro-
posed by Ke et al., 2017 [44] and has since been extensively utilized in diverse data mining
tasks such as classification, regression, and ranking. It exhibits superior performance in
both efficiency and effectiveness, and it has a commendable capacity to handle non-linear
data relationships. In the present study, we employ the LightGBM model to predict the
authenticity of gantry topology, thereby enabling the dynamic update of gantry topology.

The primary steps of LightGBM are as follows:

1. Gradient Boosting: LightGBM is a model based on gradient boosting. Throughout
the training process, it repetitively builds decision trees, striving to diminish the
discrepancy between the predicted value, f (x), and the true value, y, at every step,
thereby continually enhancing the prediction accuracy of the model. Its loss function
is defined as L(y, f (x)). The iterative model can be expressed as:

ft+1(x) = ft(x) + νh(x) (7)
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where ν represents the learning rate.
2. Decision Tree Construction: Within LightGBM, the decision tree utilizes a depth-

first approach for splitting, and it carries out efficient node splits according to the
histogram of features. Additionally, LightGBM is capable of handling categorical
features and employs a Gradient-based One-Side Sampling (GOSS) method [45] in
feature selection, significantly enhancing training efficiency on high-dimensional
data. GOSS is a sampling technique that preserves all large gradient samples and
randomly selects a fraction of small gradient samples. This practice maintains the
data’s distribution while reducing computational cost. The update of tree nodes
is represented in a form approximated by the least squares method, as shown in
Equation (8):

cj = −
∑x∈Ij

gi

∑x∈Ij
hi

(8)

where gi and hi denote the first and second order gradients, respectively. To maximize
the model’s performance at each split, LightGBM seeks the optimal split point at every
node division. The method of locating the best split point is achieved by maximizing
the information gain. The specific calculation of information gain is as follows:

Gain =

(
∑

x∈IL

[
gi + νhicL

])2

+

(
∑

x∈IR

[
gi + νhicR

])2

−
(

∑
x∈I

[gi + νhic]

)2

(9)

where cL, cR, and c are the optimal output values for each leaf node.
3. Ensemble Prediction: After constructing N decision trees, LightGBM aggregates them

for prediction. For a new input sample x, it is fed into each decision tree, and the
obtained prediction result is the weighted average of all decision tree prediction
results:

f (x) =
N

∑
i=1

Ti(x) (10)

4. Hyperparameter Optimization: A grid search is employed for hyperparameter op-
timization. The primary hyperparameters encompass the number of decision trees,
the maximum depth of each tree, the learning rate, the number of features, etc. A
parameter grid is defined, and the optimal hyperparameter combination is identified
by iterating over potential parameter combinations.

In this study, we have employed the LightGBM model to predict the veracity of
highway ETC gantry topology, thereby enabling the dynamic generation of gantry topology.
LightGBM, an efficient Gradient Boosting Decision Tree (GBDT) algorithm, has made a
significant contribution to our study.

Firstly, our study involves five feature dimensions, which may have complex interac-
tive relationships. LightGBM is capable of effectively capturing these interactions, thereby
enhancing the accuracy of the model’s predictions. Within the context of highway ETC
gantry topology data, the relationships between features may be complex and non-linear.
For instance, the relationship between Topology Distance (TD) and Topology Traffic Volume
(TTV) may not be linear. LightGBM is adept at handling these non-linear relationships,
thereby further improving the predictive performance of the model.

Secondly, LightGBM is a robust classification algorithm that can effectively handle
binary classification problems. In our study, we labelled the candidate gantry topology
as either existing (marked as 1) or non-existing (marked as 0), and allowed LightGBM to
train and predict on the candidate gantry topology. This is a typical binary classification
problem. Through LightGBM, we are able to effectively solve this problem, thus actualizing
the dynamic generation of gantry topology.

Moreover, LightGBM has the advantage of preventing model overfitting. It introduces
regularization parameters (such as L1 and L2 regularization) and uses a Gradient-based
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One-Side Sampling (GOSS) method, effectively preventing model overfitting and enhancing
the model’s generalization capability. Simultaneously, LightGBM provides a series of
adjustable hyperparameters, such as the number of decision trees, the maximum depth of
each tree, the learning rate, and the number of features, etc. In our study, we optimized these
hyperparameters through a grid search method and identified the optimal hyperparameter
combination, thereby further improving the performance of the model.

In summary, when dealing with large volumes of data and high-dimensional features,
LightGBM often exhibits superior efficiency and performance. This is evident in our study,
where we were able to utilize the well-trained LightGBM model to automatically generate
predictive results for new gantry topology data, thereby actualizing the dynamic generation
of gantry topology.

4. Experiment and Results Analysis

The experimental platform utilized an Intel (R) Core (TM) i9-10900K CPU with 10 cores
and a base clock of 3.70 GHz, along with 64 GB RAM. The experiments were performed
on the CentOS Linux release 7 September 2009 (Core) operating system and utilized
Python 3.7.11 as the programming language. The experiment was implemented on Jupyter
Notebook—an interactive programming IDE. For comprehensive information regarding
Jupyter Notebook, please refer to its official website: https://jupyter.org/ (accessed on
30 July 2023).

4.1. Construction of Feature Vectors

In accordance with our feature vector model, we fabricated a training feature vector
set for high-speed gantry topology generation, and several examples are demonstrated
in Table 8. Each vector encompasses five-dimensional attributes and their respective
sample classification labels. These five attributes include Topology Traffic Volume (TTV),
Topology Passage Rate (TPR), Normalized Start Rate (NSR), Normalized End Rate (NER),
and Topology Distance (TD). The sample classification label signifies the existence of the
topology: 0 denotes the absence of the topology, whereas 1 indicates the presence of the
topology in the actual traffic network.

Table 8. Sample of candidate gantry topological feature vector.

Candidate Topo TTV TPR NSR NER TD Label

[‘67**EN’, ‘34**19’] 6091 0.99918 0.2431 0.1157 1357 1
[‘67**EN’, ‘35**03’] 1212 0.999176 0.212 0.4994 13723 0
[‘34**07’, ‘34**0B’] 1199 0.999167 0.1612 0.3223 1357 1
[‘35**62’, ‘35**5F’] 314 0.996825 0.397 0.139 1802 1
[‘35**04’, ‘35**11’] 933 0.996795 0.1447 0.6839 1346 1
[‘34**15’, ‘34**19’] 2788 0.996782 0.0281 0.1053 1545 1
[‘79**EN’, ‘35**23’] 128 0.711111 0.0242 0.0006 2554 0
[‘35**13’, ‘35**23’] 211 0.710438 0.0179 0.0012 6955 0
[‘34**07’, ‘35**5F’] 571 0.710199 0.1008 0.0049 4523 0
[‘64**EN’, ‘34**19’] 236 0.571429 0.0977 0.278 3254 1
[‘47**EN’, ‘34**19’] 6091 0.99918 0.2431 0.1157 1357 1
[‘34**EN’, ‘35**03’] 1212 0.999176 0.212 0.4994 13723 0

Considering the sensitivity of the data, we have anonymized the toll gate numbers, in which ** represents two
characters of the toll gate number, which could be either numbers or letters.

To establish a viable predictive model, an initial correlation analysis was conducted
on the five features that define the topology generation problem, the results of which are
depicted in Figure 3.

https://jupyter.org/
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The correlation between TTV and TPR is 0.07, suggesting that the Topology Traffic
Volume and the topology pass rate can independently reflect the characteristics of the
topology without being tightly correlated. This finding can assist us in better understanding
the uniqueness of each feature in depicting the properties of the topology. The correlation
between NSR and NER is relatively high, reaching 0.63, which may indicate that these
two features reflect the same or similar information to a certain extent. Therefore, when
interpreting model results or understanding influencing factors, we can consider these
two factors jointly. The correlation between feature TD and the other features is relatively
low, implying that TD might contribute additional information necessary for the model.
This lends a certain value to the TD feature when understanding its role in the model and
interpreting prediction results.

4.2. Experimental Setup and Parameter Selection

In our experimental setup, parameter selection and optimization played a pivotal
role in the performance outcomes of the LightGBM model. We focused primarily on
four crucial categories of parameters: general parameters, core parameters, regularization
parameters, and sampling parameters, employing a grid search methodology for fine-
tuning. Firstly, general parameters encompass the ‘number of estimators (n_estimators)’
and ‘learning rate’. These two parameters have a direct bearing on the model’s learning
capability and the pace at which it fits the data. An appropriately set ‘number of estima-
tors’ ensures that the model possesses ample learning capacity to understand the data,
while the ‘learning rate’ delineates the step size in the model’s learning process. Secondly,
core parameters dictate the basic structure and complexity of the model, which include
‘maximum tree depth (max_depth)’, ‘number of leaves (num_leaves)’, ‘minimum child
samples (min_child_samples)’, ‘minimum child weight (min_child_weight)’, and ‘mini-
mum split gain (min_split_gain)’. In our experiments, the choice of ‘maximum tree depth’
was particularly salient, as it directly influences the model’s complexity and fitting capacity.
Further, regularization parameters, composed of ‘L1 regularization term (reg_alpha)’ and
‘L2 regularization term (reg_lambda)’, are utilized to inhibit overfitting phenomena in the
model. Appropriate regularization helps prevent the model from overfitting the training
data, thereby enhancing the model’s generalization capacity. Lastly, sampling parameters,
which include ‘subsample ratio (subsample)’, ‘column sample by tree (colsample_bytree)’,
and ‘subsample frequency (subsample_freq)’, primarily control the sampling of data and
features. These parameters aid in mitigating overfitting and augmenting the efficiency of
the training process. To get the optimal parameter configuration, we used a grid search
for hyperparameter tuning and combined it with 5-Fold Cross-Validation. This approach
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effectively prevents overfitting and improves the model’s generalization on new data.
Specifically, we divided the training set into five subsets, each time using four subsets as
training data and the remaining one as validation data. In this way, we could obtain a
robust parameter configuration for achieving the best model performance. This parameter
optimization strategy has helped us find the best parameter combination in the search
space, thereby greatly improving the model’s performance. Specific search ranges, step
sizes, and optimal values can be referred to in Table 9.

Table 9. Optimal combination of important parameters of LightGBM.

Parameter
Categories Parameter Search Range Step Size Optimal Value

general parameters n_estimators [10, 500] 10 80
learning_rate [0.1, 0.01, 0.001] - 0.1

core parameters

max_depth [3, 10] 1 5
num_leaves [2, 50] 1 7

min_child_samples [5, 50] 5 5
min_child_weight [0.001, 0.01, 0.1] - 0.001
min_split_gain [0, 0.1, 0.5] - 0

regularization
parameters

reg_alpha [0, 0.1, 0.5] - 0
reg_lambda [0, 0.1, 0.5] - 0

sampling
parameters

subsample [0.5, 0.9] 0.2 0.5
colsample_bytree [0.5, 0.9] 0.2 0.5
subsample_freq [1, 5] 2 3

4.3. Empirical Outcomes and Integrated Appraisal

In our dataset, each sample is assumed to be independently and identically distributed
(i.i.d), which implies that every sample originates from the same probability distribution
and is independent of all other samples. Given this assumption, we chose classifiers that
are known for effectively handling i.i.d multivariate feature data. To appraise the per-
formance efficacy of various machine learning paradigms within the scope of the gantry
topology generation task, we conducted a series of experiments. Alongside LightGBM, our
evaluation paradigm incorporated a range of established machine learning methodologies,
such as Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA),
K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Support Vector Ma-
chine (SVM), Gradient Boosting (GB), AdaBoost (AB), Extreme Gradient Boosting (XGB),
Quadratic Discriminant Analysis (QDA), Gaussian Process Classifier (GPC), Stochastic
Gradient Descent (SGD), and Linear Support Vector Machine (Linear SVM). These method-
ologies were selected due to their demonstrated proficiency in handling datasets with
complex, high-dimensional features, which bears a similarity to the nature of our ETC
gantry topology data. These were juxtaposed with the LightGBM algorithm to establish
comparative performance parameters. For maintaining the replicability of the empirical
outcomes, we resorted to the use of default parameters during the algorithmic training
phase and designated the random seed as 1. The specifications and configurations of each
algorithm have been placed in Appendix A. For LightGBM, we elected the parameter
combination that was subject to rigorous optimization to accomplish superior performance
efficacy. The algorithmic iterations deployed in our study comprised scikit-learn version
1.0.2, XGBoost version 1.5.1, and LightGBM version 3.3.5.

To evaluate the performance of each model, the evaluation metrics selected in this
study include Accuracy, Precision, Recall, and F1-Score. These are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

Precision =
TP

TP + FP
(12)
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Recall =
TP

TP + FN
(13)

F1− score =
2× Recall × Precision

Recall + Precision
(14)

where TP (True Positives) are the count of topologies that our model correctly identifies as
existing. FP (False Positives) represent the count of topologies incorrectly recognized by
our model as existing when in reality, they do not exist. TN (True Negatives), on the other
hand, refer to the count of topologies that our model correctly identifies as non-existing.
Lastly, FN (False Negatives) represent the instances where our model incorrectly classifies
existing topologies as non-existent.

In the ensuing phase, we executed experiments and evaluations on a homogenous
dataset, drawing performance comparisons of each algorithm with respect to evaluation
matrices such as accuracy, precision, recall, and F1-score, as delineated in Table 10.

Table 10. Evaluation metrics comparison of different algorithms.

Model Accuracy Precision Recall F1-Score

LR 0.8239 0.8918 0.8835 0.8877
NB 0.8705 0.8717 0.9797 0.9225

LDA 0.9403 0.9310 0.9982 0.9634
KNN 0.8574 0.8625 0.9741 0.9149

DT 0.9549 0.9688 0.9741 0.9714
RF 0.9651 0.9624 0.9945 0.9782

SVM 0.8617 0.8517 0.9982 0.9191
GB 0.9636 0.9624 0.9926 0.9773
AB 0.9578 0.9571 0.9908 0.9737

XGB 0.9651 0.9691 0.9871 0.9780
LightGBM 0.9709 0.9668 0.9982 0.9822

QDA 0.9607 0.9606 0.9908 0.9754
GPC 0.4032 0.9456 0.2569 0.4041
SGD 0.7365 0.9186 0.7301 0.8136

Linear SVM 0.7875 0.7875 1.0000 0.8811

In pursuit of offering an enriched visual illustration comparing the performance of
LightGBM vis-a-vis other models, we have meticulously crafted a graphical representation
(refer to Figure 3). This representation systematically encapsulates the relative efficacies
of various algorithms gauged across a range of evaluation metrics. Within the purview
of our empirical investigation, LightGBM emerged as a notably superior algorithm for
the task of gantry topology generation, outperforming all contenders in terms of accuracy
and F1 scores, with the exception of recall, where it trailed marginally behind Linear SVM.
An accuracy metric of 0.9709 exemplifies LightGBM’s adept capability in forecasting the
topology of gantries with a high degree of precision. While LightGBM’s recall metric,
registered at 0.9982, is slightly outperformed by Linear SVM’s optimal recall of 1.0000, it is
crucial to note that Linear SVM lags significantly behind in terms of accuracy (0.7875), pre-
cision (0.7875), and the F1 score (0.8811). Consequently, in this holistic context, LightGBM’s
recall metric still demonstrates remarkable excellence. This metric underscores the model’s
proficiency in identifying true positive gantry topologies, a critical factor within the task of
gantry topology generation. Simultaneously, LightGBM’s F1 score of 0.9822 epitomizes an
exemplary equilibrium between minimizing false positives (indicative of high precision)
and maximizing true positives (indicative of high recall). Despite a precision score of
0.9668, which surpasses several models, it only ranks third across the evaluated models,
indicating a relative underperformance of LightGBM in identifying negative instances.
Nonetheless, it is important to highlight that, despite a marginally lower precision and
being second to Linear SVM in recall, these factors do not compromise the overarching
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prowess of LightGBM. Particularly in the context of gantry topology generation, recall
takes precedence, as the goal is to identify the maximum count of true gantries, even if it
involves potential false positives. Therefore, despite certain minor shortcomings, Light-
GBM’s remarkable performance in terms of accuracy, recall, and the F1 score, coupled with
the precise requirements of gantry topology generation, unequivocally endorse LightGBM
as the recommended algorithm for this task.

In the endeavor to augment the efficacy of our model, we adopted the stratagem of 5-
Fold Cross-Validation. This rigorous validation technique not only provided a multifaceted
assessment of our model’s performance, but also furnished insights into its generalizability
after each training iteration. As delineated in Figure 4, we observed a consistent decrement
in the log-loss values across all five partitions, underscoring the robust learning capability
of our model and the successful mitigation of overfitting. Furthermore, the attainment of
lower log-loss values across all folds during the terminal rounds signified the absence of
underfitting.
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Throughout the 5-Fold Cross-Validation process, we meticulously recorded the key
performance metrics of accuracy, precision, recall, and F1 score for each fold (refer Table 11).
The fifth fold, in particular, demonstrated superior accuracy and precision metrics when
juxtaposed with the model devoid of cross-validation. To be precise, the 5-Fold Cross-
Validation reported an accuracy of 0.976321 and a precision of 0.980306, both surpassing
their counterparts from the non-cross-validated model, which registered an accuracy
of 0.9709 and precision of 0.9668. While the recall metric from 5-Fold Cross-Validation
(0.991150) marginally trailed behind the non-cross-validated model (0.9982), the F1 score
(0.985699) outperformed the non-cross-validated counterpart (0.9822). These outcomes not
only demonstrate the quintessential role of 5-Fold Cross-Validation in model appraisal and
selection but also testify to its superiority in most scenarios, notwithstanding the volatility
it introduces.

Table 11. Evaluation metric performance during 5-Fold Cross-Validation.

Fold Accuracy Precision Recall F1-Score

1 0.9672 0.9631 0.9978 0.9801
2 0.9599 0.9614 0.9911 0.9760
3 0.9599 0.9577 0.9956 0.9763
4 0.9563 0.9667 0.9831 0.9748
5 0.9763 0.9803 0.9912 0.9857

The bolded sections represent the best-performing round across all evaluation metrics.
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In order to assess the time efficiency of our model when dealing with datasets of
varying sizes, we designed a series of experiments to approximate its time complexity. We
first established a range of test sets, starting from 10% of the total data volume, incrementing
by 1% each time, until the entire dataset was encompassed. Subsequently, we trained and
made predictions with the LightGBM model on each test set, precisely recording the
execution time of each operation, as shown in Figure 5. As depicted in the graph, the time
taken for prediction remains relatively constant as the percentage of data used increases,
oscillating slightly around the average time. This observation suggests that the time
complexity of our algorithm tends to be a constant, i.e., O(1). This result indicates that our
model maintains a high level of execution efficiency even when faced with expanding data
scales.
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In comparison to a closely related study by Cai and Yi et al. [2], our method demon-
strates evident superiority in terms of time complexity, evaluation metrics, and operational
efficiency, as shown in Table 12.

Table 12. Comparison of our method with Cai and Yi et al. [2].

Metric Our Method Cai and Yi et al. [2]

Accuracy 0.9763 -
Precision 0.9803 0.966

Recall 0.9912 0.982
F1-Score 0.9857 0.974

Time Complexity O(1) O(n)
Average Time to Generate a Topology (ms) 0.00142 2

Total Time to Generate all Topologies (s) 0.004 5.76

Specifically, our method achieved scores of 0.9763, 0.9803, 0.9912, and 0.9857 on accuracy,
precision, recall, and F1-score, respectively. Although the approach of Cai and Yi et al. [2] also
reported high scores of 0.966, 0.982, and 0.974 for precision, recall, and F1-score, respectively,
they did not present an accuracy score. Thus, our method surpasses theirs across all reported
metrics.

From the standpoint of time complexity, our method exhibits an almost constant
runtime with an increasing amount of data, implying a time complexity nearing O(1).
Conversely, the runtime of the method proposed by Cai and Yi et al. [2] escalates linearly
with the data volume, indicating a time complexity of O(n). Hence, our method offers
superior time efficiency.

Additionally, our method excels in operational efficiency. Specifically, our approach
generates 2819 topologies within a mere 0.004 s, averaging less than 0.00142 milliseconds
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per generated topology. In contrast, Cai and Yi et al. [2]’s method takes 5.76 s to generate
2950 topologies, averaging less than 2 milliseconds per topology. Therefore, our method
significantly outperforms that of Cai and Yi et al. [2] in terms of the efficiency of topology
generation.

On this basis, we endeavored to understand the decision-making process of the model
and ascertain the most salient features influencing gantry topology generation through a
feature importance analysis. This examination encompassed all the features utilized during
the training of the LightGBM model, quantifying the contribution of each feature to the
predictive performance of the model. The detailed results are displayed in Figure 6. As
observed from Figure 6, the feature ‘PN’ boasts the highest importance ratio, highlighting
its substantial influence on gantry topology generation. The feature ‘TD’ trails ‘PN’, but
still maintains a relatively high importance ratio. On the other hand, features ‘PR’, ‘NSR’,
and ‘NER’ have lower importance ratios. These findings suggest that the features ‘TTV’
and ‘TD’ are indispensable to our model’s prediction, given their substantial contributions
to the predictive capacity for the target variable. Conversely, the importance of the ‘TPR’,
‘NER’, and ‘NSR’ features is less pronounced, indicating a potentially smaller contribution
to the model’s predictive capabilities.
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4.4. Results of Gantry Topology Generation

We apply the trained LightGBM model to classify and predict the candidate topology,
and use the predicted topology as the updated gantry topology set.

In this result, we apply the trained LightGBM model to classify and predict the
candidate topology, and we use the predicted topology as the updated gantry topology set.
As illustrated in Figure 7, we initially generated a preliminary set of candidate topologies
and, subsequently, discerned the final topological framework through algorithmic filtration.
Among the initially generated topologies in Figure 7a, despite the presence of a large
number of erroneous topologies such as long-distance topologies, we still assumed that
all 3432 preliminary topologies were correct. This assumption served as our baseline
model, which preset all labels as 1. Under these circumstances, the model’s accuracy and
precision were both 0.825, the recall rate was 1, and the F1 score was 0.904. However, this
all-positive-prediction model could not accurately distinguish between the positive and
negative categories in the data, thereby exhibiting severe imbalance.
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After applying the LightGBM model to generate the gantry topology, we successfully
identified 2819 legitimate topologies from these candidates. As shown in Figure 7b, the
distribution of gantry topology more accurately reflected reality and was closer to the
distribution of highways. In this case, the model’s accuracy increased to 0.976, precision
increased to 0.980, and the F1 score increased to 0.986. Although the recall rate decreased to
0.991, this actually reflected the model’s improved ability to distinguish between positive
and negative categories, rather than simply predicting all samples as positive. It also
demonstrated that our model could maintain high precision while still achieving a high
recall rate. This significant performance improvement fully demonstrated the effectiveness
of the proposed method.

5. Conclusions

In the domain of Electronic Toll Collection (ETC) gantry topology dynamic updating
on highways, this research has instituted the following pivotal contributions and advance-
ments:

This study introduces an innovative methodology for dynamic updating of highway
gantry topology predicated on ETC transaction data. This effectively ameliorates prevalent
inaccuracies in topology data within vehicle transaction records, thus rectifying the existing
predicament of solely charging based on minimum distance due to the inability to compute
fees according to actual traversed distances. By extrapolating potential topologies and
systematically eliminating erroneous variants, we have furnished a robust and reliable data
source for the genesis and iterative refinement of gantry topology. In tandem with the inte-
gration of the Amap API and QGIS mapping analytics, we have substantiated the veracity
of our candidate topologies, thereby safeguarding the precision of the resultant gantry
topology. We have employed the LightGBM model to facilitate the dynamic updating of
the gantry topology. Empirical evidence suggests that this approach yields commendable
outcomes, registering an accuracy rate of 97.6%, thereby satisfactorily meeting the requisites
for dynamic updating of ETC gantry topology on highways. This research promulgates a
universally applicable methodology and framework for dynamically updating highway
ETC gantry topology, underscoring its extensive applicability and scalability. In practical
implementation, the methodologies propounded by this research can be fine-tuned and
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optimized to accommodate actual needs, thereby catering to the varying requirements for
updating ETC gantry topology in diverse scenarios.

In summary, this research has heralded groundbreaking methods and techniques
for the dynamic generation of highway ETC gantry topology, providing significant rein-
forcement for highway management and road network analytics. Concurrently, it lays a
formidable foundation for the evolution of intelligent transportation systems and enhance-
ment of the overall quality of transportation services.
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Glossary

Acronym Full Form
AB Adaptive Boosting
API Application Programming Interface
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DT Decision Tree
ETC Electronic Toll Collection
GBDT Gradient Boosting Decision Tree
GB Gradient Boosting
GPC Gaussian Process Classifier
GNSS Global Navigation Satellite System
GPS Global Positioning System
KDE Kernel Density Estimation
KNN k-Nearest Neighbors
LCSS Longest Common Subsequence
LDA Linear Discriminant Analysis
LightGBM Light Gradient Boosting Machine
LR Logistic Regression
MTC Manual Toll Collection
NB Naive Bayes Classifier
NSR Normalized Start Rate
OBU On-Board Unit
QDA Quadratic Discriminant Analysis
RF Random Forest
RSU Road Side Unit
SGD Stochastic Gradient Descent
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SVM Support Vector Machine
TD Topology Distance
TTV Topology Traffic Volume
XGB XGBoost (Extreme Gradient Boosting)
5 0.9763

Appendix A

In this study, we used the default parameter settings of various models for comparison.
The following is a detailed list of the individual model parameters:

Table A1. LR (Logistic Regression) parameter settings.

Parameter Description Value

C Inverse regularization 1
class_weight Class weights None

dual Dual formulation False
fit_intercept Add constant to function True

intercept_scaling For solver ‘liblinear’ 1
l1_ratio Elastic-Net mixing None

max_iter Max iterations 100
multi_class Multiclass option Auto

n_jobs CPU cores for parallel None
penalty Norm in penalization L2

random_state Random number seed None
solver Optimization algorithm Lbfgs

tol Stopping criteria 0.0001
verbose Verbose for liblinear 0

warm_start Reuse previous solution False

Table A2. NB (Naive Bayes) parameter settings.

Parameter Description Value

priors Prior probabilities None
var_smoothing Portion of the largest variance 1 × 10−9

priors Prior probabilities None

Table A3. LDA (Linear Discriminant Analysis) parameter settings.

Parameter Description Value

covariance_estimator Covariance estimator None
n_components Number of components None

priors Prior probabilities None
shrinkage Shrinkage parameter None

solver Solver for computation Svd
store_covariance If True, compute covariance False

tol Tolerance for stopping criteria 0.0001
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Table A4. KNN (Decision Tree) parameter settings.

Parameter Description Value

algorithm Algorithm used Auto
leaf_size Leaf size 30
metric Distance metric Minkowski

metric_params Metric params None
n_jobs Num of jobs None

n_neighbors Num of neighbors 5
p Power parameter 2

weights Weight function Uniform

Table A5. DT (Decision Tree) parameter settings.

Parameter Description Value

ccp_alpha Cost complexity pruning 0
class_weight Class weights None

criterion Criterion to split Gini
max_depth Max depth of tree None

max_features Max features for split None
max_leaf_nodes Max leaf nodes None

min_impurity_decrease Node impurity decrease 0
min_samples_leaf Min samples at leaf 1
min_samples_split Min samples to split 2

min_weight_fraction_leaf Min weight fraction 0
random_state Random seed None

splitter Split strategy Best

Table A6. RF (Random Forest) parameter settings.

Parameter Description Value

bootstrap Bootstrap samples True
ccp_alpha Cost complexity pruning 0

class_weight Class weights None
criterion Split criterion None

max_depth Max tree depth None
max_features Max features None

max_leaf_nodes Max leaf nodes None
max_samples Max samples None

min_impurity_decrease Min impurity decrease 0
min_samples_leaf Min samples at leaf 1
min_samples_split Min samples to split 2

min_weight_fraction_leaf Min weight fraction 0
n_estimators Num of trees 100

n_jobs Num of jobs None
oob_score OOB score False

random_state Random seed None
verbose Logging level 0

warm_start Reuse previous solution False
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Table A7. SVM (Support Vector Machines) parameter settings.

Parameter Description Value

C Penalty parameter 1
break_ties Break ties False
cache_size Cache size 200

class_weight Class weights None
coef0 Kernel coef 0

decision_function_shape Decision function Ovr
degree Kernel degree 3
gamma Kernel coef Scale
kernel Kernel type Rbf

max_iter Max iterations −1
probability Estimate prob True

random_state Random seed None
shrinking Use shrinking True

tol Tolerance 0.001
verbose Verbose False

Table A8. GB (Gradient Boosting) parameter settings.

Parameter Description Value

ccp_alpha Pruning parameter 0
criterion Split criterion Friedman_mse

init Initial estimator None
learning_rate Learning rate 0.1

loss Loss function Deviance
max_depth Max depth 3

max_features Max features None
max_leaf_nodes Max leaf nodes None

min_impurity_decrease Min impurity decrease 0
min_samples_leaf Min samples at leaf 1
min_samples_split Min samples to split 2

min_weight_fraction_leaf Min weight fraction 0
n_estimators Num of estimators 100

n_iter_no_change Iterations no change None
random_state Random seed None

subsample Subsample fraction 1
tol Tolerance 0.0001

validation_fraction Validation fraction 0.1
verbose Verbose 0

warm_start Reuse previous solution False

Table A9. AB (AdaBoost) parameter settings.

Parameter Description Value

algorithm Algorithm type Samme.r
base_estimator Base estimator None
learning_rate Learning rate 1
n_estimators Num of estimators 50
random_state Random seed None

verbose Verbose for liblinear 0
warm_start Reuse previous solution False
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Table A10. XGB (XGBoost) parameter settings.

Parameter Description Value

use_label_encoder Use label encoder False
enable_categorical Categorical data False

eval_metric Evaluation metric Logloss
objective Objective function Binary:logistic

n_estimators Num of estimators 100
In order to not cause redundancy, we did not put the value of empty parameters into the table, The parameters
set to null values are: booster, colsample_bylevel, colsample_bynode, colsample_bytree, gamma, gpu_id, impor-
tance_type, interaction_constraints, learning_rate, max_delta_step, max_depth, min_child_weight, missing, mono-
tone_constraints, n_jobs, num_parallel_tree, predictor, random_state, reg_alpha, reg_lambda, scale_pos_weight,
subsample, tree_method, validate_parameters, verbosity.

Table A11. QDA (Quadratic Discriminant Analysis) parameter settings.

Parameter Description Value

priors Class priors None
reg_param Regularization 0

store_covariance Store covariance False
tol Tolerance 0.0001

Table A12. GPC (Gaussian Process Classifier) parameter settings.

Parameter Description Value

copy_X_train Copy training data True
kernel Kernel function None

max_iter_predict Max iterations 100
multi_class Multi-class strategy One_vs_rest

n_jobs Num of jobs None
n_restarts_optimizer Num of restarts 0

optimizer Optimizer Fmin_l_bfgs_b
random_state Random seed None
warm_start Reuse previous solution False

Table A13. SGD (Stochastic Gradient Descent) parameter settings.

Parameter Description Value

alpha Regularization param 0.0001
average Average coef False

class_weight Class weights
early_stopping Early stopping False

epsilon Epsilon 0.1
eta0 Initial learning rate 0

fit_intercept Fit intercept True
l1_ratio L1 ratio 0.15

learning_rate Learning rate Optimal
loss Loss function Hinge

max_iter Max iterations 1000
n_iter_no_change Iterations no change 5

n_jobs Num of jobs None
penalty Penalty L2
power_t Power t 0.5

random_state Random seed None
shuffle Shuffle True

tol Tolerance 0.001
validation_fraction Validation fraction 0.1

verbose Verbose 0
warm_start Reuse previous solution False
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Table A14. Linear SVM parameter settings.

Parameter Description Value

C Regularization param 1
class_weight Class weights None

dual Dual formulation True
fit_intercept Fit intercept True

intercept_scaling Intercept scaling 1
loss Loss function Squared_hinge

max_iter Max iterations 1000
multi_class Multi-class strategy None

penalty Penalty L2
random_state Random seed None

tol Tolerance 0.0001
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