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Abstract: When we apply comparative phylogenetic analyses to genome data, it poses a significant
problem and challenge that some of the given species (or taxa) often have missing genes (i.e., data).
In such a case, we have to impute a missing part of a gene tree from a sample of gene trees. In this
short paper, we propose a novel method to infer the missing part of a phylogenetic tree using an
analogue of a classical linear regression in the setting of tropical geometry. In our approach, we
consider a tropical polytope, a convex hull with respect to the tropical metric closest to the data
points. We show a condition that we can guarantee that an estimated tree from the method has at
most a Robinson–Foulds (RF) distance of four from the ground truth, and computational experiments
with simulated data and empirical data from Clavicipitaceae, which contains more than 4000 genes,
show the method works well.
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1. Introduction

Due to new technology, today we are able to generate sequences from the genome with
lower cost. However, at the same time, we have a great challenge to analyze large scale
datasets from genome sequences. In phylogenomics, a new field that applies tools from
phylogenetics to genome datasets, we often conduct comparative phylogenetic analyses,
that is, to compare evolutionary histories among a set of taxa between different genes from
the genome (for example, see [1]). However, we often face the problem in this process that
some taxa in the dataset have missing gene(s) [2,3]. When this happens, systematists infer
missing part of a gene tree from other gene trees using a supervised learning method, such
as the linear regression model.

A phylogenetic tree is a weighted tree which represents evolutionary history of a given
set of taxa (or species). In phylogenetic trees, leaves represent species or taxa in the present
time which we can observe and internal nodes in the tree, which represent ancestors of the
species, do not have any labels. A gene tree is a phylogenetic tree reconstructed from an
alignment of a gene in a genome. Gene trees with the same set of species or taxa do not
have to have the same tree topology since each gene might have different mutation rates
due to the selection pressures, etc. [4]. In a comparative phylogenetic analysis, we often
compare gene trees (for example, we compare how they are different, how their mutation
rates are different, and often we are interested in inferring the species tree).

To infer a missing part of a gene tree, we often apply a supervised method to regress
the missing part. In this process, first, we compute an unique vector representation of each
gene tree. Then we infer the missing components of the vector of the tree from the vectors
computed from other gene trees in a dataset using a regression model, such as a multiple
linear regression [3].

However, a set of all such vectors realizing all possible phylogenetic trees, which is
called a space of phylogenetic trees, is not Euclidean. In fact, a space of phylogenetic trees
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is an union of polyhedral cones with a large co-dimension, so this is not even convex in
terms of Euclidean metrics. Therefore, it is not appropriate to apply classical regression
models, such as linear regression or neural networks, since they assume convexity in terms
of Euclidean geometry. Thus, in this short paper, we propose an analogue of a classical
multiple linear regression in the setting of tropical geometry with the max-plus algebra—an
application of tropical polytopes to infer the missing part of a phylogenetic tree.

Equidistant trees are used to model gene trees under the multi-species coalescent
model [4]. Therefore, in this paper, we focus on an equidistant tree, which is a rooted
phylogenetic tree such that the total weight on an unique path from its root to each leaf is
the same, and we focus on the space of all possible equidistant trees. It is well-known that
the space of all possible equidistant trees is a tropical Grassmannian, which means that it is a
tropically linear space with respect to the tropical metric [5–7]. Therefore, with the tropical
metric with the max-plus algebra, we can conduct statistical analyses using tropical linear
algebra, which is an analogue of a classical linear algebra. In fact, there has been much
development in statistical learning over the space of phylogenetic trees using tools from
tropical geometry [7–12].

Since a tropical polytope is tropically convex and since the space of equidistant trees is
tropically convex, if all vertices are equidistant trees, then a tropical polytope is contained in
the space of equidistant trees. Thus, in this paper, we propose to use a tropical polytope over
the space of equidistant trees to infer missing part of a phylogenetic trees. This proposed
method has basically four main step: (1) compute induced trees on the set of leaves which
we observe in T, a tree with missing leaf (leaves) from a training set; (2) compare T with
these induced trees; (3) compute a tropical polytope with trees with full set of leaves
whose induced trees have closest tree topologies with T; and (4) project T onto the tropical
polytope computed in step (3).

In Section 2, we discuss basics from tropical geometry and in Section 3, we discuss
basics from phylogenetics. In Section 4, we show our novel method to impute a missing
part of a phylogenetic tree. Then, in Section 5, we show a theoretical condition of T that the
worst case scenario for the estimated tree via our method has the Robinson–Foulds distance
at most 4. Then, Section 6 shows computational experiments of our method against other
methods including a multiple linear regression and our method performs well.

2. Basics in Tropical Geometry

In this section, we discuss basics from tropical geometry. We consider the tropical projec-
tive torus, Re/R1 where 1 := (1, 1, . . . , 1) is the vector with all ones in Re. Basically this means
that any vectors in Re/R1 is invariant with 1, i.e., (v1 + c, . . . , ve + c) = (v1, . . . , ve) = v for
any element v := (v1, . . . , ve) ∈ Re/R1. For more details, see [13,14].

Under the tropical semiring (R∪ {−∞},⊕,�) , the tropical arithmetic operations of
addition and multiplication are defined as:

a⊕ b := max{a, b}, a� b := a + b where a, b ∈ R∪ {−∞}.

For any scalars a, b ∈ R ∪ {−∞} and for any vectors x = (x1, . . . , xe), y = (y1, . . . , ye) ∈
Re/R1, we have tropical scalar multiplication and tropical vector addition defined as:

a� x⊕ b� y := (max{a + x1, b + y1}, . . . , max{a + xe, b + ye}).

Definition 1. Suppose we have a set S ⊂ Re/R1. If

a� x⊕ b� y ∈ S

for any a, b ∈ R and for any x, y ∈ S, then S is called tropically convex. Suppose we have a finite
subset V = {v1, . . . , vs} ⊂ Re/R1. Then, the smallest tropically-convex subset containing V is
called the tropical convex hull or tropical polytope of V. tconv(V) can also be written as:
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tconv(V) = {a1 � v1 ⊕ a2 � v2 ⊕ · · · ⊕ as � vs | a1, . . . , as ∈ R}.

A tropical line segment, Γv1,v2 , between two points v1, v2 is a tropical convex hull of
{v1, v2}.

Example 1. Suppose we have three points (0, 0, 0), (0, 1, 1), (0, 2, 5) ∈ R3/R1. Then the tropical
convex hull of these three points is shown in Figure 1.

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

D[1, ]

D
[2

, ]

Figure 1. Tropical polytope of three points (0, 0, 0), (0, 1, 1), (0, 2, 5) ∈ R3/R1.

Remark 1. By the definition, if a set S ⊂ Re/R1 is tropically convex, then a tropical line segment
between any two points in S must be contained in S.

Definition 2. For any points v := (v1, . . . , ve), w := (w1, . . . , we) ∈ Re/R1, the tropical
metric), dtr, between v and w is defined as:

dtr(v, w) := max
i∈{1,...,e}

{
vi − wi

}
− min

i∈{1,...,e}

{
vi − wi

}
.

Example 2. Suppose we have points (0, 2, 5), (0, 5, 5) ∈ R3/R1. Then we have the distance
between these two points in terms of the tropical metric is

dtr((0, 2, 5), (0, 5, 5)) = max((0, 2, 5)− (0, 5, 5))−min((0, 2, 5)− (0, 5, 5))
= max{0,−3, 0} −min max{0,−3, 0} = 3.

Definition 3. Let V := {v1, . . . , vs} ⊂ Re/R1 and let P = tconv (v1, . . . , vs) ⊆ Re/R1 be a
tropical polytope with its vertex set V. For x ∈ Re/R1, let

πP(x) :=
s⊕

l=1

λl � vl , where λl =min{x− vl}. (1)

Then πP(x) is a projection onto P with the property such that

dtr(x, πP(x)) ≤ dtr(x, y)

for all y ∈ P.

Example 3. Suppose we have three points v1 = (0, 0, 0), v2 = (0, 1, 1), v3 = (0, 2, 5) ∈ R3/R1.
Also suppose the tropical convex hull P of these three points. Suppose we have a point x = (0, 2, 2) ∈
R3/R1. Then,

λ1 = min{0, 2− 0, 2− 0} = 0,
λ2 = min{0, 2− 1, 2− 1} = 0,
λ3 = min{0, 2− 2, 2− 5} = −3.
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Thus, we have

πP(x) = max{(0 + 0, 0 + 0, 0 + 0), (0 + 0, 0 + 1, 0 + 1), (−3 + 0,−3 + 2,−3 + 5)},
= max{(0, 0, 0), (0, 1, 1), (−3,−1, 2)},
= (0, 1, 2).

Thus, πP(x) = (0, 1, 2).

3. Basics in Phylogenetic Trees

Let [m] := {1, . . . , m}. A phylogenetic tree T on [m] is a weighted tree of m leaves
with the labels [m] and internal nodes in the tree not labeled. A subtree T′ in T on a ⊂ [m]
is a subtree of T with leaves a. An equidistant tree on [m] is a rooted phylogenetic tree on
[m] such that the total weight on the path from its root to each leaf i in [m] has the same
distance for each i ∈ [m]. In this paper, we assume on equidistant trees.

In order to conduct a statistical analysis, we have to convert a phylogenetic tree into a
vector. Here, we discuss one way to convert a phylogenetic tree into a vector.

Definition 4. Suppose we have a dissimilarity map D : [m]× [m]→ R such that

D(i, j) =

{
D(i, j) ≥ 0 if i 6= j
0 otherwise.

If there exists a phylogenetic tree on [m] such that D(i, j) is the total weight on the unique path
from a leaf i ∈ [m] to a leaf j ∈ [m], then we call D as a tree metric.

Remark 2. Since a tree metric of a phylogenetic tree on [m] is symmetric and its diagonal is 0, we
consider an upper triangular matrix of the tree metric and we consider the upper triangular matrix
of the tree metric as a vector in e = (m

2 ).

Definition 5. Let D : [m]× [m] → R be a metric over [m], namely, D is a map from [m]× [m]
to R such that

D(i, j) = D(j, i) for all i, j ∈ [m]

D(i, j) = 0 if and only if i = j

D(i, j) ≤ D(i, k) + D(j, k) for all i, j, k ∈ [m].

Suppose D is a metric on [m]. Then if D satisfies

max{D(i, j), D(i, k), D(j, k)} (2)

is attained at least twice for any i, j, k ∈ [m], then D is called an ultrametric.

Example 4. Suppose we have m = 3 and

D(1, 2) = 0, D(1, 3) = 2, D(2, 3) = 2.

Then, D is an ultrametric.

It is well-known that if we have an ultrametric on [m], then there is an unique equidis-
tant tree on [m] by the following theorem:

Theorem 1 ([15]). Suppose we have an equidistant tree T with a leaf label set [m] and suppose
D(i, j) for all i, j ∈ [m] is the distance from a leaf i to a leaf j. Then, D is an ultrametric if and only
if T is an equidistant tree on [m].
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Therefore by Theorem 1, in this paper, we consider the set of ultrametrics, Um ⊂
Re/R1, on m as the space of equidistant trees on [m].

Definition 6. Let x, y ⊂ [m] such that x ∪ y = [m] and x ∩ y = ∅. Suppose we have an
equidistant phylogenetic tree T with the leave set [m]. A clade of T with leaves x ⊂ [m] is an
equidistant tree on x constructed from T by adding all common ancestral interior nodes of any
combinations of only leaves x and excluding common ancestors including any leaf from [m]− x in
T, and all edges in T connecting to these ancestral interior nodes and leaves x.

Definition 7. For a rooted phylogenetic tree, a nearest neighbor interchange (NNI) is an
operation of a phylogenetic tree to change its tree topology by picking three mutually exclusive leaf
sets X1, X2, X3 ⊂ X and changing a tree topology of the clade, possibly the whole tree, consisting
with three distinct clades with leaf sets X1, X2, and X3.

Remark 3. Since there are three possible ways of connecting three distinct clades, NNI possibly
creates two new tree topologies on [m].

Definition 8. Suppose we have rooted phylogenetic trees T1, T2 on [m]. The Robinson–Foulds
(RF) distance is the number of operations that the subtree of T1 has the same tree topology as the
subtree of T2 by removing a leaf of T1 and the subtree of T2 has the same tree topology as the subtree
of T1 by removing a leaf of T2.

Remark 4. The Robinson–Foulds distance is always divisible by 2.

Remark 5. One can see that the Robinson–Foulds distance between two trees which is one NNI
move apart is 2.

4. Method

In this section, we introduce a method to infer a missing part of an equidistant
tree using tools from tropical geometry. Let RF(T1, T2) be the Robinson–Foulds distance
between T1 and T2. The algorithm on this method is shown in Algorithm 1.

Algorithm 1: Imputation with a tropical polytope

Data: Equidistant tree T′ on a ⊂ [m], and a sample of equidistant trees on [m],
{T1, . . . , Tn}

Result: Estimated imputed tree T̂ on [m]
1 Let T′i be a tree dropped leaves [m]− a from each T1 for i ∈ {1, . . . , n};
2 Drop leaves [m]− a from each T1 for i ∈ {1, . . . , n};
3 Set S = ∅;
4 Set d← m2;
5 for i = 1, . . . , n− 1 do
6 if d > RF(T′i , T′j ) then
7 d← RF(T′i , T′);

8 for i = 1, . . . , n− 1 do
9 if RF(T′i , T′) == d then

10 S← T′i ∪ S;

11 Compute the tropical polytope P of ultrametrics computed from trees Ti for all
trees T′i ∈ S;

12 Let Ttmp be a tree attached leaves [m]− a to the root of T′;
13 Convert an ultrametric u ∈ Um computed from Ttmp;
14 Let v be a projection of u onto P;
15 Realize an equidistant tree T̂ from v and return T̂
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5. Theoretical Results

Let x, y ⊂ [m] such that x ∪ y = [m] and x ∩ y = ∅. Let {T1, . . . , Tn} be a sample
of equidistant trees with m leaves. Let T′i for i = 1, . . . n be an equidistant tree with x by
dropping tips y from Ti, i.e., T′i is an induced tree on a.

Theorem 2. Suppose {T1, . . . , Tn} is a sample of equidistant trees with [m] and let Ti = T′i ∪ T′′i
such that T′i is a subtree on x which is an equidistant tree with x by dropping tips y from Ti and T′′i is
an subgraph graph with y by adding all common ancestral interior nodes of any combinations of only
leaves x and excluding common ancestors including any leaf from [m]− x in Ti for i = 1, . . . , n.
Suppose T′i and T′ have the same tree topology for i = 1, . . . , n. If T′′i are clade in Ti for i = 1, . . . , n
and T′′ is also a clade in T, then an estimated tree T̂ via our method with the tropical polytope
P := tconv (T1, . . . , Tn) and T differ at most the Robinson–Foulds distance = 4.

Proof. Since T′′i are connected trees for i = 1, . . . , n, T′′i forms a clade in Ti for i = 1, . . . , n.
Also T′′ is a connected tree, so that T′′ is also a clade in T. This means that Ti and Tj for
any i, j ∈ {1, . . . , n} have only one NNI move distance. Since T′i and T′ have the same tree
topology and since T′′ is also a clade in T, Ti, and T differ only by one NNI move distance.
Note that Ti and Tj have at most the Robinson–Foulds distance = 2 since Ti and Tj have
just one NNI move difference, and so as with T. Let Ui be an ultrametric form a tree Ti
for i = 1, . . . , n. Then, take any tropical line segment Γui ,uj . Since Ti and Tj have just one
NNI move difference, by Theorem 8 in [16], any tree topology of the tree realized from an
ultrametric in Γui ,uj has the same tree topology of Ti or Tj. Since P is tropically convex, any
point in P is a tropically convex combination of Ti for i = 1, . . . , n. Thus, the tree topology
of the tree realized by an ultrametric in P has at most one NNI move different. Since the
estimate T̂ ∈ P, and any tree realized from an ultrametric in P to T has at most 2 NNI move
difference. Thus, we have the result.

6. Computational Experiments

In this section, we apply this method to simulated data sets and compare its perfor-
mance with the baseline model, which uses means of each missing element in an ultrametric
computed from a tree, and the multiple linear regression model proposed by Yasui et al.
in [3].

6.1. Simulated Data

To assess a performance of this method, we use simulated datasets generated from the
multi-species coalescent model using the software Mesquite [17].

Under the multi-species coalescent model, there are two parameters: species depth
SD and effective population size Ne. In this paper, we fix the effective population size as
Ne = 10, 000 and we vary SD as we vary the ratio

R =
SD
Ne

.

6.2. Experimental Design

Here we vary R = 0.25, 0.5, 1, 2, 5, 10. For this experiment, we fix the number of leaves
as 10. Therefore e = 45. For each value of R, we generate a random species tree via the Yule
model first. Then we generate the set of 1000 gene trees from the multi-species coalescent
model given the species tree. Therefore, for each R, we have a simulated dataset with
size 1000.

Note that when R is larger we have tighter constraints to gene tree topologies by its
species tree. Therefore, we do not have large variance for generating gene trees so that it is
easier to estimate the missing part of a gene tree. On the other hand, if we have small R,
then we have a large variance for gene tree topologies, the coalescent model is becoming
more like a random process [4].
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For estimating the performance of our method when we vary the number of leaves
missing, we set three different cases: one leaf out of 10 leaves is removed, two leaves out of
10 leaves are removed, and three leaves out of 10 leaves are removed. For each scenario in
terms of R and in terms of the number of leaves removed, we pick 200 random observations
from the data set of 1000 trees as a test set.

To compare the performance of our method, we use the baseline model, i.e., we fill
missing values of an ultrametric by taking the mean of observations with the full set
of leaves and the multiple linear regression model proposed by Yasui et al. [3]. For the
multiple linear regression model, we set a missing element as a response variable and
observed elements in an ultrametric as predictors [3].

6.3. Results

To assess a performance of our method against the baseline and the method proposed
by Yasui et al., we use the Robinson–Foulds distance between an estimated tree T̂ and T.
The results are shown in Table 1 and Figure 2. Note that the smaller the Robinson–Foulds
distance between two trees, the closer their tree topologies are. When the Robinson–Foulds
distance is 0, their tree topologies are the same. Figure 3 shows that the performance of the
baseline and the performance of the linear regression model have very similar results for
one, two, and three, the number of leaves removed and all ratio of R.

Table 1. These numbers shown in this table are average Robinson–Foulds distances between esti-
mated trees and true trees. For each category, we infer 200 trees from 800 trees. The smaller the
Robinson–Foulds distance is, the better the performance.

R

# of Leaves Removed Method 10 5 2 1 0.5 0.25

1 leaf removed
Tropical Metric 0.76 2.30 4.11 6.11 7.91 9.13
Baseline 2.63 6.34 8.71 11.36 12.43 12.87
Linear Regression 2.70 6.34 8.66 11.26 12.44 12.89

2 leaves removed
Tropical Metric 0.84 2.65 5.36 6.95 8.26 9.20
Baseline 2.55 6.28 8.32 11.02 12.55 13.00
Linear Regression 2.66 6.29 8.58 10.96 12.51 13.06

3 leaves removed
Tropical Metric 1.32 2.95 6.06 7.93 9.85 9.84
Baseline 2.46 6.12 7.95 10.80 12.73 13.10
Linear Regression 2.56 6.16 8.05 10.94 12.70 13.23

According to computational experiments with simulated datasets shown in Table 1
and Figure 2, our method has smaller Robinson–Foulds distances in any cases compared to
other methods. It is interesting that the number of leaves removed seems to greatly affect
the results in general while R clearly affects performances of all three methods compared.

If we have only one missing leaf and larger R, often the average Robinson–Foulds
distances between inferred trees and true trees is less than 1 because we have often the
condition satisfied in Theorem 2 due to very high constraints on tree topologies of gene trees.
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Figure 2. This figure shows performance on the baseline (Left) and our method using a tropical
poltyope (Right). For each category, we infer 200 trees from 800 trees. The x-axis represents the ratio
R and the y-axis shows the average Robinson–Foulds distances between estimated trees and true
trees for 200 trees. The smaller the Robinson–Foulds distance is, the better the performance.

Figure 3. This figure shows performance on the baseline model (left) and linear regression models
(Right). For each category, we infer 200 trees from 800 trees. The x-axis represents the ratio R and
the y-axis shows the average Robinson–Foulds distances between estimated trees and true trees for
200 trees. The smaller the Robinson–Foulds distance is, the better the performance. As one can see,
these results are very close to each other for all R.

7. Application to Empirical Data
7.1. Empirical Dataset

We apply our imputation method to a set of annotated genomes of the fungal family,
Clavicipitaceae from [18]. Kang et al. annotated genome sequences for 12 species from
the fungal family Clavicipitaceae with MAKER. The 12 species in Clavicipitaceae include
Epichloë festucae Fl1 (designated E0894), Aciculosporium take (A7993), Atkinsonella texensis
B6155, Balansia obtecta B249 (B0249), Claviceps purpurea 20.1 (C0201), Epichloë amarillans
E4668, Epichloë inebrians E818 (E0818), Epichloë glyceriae E277 (E0277), Epichloë mollis AL9923
(E3601), Epichloë typhina subsp. poae E5819, Metarhizium robertsii ARSEF 23 (M0023), and
Periglandula ipomoeae P4806. For details on phylogenetic reconstructions on this dataset,
see [18]. In this dataset there are 3408 house keeping genes out of 4268 genes. Among
them 860 gene trees, including gene trees for ergot alkaloid biosynthesis (EAS) genes have
missing leaf (leaves).

7.2. Results

After imputation, we apply the tropical kernel density estimator (KDE) [19] to find
possible outlier(s) from the dataset. With the significance level α = 0.01 and bandwidth
estimated by the nearest neighbors, we found 43 possible outliers including 12 core house-



Mathematics 2023, 11, 3419 9 of 10

keeping genes and a mating type gene (mtAC) with those of the five EAS genes, easG, easC,
easD, cloA, and easA.

Since the tropical polytope defined by the set of all house keeping genes with full
leaves is in (12

2 ) dimension. Thus, in order to visualize the tropical polytope we apply a
tropical principal component analysis (PCA) developed by Yoshida et al. [7,8]. We use the
tropical PCA to visualize in the two dimension shown in Figure 4.

−1.5 −1.0 −0.5 0.0 0.5 1.0
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Figure 4. The tropical polytope of gene trees for the housekeeping genes. Black points in the figures
are outliers found by the tropical KDE. In order to visualize this, we apply the tropical PCA. Each
color represents an unique tree topology.

8. Discussion

In this short paper, we show a novel method to impute a missing part of an equidis-
tant tree on [m] using a tropical polytope, which is an analogue of a linear regression in
the setting of tropical geometry. From simulated data generated from the multi-species
coalescent model, we show that this method works very well. In addition, we show a
condition that the estimate tree and the true tree have at most a Robinson–Foulds distance
of 4 (Theorem 2).

In order to demonstrate our method, we apply it to simulated data as well as an
empirical data from Clavicipitaceae. This dataset contains more than 4000 genes and 860
out of 4268 gene trees miss some of leaves. Some trees miss 8 out of 12 tips. Then, we apply
the tropical KDE developed by [19] to find outlying gene trees and the results are consistent
with the conclusion in [18].

In the future, we can investigate applying the “tropical principal component analysis
(PCA)” proposed by Yoshida, et al. in [8] to an imputation of trees since the classical PCA
can be viewed as a multivariate linear regression model with orthogonal projections.
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