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1. Introduction

The theory of set invariance plays an important role in the control and stability theory
of constrained dynamical systems. Based on the importance of set invariance in control
theory, set invariance theory, and its application in robust control synthesis and analysis,
has been a research topic in the past decades [1]. The robustly controlled invariant set
refers to a bounded state space region. Although there are disturbances or uncertainties,
the state of the system can be limited by applying the control law [2]. Due to its wide
application in robust control synthesis and analysis, the robustly controlled invariant set of
linear system [3,4] and nonlinear systems [5] has been well studied in the past decades.

The robustly controlled invariant set is a region. When the initial state is in this region,
there always exists a control input that causes the trajectory generated by the dynamic
system to be still limited in this region [6]. As a suitable tool, the robustly controlled
invariant set is also important to the study of Boolean control networks. Algebraic state
space representation is used to study the robust control invariance of the Boolean control
network. Two necessary and sufficient conditions are given to determine whether it is a
robustly controlled invariant set, and all possible state feedback gain matrices of the robustly
controlled invariant set are characterized [7]. Ref. [8] examines the robustly controlled
invariance of a differential equation model of a genetic regulatory network. Matthias
Rungger and Paulo Tabuada propose a method of calculating the external approximation
of the maximal robustly controlled invariant set and providing the internal approximation
to study the robustly controlled invariant set of linear discrete systems with bounded
disturbances [9]. The existence of the state feedback law for continuous-time linear systems
is studied when the parameters of the state and control matrix are uncertain and the state (or
output) vector is subject to linear symmetry constraints in [10]. The approximation results
of the minimal robustly positively invariant set for discrete linear-time-invariant systems
are given in [11]. The proposed results can be applied to constrained linear discrete-time
systems subject to additive but bounded disturbances and are of great help in designing
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robust reference regulators, predictive controllers, and time-optimal controllers [12]. The
sufficient and necessary conditions for polyhedra and polyhedral cones to be positive
invariant sets of discrete-time dynamic systems are given using the dual optimization
method in [13]. In [14], the method of positive invariant sets is used to study the constrained
regulation problem (CRP) of linear continuous fractional-order systems. The algebraic
conditions for ensuring the existence of CRP linear feedback control laws are obtained, and
the necessary and sufficient conditions for polyhedral sets to be positive invariant sets of
linear fractional-order systems are given. There are also many studies on robustly controlled
invariant sets. The computing method of the robustly controlled invariant set with additive
but bounded disturbances is also studied by many researchers. Generally, the robustly
controlled invariant set and the corresponding state feedback control law are transformed
into a solution for the optimization problem of linear matrix inequality [15]. Ref. [16]
presents a relationship between probabilistic and robustly controlled invariant sets for linear
systems, which enables the use of well-studied robust design methods. An optimization
algorithm for the minimal robustly positively invariant (mRPI) set approximations via
sums-of-squares (SOS) optimization is presented in [17]. The algorithm optimizes the shape
matrix of the ellipsoidal set approximation by minimizing the volume of the ellipsoidal
set. The algorithm also optimizes the state-feedback control law to further minimize the
mRPI set. A data-driven framework can also be used to calculate the approximate value of
the minimum robust control invariant set (mRCI) of uncertain dynamic systems. Using an
iterative algorithm based on robust optimization, the minimal robustly controlled invariant
set can be calculated while selecting the optimal model from the admissible set [18].

The main contribution of this paper is to provide two methods for computing the
robustly controlled invariant set. First, based on the properties of the logarithmic norm
and its relationship with the matrix norm, a sufficient condition for computing the robustly
controlled invariant set of linear discrete-time systems is proposed. It is also transformed
into an optimization problem with linear matrix inequality constraints, and maximal
robustly controlled invariant set approximation based on this method is proposed. Second,
the computing method of the robustly controlled invariant set for linear discrete systems
is given by using difference inequalities. The minimal robustly controlled invariant set
based on this method is also proposed. The results presented in this paper provide a new
alternative method for computing the robustly controlled invariant set for linear discrete
systems with bounded disturbances.

The rest of this article is organized as follows. Section 2 provides some preliminaries
of linear discrete systems and the definition of a robustly controlled invariant set. In the
Section 3, we study the robustly controlled invariant set for linear discrete systems with
bounded disturbances through difference inequalities. In the Section 4, the logarithmic
norm is used to compute the robustly controlled invariant set for linear discrete-time
systems. Section 5 presents simulation examples. Section 6 concludes the paper.

We make the following notations in this paper. R denotes the set of real numbers, Rn

denotes the n-dimensional Euclidean space, Rm×n denotes the set of m× n real matrices, N
denotes the set of integers, and N0 is interpreted as {0} ∪ N. The superscript T indicates
matrix transpose. For a vector v ∈ Rn, ‖υ‖ denotes the 2-norm. The symbol ∗ is interpreted

as the symmetric part of a symmetric matrix, (i.e.,
[

a bT

b c

]
=

[
a ∗
b c

]
). For a symmetric

matrix X ∈ Rn×n, X � 0(X � 0) denotes that X is a positive (semi-) definite matrix, and
X ≺ 0(X � 0) denotes that X is a negative (semi-) definite matrix.

2. Preliminaries

In this section, some key definitions and assumption related to robustly controlled
invariant sets of linear systems are introduced. Consider a discrete-time linear dynamical
system described by a difference equations of the following form:

x(k + 1) = Ax(k) + Bu(k) + Bww(k), k ∈ N0, (1)
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where x(k) ∈ Rn is the state of the system, u(k) ∈ Rn is the control input, and w(k) ∈ Rn is
the exogenous disturbance or uncertainty. w(k) is unknown but bounded and located in
a compact set W = {w ∈ Rn | ‖w‖ ≤ wmax} (i.e., w(k) ∈ W for all k ∈ N0, N0 = {0} ∪ N).
The system matrices A ∈ Rn×n, B, Bw ∈ Rn×m are constant matrices.

Definition 1 (Robustly controlled invariant set [5]). A set Ω ⊂ Rn is a robustly controlled
invariant set for the system (1) if there exists a feedback control law K(·) such that for all x(0) ∈ Ω,
x(k) ∈ Ω for all w(k) ∈W and for all k ∈ N0.

In particular, if the control law K(·) is determined a priori, Ω is a robust invariant set
of the system.

Hypothesis 1. The system (A, B) is stabilizable.

Remark 1. Under Hypothesis 1, for the linear discrete-time systems x(k + 1) = Ax(k) + Bu(k) +
Bww(k), there exists a linear control law Kx such that A + BK is Hurwitz.

3. Robustly Controlled Invariant Sets Based on Difference Inequality

Lemma 1 ([19]). Let F0, · · · , Fp be quadratic functions of the variable ζ ∈ Rn:

Fi(ζ) , ζTTiζ + 2uT
i ζ + υi, i = 0, · · · , p,

where Ti = TT
i . We consider the following condition on F0, · · · , Fp :

F0(ζ) ≥ 0

for all ζ such that

Fi(ζ) ≥ 0, i = 1, · · · , p. (2)

Obviously, if there exist τ1 ≥ 0, · · · , τp ≥ 0 such that for all ζ,

F0(ζ)−
p

∑
i=1

τiFi(ζ) ≥ 0,

then (2) holds. It is a nontrivial fact that when p = 1, the converse holds, provided that there is
some ζ0 such that F1(ζ0) > 0.

Lemma 2 ([20]). Let V(x(k)) be a positive-definite function, and V(0) = 0. Define4V(x(k)) =
V(x(k + 1))−V(x(k)). w(k) satisfies w(k)Tw(k) ≤ w2

max. If there exists a scalar r > 1 such that

4V(x(k)) +
(

1− r−1
)

V(x(k))− 1− r−1

w2
max

w(k)Tw(k) ≤ 0. (3)

then V(x(k)) ≤ 1, ∀k ∈ N0. The system trajectory starting from x(0) will remain in the set Ω0,
where Ω0 = {x ∈ Rn | V(x(k)) ≤ 1}.

If we set α = r−1, then the above equation can be rewritten in the following form:

V(x(k + 1))− αV(x(k))− 1− α

w2
max

w(k)Tw(k) ≤ 0. (4)
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Proof. x /∈ Ω0 is equivalent to V(x(k)) > 1, and w ∈W is equivalent to w(k)Tw(k) ≤ w2
max

for all k ∈ N0. In accordance with S-procedure [19], it is sufficient for4V(x(k)) < 0 for all
x /∈ Ω0 and for all w ∈W, if it holds that

−4V(x(k))−
(

1− r−1
)
(V(x(k))− 1)− 1− r−1

w2
max

(
w2

max − w(k)Tw(k)
)
≥ 0,

with r > 1 , 1− r−1 > 0, and
1− r−1

w2
max

> 0. That is to say,4V(x(k)) +
(
1− r−1)V(x(k))−

1− r−1

w2
max

w(k)Tw(k) ≤ 0 for all w(k) ∈W.

Lemma 3 ([21]). Suppose (A, B) is a pair of a discrete-time system, and A ∈ Rn×n, B ∈ Rn×m.
For a positive definite matrix P ∈ Rn×n, the ellipsoid

{
x ∈ Rn : xT Px ≤ 1

}
is a robustly invariant

set of this system if and only if there exists an α ∈
[
0, 1− ρ(A)2

]
that satisfies

[
AT PA− (1− α)P AT PB

BT PA BT PB− αI

]
� 0.

Theorem 1. Suppose that there exist a positive definite matrix X ∈ Rn×n, a possible non-square

matrix Y ∈ Rm×n, and scalars 0 < β < 1 and µ =
1− α

w2
max

, 0 < α < 1, such that

[
(AX + BY)T P(AX + BY)− (1− β)X (AX + BY)T PBω

∗ BT
ωPBω − µI

]
� 0. (5)

Then, u(k) = Kx(k) and V(x(k)) = x(k)T Px(k), and inequality (4) is satisfied, where
P = X−1 and K = YX−1. Therefore, the system (1) is robustly invariant in the set

Ω0 =
{

x ∈ Rn | xT Px ≤ 1
}

.

Proof. Pre-and post-multiply (5) by diag (P, I) yields[
P 0
0 I

][
(AX + BY)T P(AX + BY)− (1− β)X (AX + BY)T PBω

∗ BT
ωPBω − µI

][
P 0
0 I

]
=

[
P(AX + BY)T P(AX + BY)− (1− β)PX P(AX + BY)T PBω

BT
ωP(AX + BY) BT

ωPBω − µI

][
P 0
0 I

]
=

[
P(AX + BY)T P(AX + BY)P− (1− β)PXP P(AX + BY)T PBω

BT
ωP(AX + BY)P BT

ωPBω − µI

]
.

Due to P = X−1 and K = YX−1, simplify the above equation to obtain[
(A + BK)T P(A + BK)− (1− β)P (A + BK)T PBω

BT
ωP(A + BK) BT

ωPBω − µI

]
� 0. (6)

Multiplying (6) from both sides with
[

x(k)Tw(k)T
]

and
[

x(k)Tw(k)T
]T

, respectively, it
follows that the inequality

V(x(k + 1))− (1− β)x(k)T Px(k)− µw(k)Tw(k) ≤ 0.
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Now setting α = 1− β, 0 < α < 1. µ =
1− α

w2
max

. That is,

V(x(k + 1))− αx(k)T Px(k)− 1− α

w2
max

w(k)Tw(k) ≤ 0

is satisfied for all w(k) ∈W. Therefore, inequality (5) holds for the system (1).

Remark 2. (AX + BY)T P(AX + BY)− (1− β)X is quadratic in (5), and it is difficult to solve
with MATLAB. Therefore, we need to transform the above problems to simplify the calculation.

Lemma 4 ([22]). For a given symmetric matrix S =

[
S11 S12
S21 S22

]
, where S11 ∈ Rn×n, the following

three conditions are equivalent:

(i) S < 0;
(ii) S11 < 0, S22 − S21S−1

11 S12 < 0;
(iii) S22 < 0, S11 − S12S−1

22 S21 < 0.

The following theorem is obtained by transforming (5) into linear matrix inequality
using Lemma 4.

Theorem 2. Suppose that there exists a positive definite matrix Q ∈ Rn×n, a possible non-square

matrix M ∈ Rm×n, and scalars 0 < β < 1 and µ =
1− α

w2
max

, 0 < α < 1, such that

−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0 (7)

hold for the system (1). Then, u(k) = Kx(k), where Ak = A + BK, Q = P−1 and M = KP−1.
Therefore, the system (1) is robust control invariant in the set

Ω0 =
{

x ∈ Rn | xT Px ≤ 1
}

.

Proof. Pre-and post-multiply (5) by diag (P, I) yields[
AT

k PAk − (1− β)P AT
k PBω

BT
ωPAk BT

ωPBω − µI

]
� 0. (8)

Using Schur complement, it is noticed that (8) implies−P−1 Ak Bw
∗ −(1− β)P 0
∗ ∗ −µI

 � 0

⇔

−P−1 AkP−1 Bw
∗ −(1− β)P−1 0
∗ ∗ −µI

 � 0.

Using some changes of variables, Ak = A + BK, Q = P−1 and M = KP−1, we have−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0.

The proof is completed.
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In finding the robustly controlled invariant set Ω0 of a given linear discrete-time
system (1), we need to solve the feasible problem of linear matrix inequality. In addition,
computing the robustly controlled invariant set mentioned above can also be transformed
into an optimization problem.

Theorem 3. Solving the maximal robustly controlled invariant set Ω0 of a given linear discrete-
time system (1) can be transformed into solving the following optimization problem of linear
matrix inequality:

max
Q,M,β,µ

(detQ)

1
n

s.t.

−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0.

Remark 3. In order to approximate the invariant set that contains all the invariant sets for the linear
discrete-time system with disturbances, we compute the maximal robustly controlled invariant
set under this situation. The volume of the ellipsoid centered at the origin determined by P is
proportional to detP, which is not convex, but monotonic transformation can render this problem
convex. One alternative is the logarithmic transform, leading to minimization of log(detP). Another

alternative is to convert the objective function to (detQ)

1
n , where n represents the dimension of

Q [19].

4. Robustly Controlled Invariant Sets Based on Logarithmic Norm

In this section, the definition and characteristics of logarithmic norm are introduced,
and the method to obtain the set of robustly controlled invariant based on logarithmic
norm is given.

The logarithmic norm of a matrix M (or the measure of a matrix) is defined by

µ(M) = lim
h→0+

‖I + hM‖ − 1
h

(9)

where I denotes the dimensional compatible identity on Rn×n, and the symbol ‖·‖ indicates
that any matrix norm defined is in the inner product space with inner product 〈x, y〉. While
the matrix norm ‖A‖ is always positive if A 6= 0, the logarithmic norm µ(A) may also take
negative values (e.g. for the Euclidean vector norm ‖·‖2 and when A is negative definite

because
1
2
(

A + AT) is also negative definite [23]).
For the usual 2-matrix norms, the following formulas are well-known:

µ2(M) = λmax

(
M + MT

2

)
. (10)

For any inner product on Rn, and the corresponding inner product norm ‖·‖, we have

µ2(M) = max
x 6=0

〈Ax, x〉
‖x‖2 . (11)

Let H be a symmetric positive definite matrix; the function 〈·, ·〉H defined on Rn by
〈x, y〉H = xT Hy is said to be the weight H inner product in order to distinguish from the
standard (or Euclidean) inner product 〈x, y〉I = xTy, where I is the identity matrix.
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Definition 2 (Weighted H norm [24]). For any vector x and any matrix M, the weighted
H vector norm, weighted H matrix norm, and weighted H logarithmic matrix norm is defined,
respectively, by

‖x‖H =
√

xT Hx,

‖M‖H = max
x∈Rn ,x 6=0

‖Mx‖H
‖x‖H

,

µH(M) = max
x 6=0

(Mx, x)H

‖x‖2
H

.

Lemma 5 ([24]). For any real matrix M,

µH(M) = λmax

(
M + MT

2

)

and

‖M‖H =

√
λmax

(
MT M

)
,

where M = H0MH−1
0 , H0 =

√
H, and λmax(M) stands for the maximal eigenvalue of a symmetric

matrix M.

Lemma 6 ([25]). For any real matrix M,

µH(M) = max
{

λ | det
(

HM + MT H − 2λH
)
= 0

}
, (12)

where det(·) is interpreted as the determinant of a given matrix. For the convenience of calculation,
the above equation can be expressed in the form of the following matrix inequality:

µH(M) = min
{

β | HM + MT H − 2βH � 0
}

. (13)

The following lemma is a set of known results that can be found in [26,27].

Lemma 7 ([26,27]). M and N are square matrices. Then,

µH(M + N) ≤ µH(M) + µH(N),

|µH(M)| ≤ ‖M‖.

Remark 4. It is concluded immediately from Lemma 7 that ‖M‖ ≥ 0. Since (A, B) is stabi-
lizable, there exist a state feedback matrix K ∈ Rm×n and positive matrix P ∈ Rn×n such that
(A + BK)T P + P(A + BK) � 0 [28]. Compared with Equation (6), µP(A + BK) ≤ 0 while

(A + BK)T P + P(A + BK) � 0. According to the definition of ‖M‖H = max
x∈Rn ,x 6=0

‖Mx‖H
‖x‖H

in Definition 2, we can obtain the formula ‖A + BK‖P = max
x∈Rn ,x 6=0

‖(A + BK)x‖P
‖x‖P

, where the

numerator and denominator are vector norms. Considering the practical significance of the vector
norm, it can be seen that the vector norm is greater than or equal to zero. Therefore, it is easy to
obtain that ‖A + BK‖P ≥ 0, which in turn leads to ‖A + BK‖k

P ≥ 0.
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For simplicity, let Al = A + BK. Under the control law u = Kx, the system (1) can be
written as

x(k) = Ak
l x(0) +

k−1

∑
j=0

Ak−1−j
l Bww(j), (14)

where x(0) is the initial state of the system (1). The exogenous disturbance w(k) is bounded
in the inner space 〈x, x〉P = xT Px, that is ‖w‖P ≤ wP,max, where wP,max is a given scalar.
The following theorem provides a construction method of the robust control invariant set
of system (1).

Theorem 4. Suppose that there exist K ∈ Rm×n and a positive definite matrix P ∈ Rn×n such
that µP(Al) < 0. Then, the set

Ω =

{
x ∈ Rn | ‖x‖P ≤

‖Bw‖PwP,max

1− | µP(Al) |

}
is a robustly controlled invariant set of the system (1).

Proof. The inequality |µP(Al)| ≤ ‖Al‖P is used to estimate the solution (14):

‖x(k)‖P ≤
∥∥∥Ak

l x(0)
∥∥∥

p
+

∥∥∥∥∥k−1

∑
j=0

Ak−1−j
l Bww(j)

∥∥∥∥∥
P

≤ ‖Al‖k
P‖x(0)‖P +

k−1

∑
j=0
‖Al‖

k−1−j
P ‖Bw‖PwP,max

= ‖Al‖k
P‖x(0)‖P +

‖Al‖k−1
P − ‖Al‖−1

P

1− ‖Al‖−1
P

‖Bw‖PwP,max

= ‖Al‖k
P‖x(0)‖P +

‖Al‖k
P − 1

‖Al‖P − 1
‖Bw‖PwP,max

= ‖Al‖k
P‖x(0)‖P +

(
‖Al‖k

P − 1
)‖Bw‖PwP,max

‖Al‖P − 1

≤ ‖Al‖k
P‖x(0)‖P +

(
‖Al‖k

P − 1
)‖Bw‖PwP,max

|µP(Al)| − 1

= ‖Al‖k
P‖x(0)‖P +

(
1− ‖Al‖k

P

)‖Bw‖PwP,max

1− |µP(Al)|

= ‖Al‖k
P

(
‖x(0)‖P −

‖Bw‖PwP,max

1− |µP(Al)|

)
+
‖Bw‖PwP,max

1− |µP(Al)|
.

Therefore, if x(0) ∈ Ω, then x(k) ∈ Ω for all k ∈ N0. Therefore, Ω is a robustly controlled
invariant set of the system (1).

Theorem 5. Finding the minimal robustly controlled invariant set Ω of a given linear discrete-time
system (1) can be transformed into solving the following optimization problem of linear matrix
inequality:

min
K,β

β

s.t PAl + AT
l P− 2βP � 0,

where Al = A + BK.
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Proof. Given a linear discrete-time system, A, B, Bw, and W are known. Furthermore, we
can easily obtain ‖Bw‖P and wp,max as P has already provided. Therefore, ‖Bw‖P and wp,max

are known in the robustly controlled invariant set Ω =

{
x ∈ Rn | ‖x‖P ≤

‖Bw‖PwP,max

1− | µP(Al) |

}
.

To obtain a robustly controlled invariant set Ω, simply find µP(Al) again. According
to Lemma 6, finding the value of µP(Al) can be transformed into solving the following
optimization problem of linear matrix inequality:

min
K,β

β

s.t PAl + AT
l P− 2βP � 0,

where Al = A + BK.

Our above conclusions can also be generalized to additional systems, such as Marko-
vian jump system [29] and nonlinear time-delay system [30,31].

5. Numerical Examples

Example 1. (i) The robust control invariant set by Theorem 2
Consider a 2-dimensional linear system

x(k + 1) = Ax(k) + Bu(k) + Bww(k) (15)

with the following parameters:

A =

[
2 0.7

2.7 0.6

]
, B =

[
2
3

]
, Bw =

[
0
1

]
.

The disturbance w ∈W ⊂ R1, where

W =
{

w ∈ R1 | −0.1 ≤ w ≤ 0.1
}

.

From the solutions P satisfying (7), the following are obtained:

Q =

[
6.2030 −1.3219
−1.3219 4.7953

]
,

M =
[
−5.4379 0.0654

]
.

According to the substitutions of variables,

P = Q−1 =

[
0.1713 0.0472
0.0472 0.2216

]
,

K = MP =
[
−0.9283 −0.2423

]
.

Here, we take β = 0.9, α = 0.9, and µ = 10. Therefore, the robustly controlled invariant set of the
system (15) is

Ω0 =

{
x ∈ Rn | xT

[
0.1713 0.0472
0.0472 0.2216

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−0.9283 −0.2423

]
x. The robustly controlled

invariant set yielded from Theorem 2 is shown by the dashed-dotted ellipsoid in Figure 1.
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Figure 1. Robustly controlled invariant sets of the system.

(ii) The maximal robustly controlled invariant set by Theorem 3
Consider the 2-dimensional linear system in (15) with the same A, B, Bω , and disturbance, the

maximal robustly controlled invariant set of the system (15) with a linear control law of u = Kx
can be obtained by solving the following optimization problem

max
Q,M,β,µ

(detQ)

1
n

s.t

−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0.

The solutions are obtained as follows:

Q =

[
1.8464 −0.2841
−0.2841 2.0533

]
,

M =
[
−1.6438 −0.2337

]
.

According to the changes of variables,

P = Q−1 =

[
0.5534 0.0766
0.0766 0.4976

]
,

K = MP =
[
−0.9276 −0.2422

]
.

If we set β = 0.9 and α = 0.99, then µ = 1. Therefore, the robust control invariant set of the system
(16) is

Ω0 =

{
x ∈ Rn | xT

[
0.5534 0.0766
0.0766 0.4976

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−0.9276 −0.2422

]
x. The maximal robustly

controlled invariant set yielded from Theorem 3 is shown by the dashed ellipsoid in Figure 1.
(iii) The robustly controlled invariant set by Theorem 4
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Consider the 2-dimensional linear system in (15) and set P = I, the logarithmic norm of
the system (15) with a linear control law of u = Kx can be obtained by solving the following
optimization problem:

min
K,λ

λ

s.t 2λI − (A + BK)− (A + BK)T � 0.

The obtained logarithmic norm and control gain are λ = 0.0308 and K =
[
−1.1354 −0.4493

]
,

respectively. With the control gain K =
[
−1.1354 −0.4493

]
, the robustly controlled invariant

set is

Ω =
{

x ∈ R2 | xTx ≤ 0.1032
}

.

Remark 5. To reduce and limit the influence of disturbances on the system, the minimum robustly
controlled invariant set needs to be considered. The robustly controlled invariant set yielded from
Theorem 5 is represented by the solid ellipsoid in Figure 1. Examples 1–3 are the robustly controlled
invariant sets corresponding to Theorems 2–4 under the same system. To reduce and limit the impact
of disturbances on the system, we select the minimum robustly controlled invariant set. It can be
seen from Figure 1 that Theorem 4 is the least conservative.

Example 2. (i) The robust control invariant set by Theorem 2
Consider a 2-dimensional linear system

x(k + 1) = Ax(k) + Bu(k) + Bww(k) (16)

with the following parameters:

A =

[
−1.2 3
−4 5

]
, B =

[
2
−4

]
, Bw =

[
0
2

]
.

The disturbance w ∈W ⊂ R1, where

W =
{

w ∈ R1 | −0.1 ≤ w ≤ 0.1
}

.

From the solutions P satisfying (7), the following are obtained:

Q =

[
38.3891 21.4828
21.4828 13.8513

]
,

M =
[
−11.0095 −5.0026

]
.

According to the changes of variables,

P = Q−1 =

[
0.1972 −0.3059
−0.3059 0.5466

]
,

K = MP =
[
−0.6408 0.6334

]
.

Here, we take β = 0.05, α = 0.5, and µ = 50. Therefore, the robustly controlled invariant set of the
system (16) is

Ω0 =

{
x ∈ Rn | xT

[
0.1972 −0.3059
−0.3059 0.5466

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−0.6408 0.6334

]
x. The robustly controlled invari-

ant set yielded from Theorem 2 is shown by the solid ellipsoid in Figure 2.
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Figure 2. Robustly controlled invariant sets of the system.

(ii) The robustly controlled invariant set by Theorem 3
Considering the 2-dimensional linear system (16) with a linear control law of u = Kx, a

solution can be obtained by solving the following optimization problem

max
Q,M,β,µ

(detQ)

1
n

s.t.

−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0.

The solutions are obtained as follows:

Q =

[
36.4057 20.3923
20.3923 13.1329

]
,

M =
[
−10.4282 −4.7588

]
.

According to the substitutions of variables,

P = Q−1 =

[
0.2109 −0.3275
−0.3275 0.5847

]
,

K = MP =
[
−0.6408 0.6328

]
.

If we set β = 0.1 and α = 0.5, then µ = 50. Therefore, the robustly controlled invariant set of the
system (16) is

Ω0 =

{
x ∈ Rn | xT

[
0.2109 −0.3275
−0.3275 0.5847

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−0.6408 0.6328

]
x. The maximal robustly controlled

invariant set yielded from Theorem 3 is shown by the dashed ellipsoid in Figure 2.
(iii) The robustly controlled invariant set by Theorem 4
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Consider the 2-dimensional linear system (16) and set P = I. The logarithmic norm of
the system (16) with a linear control law of u = Kx can be obtained by solving the following
optimization problem

min
K,λ

λ

s.t. 2λI − (A + BK)− (A + BK)T � 0.

The obtained logarithmic norm and control gain are λ = −0.3600 and K =
[
0.3764 1.4271

]
,

respectively. With the control gain K =
[
0.3764 1.4271

]
, the robustly controlled invariant set is

Ω =
{

x ∈ R2 | xTx ≤ 0.3125
}

.

Remark 6. The robustly controlled invariant set yielded from Theorem 5 is represented by the
dashed-dotted ellipsoid in Figure 2. It can be clearly seen from Figure 2 that the robust control
invariant set obtained by the logarithmic norm method is the smallest and less conservative.

Example 3. (i) The robustly controlled invariant set by Theorem 3
Consider a 2-dimensional linear system

x(k + 1) = Ax(k) + Bu(k) + Bww(k) (17)

with following parameters:

A =

[
4 1.5
5 1

]
, B =

[
1
2

]
, Bw =

[
0
1

]
.

The disturbance w ∈W ⊂ R1, where

W =
{

w ∈ R1 | −0.1 ≤ w ≤ 0.1
}

.

From the solutions P satisfying (7), the following are obtained:

Q =

[
43.4286 −31.4263
−31.4263 60.3967

]
,

M =
[
−104.6118 43.5510

]
.

According to the substitutions of variables,

P = Q−1 =

[
0.0369 0.0192
0.0192 0.0266

]
,

K = MP =
[
−3.0240 −0.8501

]
.

Here, we take β = 0.1, α = 0.1, and µ = 90. Therefore, the robustly controlled invariant set of the
system (17) is

Ω0 =

{
x ∈ Rn | xT

[
0.0369 0.0192
0.0192 0.0266

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−3.0240 −0.8501

]
x. The robustly controlled

invariant set yielded of the Theorem 2 is shown by the dashed-dotted ellipsoid in Figure 3.
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Figure 3. Robustly controlledinvariant sets of the system.

(ii) The robustly controlled invariant set by Theorem 3
Consider the 2-dimensional linear system in (17). The robustly controlled invariant set of

the system (17) with a linear control law of u = Kx can be obtained by solving the following
optimization problem:

max
Q,M,β,µ

(detQ)

1
n

s.t.

−Q AQ + BM Bω

∗ −(1− β)Q 0
∗ ∗ −µI

 � 0.

The solutions are obtained as follows:

Q =

[
35.7873 −33.7164
−33.7164 56.0413

]
,

M =
[
−80.2426 54.3734

]
.

According to the substitutions of variables,

P = Q−1 =

[
0.0645 0.0388
0.0388 0.0412

]
,

K = MP =
[
−3.0660 −0.8732

]
.

If we set β = 0.5 and α = 0.5, then µ = 50. Therefore, the robustly controlled invariant set of the
system (17) is

Ω0 =

{
x ∈ Rn | xT

[
0.0645 0.0388
0.0388 0.0412

]
x ≤ 1

}
.

The corresponding linear control law is u =
[
−3.0660 −0.8732

]
x. The robustly controlled

invariant set yielded of the Theorem 3 is shown by the dashed ellipsoid in Figure 3.
(iii) The robustly controlled invariant set by Theorem 4
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Consider the 2-dimensional linear system (17) and set P = I. The logarithmic norm of
the system (17) with a linear control law of u = Kx can be obtained by solving the following
optimization problem:

min
K,λ

λ

s.t. 2λI − (A + BK)− (A + BK)T � 0.

The obtained logarithmic norm and control gain are λ = 0.8000 and K =
[
−3.2871 −0.2742

]
,

respectively. With the control gain K =
[
−3.2871 −0.2742

]
, the robustly controlled invariant

set is

Ω =
{

x ∈ R2 | xTx ≤ 0.5
}

.

Remark 7. The robustly controlled invariant set yielded from Theorem 4 is represented by the solid
ellipsoid in Figure 3. It can be seen from Figure 3 that the volume of the robustly controlled invariant
set obtained in Example 3 is the smallest, so Theorem 4 is the least conservative.

6. Conclusions

In this paper, the sufficient condition for computing the robust control invariant set of
linear discrete-time systems with additive bounded disturbances is discussed. The robust
control invariant set is proposed by using two methods, difference inequality and LMI
based on logarithmic norm, and solved by LMI optimization problem. In addition, we
presented the computing method of a maximum and minimum robust control invariant set
based on the above two methods. Results presented in this paper provide a new alternative
method for computing the robust control invariant set and generalize the results of the
robust control invariant set for discrete-time linear systems.
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