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Abstract: This paper studies the existence and uniqueness of the classical solution of inverse problems
for a fourth-order hyperbolic equation with a complex-valued coefficient with Dirichlet and Neumann
boundary conditions. Using the method of separation of variables, formal solutions are obtained in
the form of a Fourier series in terms of the eigenfunctions of a non-self-adjoint fourth-order ordinary
differential operator. The proofs of the uniform convergence of the Fourier series are based on
estimates of the norms of the derivatives of the eigenfunctions of a fourth-order ordinary differential
operator and the uniform boundedness of the Riesz bases of the eigenfunctions.
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1. Introduction

Various type of inverse problems for equations of mathematical physics have been
investigated by many authors, see for instance [1,2] and references therein. It can also be
noted that inverse problems for general parabolic equations were studied in [3–5].

Interest in problems for hyperbolic differential equations is due to their numerous
applications. Various hyperbolic differential equations have been investigated in recent
papers [6–17]. For example, in [8], inverse problems of finding the right-hand side and the
initial conditions for a fourth-order hyperbolic equation

utt(x, t) + α2 ∂4

∂x4 u(x, t) = F(x, t)

are studied, and in [11], inverse problems for a fourth-order hyperbolic equation

utt(x, t)− ∂4

∂x4 u(x, t) + q(t)u(x, t) = f (x, t)

with a variable coefficient depending on t are considered. In works [18–20] (and references
therein), the inverse problems for the fourth-order equations with a fractional differential
operator are investigated.

However, in all the papers listed, equations with constant coefficients are studied. As
for fourth-order hyperbolic equations with variable coefficients depending on x, inverse
problems have not yet been studied.
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Second-order differential equations with variable coefficients were considered in
the works [12,21,22]. Direct problems for the heat equation and the wave equation with
complex-valued coefficients were studied.

Note that the method of separation of variables gives an explicit form of the solution,
but it imposes more stringent requirements on the original function. However, in this work,
the problem of reducing the smoothness of the initial function was not posed.

The novelty of the work lies in the fact that the present paper is devoted to the study
of the existence and uniqueness of the solution of inverse problems for a fourth-order
hyperbolic equation with a complex-valued coefficient. Equations of this type describe
the problems of the oscillations of rods, beams, and plates, the theory of the stability of
running shafts and ship oscillations, etc. More detailed information on the development
and applications of the fourth-order equations can be found in [6–11] and references therein.
Let us consider an equation

utt(x, t) +
∂4

∂x4 u(x, t) + q(x)u(x, t) = f (x), (1)

where q(x) = q1(x) + iq2(x) is a known function, and u(x, t) and f (x) are unknown
functions, in the open region Ω = {−1 < x < 1, 0 < t < T}. The symbol Ω̄ = {−1 ≤ x ≤
1, 0 ≤ t ≤ T} denotes the closed region. The space Ck,l

x,t(Ω) consists of all functions u(x, t)
that have continuous derivatives with respect to x and t of the order of k and l, respectively,
in the domain Ω.

The purpose of this paper is to study the following inverse problems.
Inverse problem D. Find a pair of functions u(x, t) ∈ C4,2

x,t (Ω)
⋂

C2,1
x,t (Ω̄) and f (x) ∈

C[−1, 1], satisfying Equation (1) in the domain Ω, Dirichlet boundary conditions

u(−1, t) = 0, u(1, t) = 0, uxx(−1, t) = 0, uxx(1, t) = 0, t ∈ [0, T], (2)

and conditions

u(x, 0) = ϕ(x), ut(x, 0) = 0, u(x, T) = ψ(x), x ∈ [−1, 1], (3)

where ϕ(x) and ψ(x) are known sufficiently smooth functions.
The third additional condition in Equation (3) is related to the statement of the inverse

problem.
Inverse problem N. Find a pair of functions u(x, t) ∈ C4,2

x,t (Ω)
⋂

C3,1
x,t (Ω̄) and f (x) ∈

C[−1, 1], satisfying Equation (1) in the domain Ω, Neumann boundary conditions

ux(−1, t) = 0, ux(1, t) = 0, uxxx(−1, t) = 0, uxxx(1, t) = 0, t ∈ [0, T], (4)

and conditions satisfying Equation (3).

Definition 1. A pair of functions u(x, t) ∈ C4,2
x,t (Ω) and f (x) ∈ C(−1, 1) is called a regular

solution of Equation (1), if they satisfy this equation in region Ω.

Definition 2. The regular solution of Equation (1) is called a classical solution of inverse problem
D, if the conditions of Equations (2) and (3) and u(x, t) ∈ C4,2

x,t (Ω)
⋂

C2,1
x,t (Ω̄), f (x) ∈ C[−1, 1]

are satisfied.

Definition 3. The regular solution of Equation (1) is called a classical solution of inverse problem
N, if the conditions of Equations (3) and (4) and u(x, t) ∈ C4,2

x,t (Ω)
⋂

C3,1
x,t (Ω̄), f (x) ∈ C[−1, 1]

are satisfied.

If the right side of Equation (1) has the form f (x)g(t), where f (x) is an unknown
function and g(t) is a known function, the existence and uniqueness of the solution to the
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inverse problem may depend on the third additional condition in Equation (3). For the case
of a model problem when in Equation (1) q(x) ≡ 0, see for instance [8].

We thus seek a solution to inverse problem D in the form of a Fourier series [23]

u(x, t) =
∞

∑
k=0

Ck(t)Xk(x), (5)

f (x) =
∞

∑
k=0

fkXk(x), (6)

Ck(t) =
1∫
−1

u(x, t)Z̄k(x)dx, fk =

1∫
−1

f (x)Z̄k(x)dx, (7)

where Ck(t) are unknown functions and fk are unknown constants, by eigenfunctions of a
non-self-conjugate boundary value problem

LqX ≡ X IV(x) + q(x)X(x) = λX(x), (8)

X(−1) = X(1) = X′′(−1) = X′′(1) = 0. (9)

We write the problem conjugate to the boundary value problem of Equations (8) and (9)
in the form

L∗q Z ≡ ZIV(x) + q̄(x)Z(x) = λ̄Z(x), (10)

with boundary conditions in the form of Equation (9). The possibility of representing the
solution of inverse problem D in the form of series Equations (5) and (6) depends on the
properties of the eigenfunctions of the boundary value problem of Equations (8) and (9).

2. Properties of Eigenfunctions of Spectral Problems

It is more convenient to study the convergence of the expansions of continuous func-
tions in terms of the eigenfunctions of the boundary value problem of Equations (8) and (9)
if the system of its eigenfunctions {Xk(x)} forms a Riesz basis in the class L2(−1, 1). There-
fore, in this section, we study the basis property of eigenfunctions {Xk(x)}.

Consider linear forms Ui(y), i = 1, 2, 3, 4,

Ui(y) = ai1y′′′(−1) + ai2y′′′(1) + ai3y′′(−1) + ai4y′′(1) + ai5y′(−1) + ai6y′(1)+

+ai7y(−1) + ai8y(1),

defining boundary conditions Ui(y) = 0, i = 1, 2, 3, 4, of a general form for the equation
Lqy(x) = λy(x), where aij are given complex coefficients. Assume that the linear forms
U1(y), U2(y), U3(y), U4(y) are linearly independent. The order of the highest derived form
is called the order of the form. Then in the boundary conditions Ui(y) = 0, i = 1, 2, 3, 4, the
maximum number of forms of order 3 is not higher than two. It is not difficult to transform
them to the form

a11y′′′(−1) + a12y′′′(1) + a13y′′(−1) + a14y′′(1) + a15y′(−1) + a16y′(1)+

+a17y(−1) + a18y(1) = 0,

a21y′′′(−1) + a22y′′′(1) + a23y′′(−1) + a24y′′(1) + a25y′(−1) + a26y′(1)+

+a27y(−1) + a28y(1) = 0,

a33y′′(−1) + a34y′′(1) + a35y′(−1) + a36y′(1) + a37y(−1) + a38y(1) = 0,
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a43y′′(−1) + a44y′′(1) + a45y′(−1) + a46y′(1) + a47y(−1) + a48y(1) = 0, (11)

called normalized boundary conditions [24]. For the sake of simplicity, we do not change
the notation of the coefficients. We perform similar operations if the order of the highest
derivative of the forms is less than 3.

Let us consider some well-known facts. Let λ = ρ4. In the complex ρ-plane, consider
a fixed region defined by the inequality νπ

4 ≤ arg ρ ≤ (ν+1)π
4 . We enumerate different roots

of the number 4
√
−1 as ω1, ω2, ω3, ω4 so that for ρ ∈ Sν, Re(ρω1) ≤ Re(ρω2) ≤ Re(ρω3) ≤

Re(ρω4).
It is well known that the normalized boundary conditions of Equation (11) are called

regular (see, for example [24]) if the numbers θ−1 , θ1 defined by the equality

θ−1

s
+ θ0 + θ1s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11ω3
1 (a11 + sa12)ω

3
2

(
a11 +

1
s

a12

)
ω3

3 a12ω3
4

a21ω3
1 (a21 + sa22)ω

3
2

(
a21 +

1
s

a22

)
ω3

3 a22ω3
4

a33ω2
1 (a33 + sa34)ω

2
2

(
a33 +

1
s

a34

)
ω2

3 a34ω2
4

a43ω2
1 (a43 + sa44)ω

2
2

(
a43 +

1
s

a44

)
ω2

3 a44ω2
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
are not equal to zero. Here the degree of the number ωj is equal to the order of the highest
derivative of the corresponding boundary condition. We proceed similarly if the order of
the highest derivative of the forms is less than 3. If the additional condition θ2

0 − 4θ−1θ1 6= 0
is satisfied, then the boundary conditions of Equation (11) are called strongly regular. Note
that the boundary value problem of Equation (8) with strongly regular boundary conditions
can only have a finite number of multiple eigenvalues.

Papers [25,26] imply the following important theorem.

Theorem 1 ([25,26]). If q(x) ∈ L1(−1, 1), then the eigenfunctions and associated functions of the
boundary value problem, Equation (8), with strongly regular boundary conditions, Equation (11),
form the Riesz basis in the space L2(−1, 1).

It is easy to check that the boundary conditions Equations (2) and (4) are strongly
regular, hence, the system of eigenfunctions {Xk(x)} of the boundary value problem
Equations (8) and (9) forms the Riesz basis in the space L2(−1, 1). This is also valid for
the system of eigenfunctions {Zk(x)} of the conjugate boundary value problem of
Equations (9) and (10), where the systems of eigenfunctions {Xk(x)} and {Zk(x)} satisfy
the biorthogonality condition [24]

(Xk, Zn) =

1∫
−1

Xk(x)Z̄n(x)dx = δkn,

where δkn is the Kronecker symbol. Furthermore, we assume that all eigenvalues of the
boundary value problem of Equations (8) and (9) are simple and zero is not an eigenvalue.

In the case of positive self-conjugate operators, the eigenvalues are real and positive.
In the case of non-self-conjugate operators, the eigenvalues can be complex numbers.
Therefore, it is necessary to study the condition of the non-negativity of their real parts.

Lemma 1. Let q(x) ∈ C[−1, 1]. Then the inequality |Im λk| ≤ max|q2(x)| holds for all eigen-
values λk of the boundary value problem of Equations (8) and (9). For the additional condition
Re q(x) = q1(x) ≥ 0 in the interval −1 ≤ x ≤ 1, the inequality Re λk > 0 is valid for all
eigenvalues λk of the boundary value problem of Equations (8) and (9).
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Proof. Let λk be eigenvalues of the boundary value problem of Equations (8) and (9) and
Xk(x) be the corresponding eigenfunctions. We multiply both parts of Equation (8) by the
complex conjugate function X̄k(x) and integrate the resulting equality twice by parts over
the interval (−1, 1). We obtain the equality

1∫
−1

∣∣X′′k(x)
∣∣2dx +

1∫
−1

q(x)|Xk(x)|2dx = λk

1∫
−1

|Xk(x)|2dx.

Writing out the imaginary and real parts of the last equality separately, we obtain the
following two relations:

1∫
−1

q2(x)|Xk(x)|2dx = Im λk

1∫
−1

|Xk(x)|2dx,

1∫
−1

∣∣X′′k(x)
∣∣2dx +

1∫
−1

q1(x)|Xk(x)|2dx = Re λk

1∫
−1

|Xk(x)|2dx.

The first assertion of the lemma follows from the first equality.
To prove the second assertion of the lemma, we assume the contrary. Let there be a

subsequence
{

λnk

}
satisfying the condition Re λnk < 0. Then from the second relation, we

obtain the inequality

1∫
−1

∣∣X′′k(x)
∣∣2dx +

1∫
−1

q1(x)|Xk(x)|2dx = Re λk

1∫
−1

|Xk(x)|2dx < 0.

It means that
1∫
−1

∣∣X′′k(x)
∣∣2dx +

1∫
−1

q1(x)|Xk(x)|2dx < 0,

which contradicts the condition q1(x) ≥ 0. The lemma is proved.

Note that this lemma is also valid for continuous q(x) ∈ C[−1, 1]. In this case,
Re λk > 0, starting from some number k0:Re λk ≥ |min q1(x)| at k ≥ k0, if min q1(x) < 0.

Let the set D
(

Lq
)

consist of functions φ(x) ∈ C4(−1, 1)
⋂

C2[−1, 1] satisfying the
boundary conditions of Equation (2), and the set N

(
Lq
)

consist of functions φ(x) ∈
C4(−1, 1)

⋂
C3[−1, 1] satisfying the boundary conditions of Equation (4).

Lemma 2. For any function ϕ ∈ D
(

Lq
) (

and ϕ ∈ N
(

Lq
))

, each of the Fourier series

ϕ(x) =
∞

∑
k=1

(ϕ, Zk)Xk(x), ϕ(x) =
∞

∑
k=1

(ϕ, Xk)Zk(x) (12)

in eigenfunctions {Xk(x)}, {Zk(x)} converges uniformly for −1 ≤ x ≤ 1.

Proof. We rewrite Equation (8) in the form (the number λ = 0 is not an eigenvalue)

Xk(x) =
X IV

k (x) + q(x)Xk(x)
λk

.

Then

(ϕ, Xk) =

1∫
−1

ϕ(x)X̄k(x)dx =

1∫
−1

ϕ(x)
X̄ IV

k (x) + q(x)X̄k(x)
λk

dx
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=
1

λk

1∫
−1

[
ϕIV(x) + q(x)ϕ(x)

]
X̄k(x)dx =

1
λk

(
Lq ϕ, Xk

)
,

where Lq ϕ = ϕIV(x) + q(x)ϕ(x). Using this relation, the second row in Equation (12) can
be written as

ϕ(x) =
∞

∑
k=1

Ak

λk
Zk(x), (13)

where

Ak =

1∫
−1

[
ϕIV(x) + q(x)ϕ(x)

]
X̄k(x)dx.

On the other hand, it is well known that the conjugate spectral problem is equivalent to the
integral equation

Zk(x) = λk

1∫
−1

G∗(x, t)Z̄k(t)dt,

where G∗(x, t) is Green’s function of the conjugate boundary value problem for λ =
0. It is known [24] that the Green’s function G∗(x, t) is continuous for x ∈ [−1, 1] and

t ∈ [−1, 1] and is therefore bounded. Let us denote Ck(x) =
1∫
−1

G∗(x, t)Z̄k(t)dt. Then

equality Equation (13) takes the form

ϕ(x) =
∞

∑
k=1

Ak

λk
Zk(x) =

∞

∑
k=1

AkCk(x),

whence, using the inequality ab ≤ 1
2
(
a2 + b2), we obtain the estimate

∞

∑
k=1

∣∣∣∣Ak

λk
Zk(x)

∣∣∣∣ = ∞

∑
k=1
|AkCk(x)| ≤ 1

2

∞

∑
k=1
|Ak|2 +

1
2

∞

∑
k=1
|Ck(x)|2. (14)

As Ak are the Fourier coefficients of the expansion in the Riesz basis Zk(x), k = 1, 2, 3, · · · ,
and Ck(x) are the Fourier coefficients of the expansion of the Green’s function G∗(x, t) in
the Riesz basis {Xk(x)}, then due to the Bessel inequality for the Riesz bases, both series on
the right side of inequality (14) converge and

∃M1 :
∞

∑
k=1
|Ck(x)|2 ≤ M1

1∫
−1

|G∗(x, t)|2dt ≤ M0, ∀x ∈ [−1, 1],

where M0 = M1 max
−1≤x≤1

1∫
−1
|G∗(x, t)|2dt. This implies the absolute and uniform convergence

of the second series Equation (12). The absolute and uniform convergence of the first series
Equation (12) is proved similarly. The lemma is proved.

3. Formal Solution to the Problem

In this section, we construct a formal solution to the inverse problem for Equation (1)
with the Dirichlet boundary conditions of Equation (2) and the conditions of Equation (3).
According to Theorem 1, the system of eigenfunctions {Xk(x)} of the boundary value
problem of Equations (8) and (9) forms the Riesz basis in the space L2(−1, 1). Based on this
fact, we can represent the formal solution of the inverse problem D in the form of series
Equations (5) and (6). To determine unknown functions Ck(t) and unknown constants fk,
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we formally substitute functions (5) and (6) into Equation (1). After simple transformations,
we obtain the equation

C′′k(t) + λkCk(t) = fk,

whose solution is written in the following form

Ck(t) = Ck1 cos
√

λkt + Ck2 sin
√

λkt +
fk
λk

, (15)

with unknown coefficients Ck1, Ck2. From the conditions in Equation (3) and the first
formula in Equation (7), we obtain

Ck(0) =
1∫
−1

u(x, 0)Z̄k(x)dx =

1∫
−1

ϕ(x)Z̄k(x)dx = ϕk,

Ck(T) =
1∫
−1

u(x, T)Z̄k(x)dx =

1∫
−1

ψ(x)Z̄k(x)dx =ψk.

Using these relations, from Equation (15), we obtain the following system of equations
Ck1 +

fk
λk

= ϕk,

Ck1 cos
√

λkT + Ck2 sin
√

λkT +
fk
λk

= ψk,

Ck2 = 0.

Solving this system of equations, we find the unknown coefficients

Ck1 =
ϕk − ψk

1− cos
√

λkT
, fk =

(
ϕk −

ϕk − ψk

1− cos
√

λkT

)
λk.

Substituting the found values of the unknown coefficients into Equations (5) and (6), we
obtain the final form of the formal solution to the inverse problem D:

u(x, t) = ϕ(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
Xk(x), (16)

f (x) = Lq ϕ(x)−
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT
λkXk(x). (17)

Now we have to prove that functions (16) and (17) are the classical solution to inverse
problem D.

4. Main Results

The main result of this work is the solvability of the inverse problem Equations (1) and (3)
with the Dirichlet boundary conditions of Equation (2).

Theorem 2. Let the following conditions be satisfied:
(1) q(x) ∈ C4[−1, 1], ϕ, ψ ∈ D

(
Lq
)
, Lq ϕ, Lqψ ∈ D

(
Lq
)
;

(2) There is a positive number δ0 such that
∣∣1− cos

√
λkT

∣∣ ≥ δ0.
Then the inverse problem in Equations (1)–(3) has a unique solution, which can be represented

as a Fourier series, Equations (16) and (17).
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Proof. We have to prove that the resulting formal solution in the form of series
Equations (16) and (17) satisfies Equation (1) and the conditions in Equations (2) and (3).
Let us prove the uniform convergence of the series Equations (16) and (17) in the open
domain Ω and the uniform convergence of the formally differentiated series

ut(x, t) = −
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

√
λk sin

√
λktXk(x), (18)

ux(x, t) = ϕ′(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
X′k(x), (19)

uxx(x, t) = ϕ′′(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
X′′k(x), (20)

uxxx(x, t) = ϕ′′′(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
X′′′k(x), (21)

uxxxx(x, t) = ϕIV(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
X IV

k (x). (22)

The uniform convergence of series Equation (16) follows from the obvious inequality

|u(x, t)| ≤ |ϕ(x)|+
∣∣∣∣∣ ∞

∑
k=0

(ϕ, Zk)Xk(x)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
k=0

(ψ, Zk)Xk(x)

∣∣∣∣∣
and Lemma 2, taking into account Lemma 1 (Im λk ≤ const.). To prove the uniform conver-
gence of series Equation (17) in the expressions ϕk = (ϕ, Zk), ψk = (ψ, Zk), we replace the
function Zk(x) by the conjugate Equation (10). Then

λk ϕk = λk(ϕ, Zk) =
(

ϕ, L∗q Zk

)
=
(

Lq ϕ, Zk
)
, λkψk =

(
Lqψ, Zk

)
. (23)

Substituting them into Equation (17), we obtain

| f (x)| ≤
∣∣Lq ϕ(x)

∣∣+ ∣∣∣∣∣ ∞

∑
k=0

(
Lq ϕ, Zk

)
Xk(x)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
k=0

(
Lqψ, Zk

)
Xk(x)

∣∣∣∣∣.
Due to the condition of the theorem Lq ϕ, Lqψ ∈ D

(
Lq
)
, by virtue of Lemma 2, both series

on the right-hand side of the last inequality converge uniformly. The uniform conver-
gence of the series Equations (16) and (17) is proved. The uniform convergence of series
Equation (18) is proved as well as the convergence of series Equation (17) taking into
account the boundedness of trigonometric functions.

Let us prove the uniform convergence of series Equations (19)–(22). Applying
Equation (23) to series Equation (19), we obtain the relation

|ux(x, t)| ≤
∣∣ϕ′(x)

∣∣+ ∣∣∣∣∣ ∞

∑
k=0

(
Lq ϕ, Zk

)
−
(

Lqψ, Zk
)

λk
(
1− cos

√
λkT

) (
cos

√
λkt− 1

)
X′k(x)

∣∣∣∣∣.
In [27], it is shown that the estimates

max
∣∣∣X(s)

k (x)
∣∣∣ ≤ ( 4

√
|λk|

)s
max|Xk(x)|, s = 1, 2, 3, (24)
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are valid for the eigenfunctions of the fourth-order differential operator. Using estimates
Equation (24), from the last inequality, we obtain the estimate

|ux(x, t)| ≤
∣∣ϕ′(x)

∣∣+ c1

∞

∑
k=0

∣∣∣∣∣
(

Lq ϕ, Zk
)
−
(

Lqψ, Zk
)(

4
√

λk
)3

∣∣∣∣∣max|Xk(x)|.

It follows from [28] that only uniformly bounded systems of eigenfunctions of ordinary
differential operators can be Riesz bases. Therefore, due to the conditions of the theo-
rem Lq ϕ, Lqψ ∈ D

(
Lq
)
, the Bessel inequality for the Riesz bases, the asymptotics of the

eigenvalues [24], and the series on the right-hand side of the following inequality

|ux(x, t)| ≤
∣∣ϕ′(x)

∣∣+ c1

∞

∑
k=0

[∣∣(Lq ϕ, Zk
)∣∣2 + ∣∣(Lqψ, Zk

)∣∣2 + 2∣∣√λk
∣∣3
]

converge. The uniform convergence of series Equation (19) is proved.
With the help of estimates Equation (24), the convergence of series

Equations (20) and (21) in the open domain is similarly proved. Now, consider the uniform
convergence of the series

uxxxx(x, t) = ϕIV(x) +
∞

∑
k=0

(
Lq ϕ, Zk

)
−
(

Lqψ, Zk
)

λk
(
1− cos

√
λkT

) (
cos

√
λkt− 1

)
X IV

k (x).

Replacing the fourth derivative with the help of Equation (8), we obtain the estimate

|uxxxx(x, t)| ≤
∣∣∣ϕIV(x)

∣∣∣+ ∣∣∣∣∣ ∞

∑
k=0

q(x)
λk

[(
Lq ϕ, Zk

)
Xk(x)−

(
Lqψ, Zk

)
Xk(x)

]∣∣∣∣∣
+

∣∣∣∣∣ ∞

∑
k=0

[(
Lq ϕ, Zk

)
Xk(x)−

(
Lqψ, Zk

)
Xk(x)

]∣∣∣∣∣. (25)

The second series on the right-hand side of Equation (25) converges by virtue of the
conditions of theorem Lq ϕ, Lqψ ∈ D

(
Lq
)

and Lemma 2. The convergence of the first series

in Equation (25) is obvious due to the boundedness of the quantities q(x)
λk

. This proves the
uniform convergence of the series uxxxx(x, t) in the open region Ω. Thus, we show that
series Equations (16) and (17) satisfy Equation (1).

Obviously, the formal solution of Equation (16) satisfies the boundary conditions of
Equation (2) and the conditions of Equation (3):

lim
t→0+0

u(x, t) = lim
t→0+0

[
ϕ(x) +

∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

(
cos

√
λkt− 1

)
Xk(x)

]
= ϕ(x),

lim
t→T−0

u(x, t) = lim
t→T−0

[
ϕ(x) +

∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

(
cos

√
λkt− 1

)
Xk(x)

]
= ψ(x).

Let us prove the uniqueness of the solution. Assume that there are two sets of solutions,
{u1(x, t), f1(x)} and {u2(x, t), f2(x)}, of inverse problem D. Denote

u(x, t) = u1(x, t)− u2(x, t)

and
f (x) = f1(x)− f2(x).
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Then the functions u(x, t) and f (x) satisfy Equation (1), the boundary conditions of
Equation (2), and homogeneous conditions

u(x, 0) = 0, u(x, T) = 0, ut(x, 0) = 0, x ∈ [−1, 1]. (26)

Consider the Fourier coefficients of the functions u(x, t) and f (x) in the Riesz basis {Xk(x)}:

uk(t) =
1∫
−1

u(x, t)X̄k(x)dx, k ∈ N, (27)

fk =

1∫
−1

f (x)X̄k(x)dx, k ∈ N. (28)

We thus search for an equation that satisfies the coefficient uk(t). By differentiating equality
Equation (27), we obtain

u′′k(t) =
1∫
−1

u′′t(x, t)X̄k(x)dx =

1∫
−1

[−uxxxx(x, t)− q(x)u(x, t) + f (x)]X̄k(x)dx.

After integration by parts four times, we have

u′′k(t) =
1∫
−1

[
−X̄ IV

k (x)− q(x)X̄k(x)
]
u(x, t)dx + fk,

or

u′′k(t) = −λk

1∫
−1

X̄k(x)u(x, t)dx + fk.

Then we obtain the equation
u′′k(t) + λkuk(t) = fk,

for the coefficient uk(t) whose solution is written in the form of Equation (15). Due to
Equations (26) and (27), and the unknown coefficients in Equation (15), Ck1 = 0, Ck2 = 0,
and fk = 0. Then, from Formula (15), we obtain uk(t) ≡ 0. As the system {Xk(x)} is a
basis in L2(−1, 1), then Equations (27) and (28) imply the equalities f (x) ≡ 0, u(x, t) ≡ 0,
(x, t) ∈ Ω. The uniqueness of the solution is proved. The theorem is completely proved.

The assertion of the theorem is valid for the case of the problem of
Equations (1), (3) and (4).

Theorem 3. Let the following conditions be satisfied:
(1) q(x) ∈ C4[−1, 1], ϕ, ψ ∈ N

(
Lq
)
, Lq ϕ, Lqψ ∈ N

(
Lq
)
;

(2) There is a positive number δ0, such that
∣∣1− cos

√
λkT

∣∣ ≥ δ0.
Then the inverse problem of Equations (1), (4) and (30) has a unique solution, which can be

represented as a Fourier series in Equations (16) and (17).

Remark 1. We note the importance of the numerical discretization of the inverse problem and
numerical experiments. However, this goal was not set in this work.

Example 1. Let us consider the inverse problem D for Equation (1), utt(x, t) + ∂4

∂x4 u(x, t) = f (x),
(q(x) ≡ 0), with the boundary conditions of Equation (2) and the conditions of Equation (3):

u(x, 0) = sin(πx), u(x, T) = cos
(π

2
x
)

, ut(x, 0) = 0, x ∈ [−1, 1].
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According to the method of separation of variables for homogeneous equation utt(x, t) + ∂4

∂x4 u(x, t) = 0,
we find the eigenvalues

λk1 = (πk)4, λk2 =

(
k− 1

2

)4
π4, k ∈ N,

and the eigenfunctions

Xk1(x) = sin(πkx), Xk2(x) = cos
(

k− 1
2

)
πx, k ∈ N,

of the spectral problem X IV(x) = λX(x), X(−1) = X(1) = X′′(−1) = X′′(1) = 0, where{
Xkj

}
is the complete orthonormal system in space L2(−1, 1).

Then we can write the solution for Equations (16) and (17) of the inverse problem D as

u(x, t) = ϕ(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
Xk(x)

= ϕ(x) +
∞

∑
k=1

ϕk1 − ψk1

1− cos
√

λk1T

[
cos

√
λk1t− 1

]
sin kπx

+
∞

∑
k=1

ϕk2 − ψk2

1− cos
√

λk2T

[
cos

√
λk2t− 1

]
cos
(

k− 1
2

)
πx. (29)

f (x) = Lq ϕ(x)−
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT
λkXk(x)

= ϕIV(x)−
∞

∑
k=1

ϕk1 − ψk1

1− cos
√

λk1T
λk1Xk1(x)−

∞

∑
k=1

ϕk2 − ψk2

1− cos
√

λk2T
λk2Xk2(x). (30)

Here ϕ(x) = sin(πx) and ψ(x) = cos
(

π
2 x
)
. We have

ϕk1 =

1∫
−1

sin πx sin(πkx)dx =

{
1, k = 1,

0, k 6= 1,

ϕk2 =

1∫
−1

sin(πx) cos
(

k− 1
2

)
πxdx = 0, ∀ k,

ψk1 =

1∫
−1

cos
(π

2

)
x sin πkxdx = 0, ∀ k,

ψk2 =

1∫
−1

cos
(π

2
x
)

cos
(

k− 1
2

)
πxdx =

{
1, k = 1,

0, k 6= 1.

Thus, from Equations (29) and (30), we obtain the unique solution of inverse problem D

u(x, t) = sin πx− 1− cos π2t
1− cos π2T

sin(πx) +
1 + cos π2

4 t

1− cos π2

4 T
cos
(π

2
x
)

,

f (x) = π4 sin(πx)− π4

1− cos π2T
sin(πx) +

1
16

π4

1− cos π2

4 T
cos
(π

2
x
)

,

for every T and fixed number m0 such that T 6= 2m0
π , since all conditions of Theorem 2 are satisfied.
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Example 2. First, we solve the spectral problem of Equations (8) and (9), where q(x) = (1 + i)ex:

X IV(x) + (1 + i)exX(x) = λX(x), (31)

X(−1) = X(1) = X′′(−1) = X′′(1) = 0. (32)

We write the problem conjugate to the boundary value problem of Equations (31) and (32) in the
form

ZIV(x) + (1− i)exZ(x) = λ̄Z(x), (33)

with the boundary conditions in the form of Equation (32). It is easy to check that the boundary con-
ditions of Equation (32) are strongly regular. Using Theorem 1, we conclude that the system of eigen-
functions {Xk(x)} = {Xk1(x), Xk2(x) } of the boundary value problem of Equations (31) and (32)
forms the Riesz basis in the space L2(−1, 1). This is also valid for the system of eigenfunctions
{Zk(x)} = {Zk1(x), Zk2(x)} of the conjugate boundary value problem of Equations (32) and (33),
where the systems of eigenfunctions {Xk(x)} and {Zk(x)} satisfy the biorthogonality condition [24]

(Xk, Zn) =

1∫
−1

Xk(x)Z̄n(x)dx = δkn,

where δkn is the Kronecker symbol. The symbols λk1, λk2 denote the eigenvalues [24] of
Equations (31) and (32): λk1 = (πk)4

(
1 + O

(
1
k

))
, λk2 =

(
πk− π

2
)4
(

1 + O
(

1
k

))
, k ∈ N.

Next we consider the inverse problem D for Equation (1), utt(x, t)+ ∂4

∂x4 u(x, t)+ (1 + i)exu(x, t)
= f (x), with the boundary conditions of Equation (2) and the conditions of Equation (3):

u(x, 0) = X11(x), u(x, T) = X12(x), ut(x, 0) = 0, x ∈ [−1, 1],

where X11(x) and X12(x) are eigenfunctions of the problem Equations (31) and (32). Then we write
the solution Equations (16) and (17) of the inverse problem D as

u(x, t) = ϕ(x) +
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT

[
cos

√
λkt− 1

]
Xk(x)

= ϕ(x) +
∞

∑
k=1

ϕk1 − ψk1

1− cos
√

λk1T

[
cos

√
λk1t− 1

]
Xk1(x)

+
∞

∑
k=1

ϕk2 − ψk2

1− cos
√

λk2T

[
cos

√
λk2t− 1

]
Xk2(x). (34)

f (x) = Lq ϕ(x)−
∞

∑
k=0

ϕk − ψk

1− cos
√

λkT
λkXk(x)

= ϕIV(x) + (1 + i)ex ϕ(x)−
∞

∑
k=1

ϕk1 − ψk1

1− cos
√

λk1T
λk1·Xk1(x)

−
∞

∑
k=1

ϕk2 − ψk2

1− cos
√

λk2T
λk2·Xk2(x). (35)

Here ϕ(x) = X11(x), ψ(x) = X12(x). From the biorthogonality conditions, we have

ϕk1 =

1∫
−1

X11(x)Z̄k1(x)dx =

{
1, k = 1,

0, k 6= 1,
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ϕk2 =

1∫
−1

X11(x)Z̄k2(x)dx = 0, ∀ k,

ψk1 =

1∫
−1

X12(x)Z̄k1(x)dx = 0, ∀ k,

ψk2 =

1∫
−1

X12(x)Z̄k2(x)dx =

{
1, k = 1,

0, k 6= 1.

Thus, from Equations (34) and (35), we obtain the unique solution of inverse problem D

u(x) = X11(x)− 1− cos
√

λ11t
1− cos

√
λ11T

X11(x) +
1− cos

√
λ12t

1− cos
√

λ12T
X12(x),

f (x) = X IV
11 (x) + (1 + i)exX11(x)− λ11

1− cos
√

λ11T
X11(x) +

λ12

1− cos
√

λ12T
X12(x),

for every T and fixed number m0 such that T 6= 2πm0√
λ11

, since all conditions of Theorem 2 are satisfied.

5. Conclusions

In the present paper, we have, for the first time, studied the inverse problems for the
fourth-order hyperbolic Equation (1) with a variable complex-valued coefficient. Therefore,
in the future, it is of theoretical and practical interest to investigate other direct and inverse
problems for Equation (1), a fourth-order hyperbolic equation with involution perturbation
utt(x, t) + ∂4

∂x4 u(x, t)− α ∂4

∂x4 u(−x, t) + q(x)u(x, t) = f (x). As for the numerical discretiza-
tion of the inverse problem and numerical experiments, we defer this challenging task to a
possible future work.
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