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Abstract: In this paper, we construct a more realistic mathematical model to study toxoplasmosis
dynamics. The model considers two discrete time delays. The first delay is related to the latent phase,
which is the time lag between when a susceptible cat has effective contact with an oocyst and when it
begins to produce oocysts. The second discrete time delay is the time that elapses from when the
oocysts become present in the environment to when they are able to infect. The main aim in this paper
is to find the conditions under which the toxoplasmosis can disappear from the cat population and to
study whether the time delays can affect the qualitative properties of the model. Thus, we investigate
the impact of the combination of two discrete time delays on the toxoplasmosis dynamics. Using
dynamical systems theory, we are able to find the basic reproduction numberRd

0 that determines the
global long-term dynamics of the toxoplasmosis. We prove that, ifRd

0 < 1, the toxoplasmosis will
be eradicated and that the toxoplasmosis-free equilibrium is globally stable. We design a Lyapunov
function in order to prove the global stability of the toxoplasmosis-free equilibrium. We also prove
that, if the threshold parameterRd

0 is greater than one, then there is only one toxoplasmosis-endemic
equilibrium point, but the stability of this point is not theoretically proven. However, we obtained
partial theoretical results and performed numerical simulations that suggest that, ifRd

0 > 1, then the
toxoplasmosis-endemic equilibrium point is globally stable. In addition, other numerical simulations
were performed in order to help to support the theoretical stability results.

Keywords: mathematical modeling; dynamical systems; toxoplasmosis; delay differential equations;
multiple time delays; stability analysis

MSC: 34K05; 34K60; 37N25; 37M05; 92-10

1. Introduction

T. gondii is a protozoan parasite that attacks and parasitizes animals including humans.
Its only definitive hosts are members of the family Felidae. However, other species are
intermediate hosts [1–3]. In humans, immunocompromised and congenitally infected
persons can suffer from severe and lethal effects [4,5]. In individuals who are immunocom-
petent, toxoplasmosis infection usually only causes flu symptoms and chorioretinitis [4,6,7].
However, severe acute toxoplasmosis has been reported in immunocompetent persons [8].
In addition, it has been suggested that T. gondii infection might cause autoimmune diseases
and neurological disorders [9–13]. It has been found that the genotype of the strain of
T. gondii affects the severity of the infection [14–16].

T. gondii is one of the most significant foodborne pathogens [4,17–19]. In the USA
alone, there are more than 40 million people with T. gondii [4,17]. It has been estimated
that more than 60% of some communities around the world are affected. Prevalence is
higher in regions that are hot, humid, and at lower altitudes [4,20]. For instance, in tropical
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South America, T. gondii has higher genetic diversity [16]. It has been estimated that 32% of
the total consequences of toxoplasmosis are due to congenital toxoplasma infections [21].
Toxoplasmosis exists in all the countries around the world and it has been estimated that
there are 190,000 congenital toxoplasmosis cases annually (1.5 per 1000 live births) [22,23].
However, the estimation related to acquired toxoplasmosis is uncertain. In the United
States, it has been estimated that there are 58 congenital toxoplasmosis cases per 100,000
individuals [22,24]. It has also been estimated that, in the United States, the annual cost
associated with T. gondii is 10,964 quality-adjusted life-years (ranking it third among food-
related pathogens) and the cost of illness is USD 2.9 billion (ranked second) [22,25]. High
associated costs are present in South America and in some low-income countries [22,23].

There are different routes of transmission of T. gondii; ingestion of sporulated oocysts,
ingestion of viable tissue cysts, and congenital infection. For instance, the number of congenital
toxoplasmosis infections has been estimated to be 1.2 million [26]. Oocyst contamination in fruits
and greens contributes significantly more to total estimated T. gondii infections than bradyzoite-
contaminated foods [19]. The infected cats are able to shed oocysts in the environment and
humans can be infected after consumption of undercooked and raw meat [19,20,27–30]. It has
been estimated that the feces of cats shedding T. gondii have 2.5× 106 oocysts/gr and a cat
sheds around 20 million oocysts per day [31]. The control of toxoplasmosis and the definitive
host is a challenging problem [30,32–35]. Current health interventions are weak since they only
focus on acute/reactivated forms of the disease [5,30]. Thus, studies related to toxoplasmosis
interventions are crucial and worthwhile.

Animals usually do not suffer from symptoms related to toxoplasmosis
infection [36–39]. However, they suffer from congenital transmission and its consequences,
such as offspring with abnormalities [30]. Documentation of the consequences of T. gondii
infection in animals has been presented [4,36–38,40,41]. Toxoplasmosis infections in many
different animals have important consequences from different viewpoints [36,41–44]. Also,
economic and public health impacts related to toxoplasmosis have been mentioned in the
literature [30,45,46].

There have been several previous studies devoted to investigating toxoplasmosis dy-
namics [26,47]. Some of these works have used mathematical models with a variety of
approaches [26]. Few mathematical models have focused on investigating cat–human trans-
mission under different assumptions related to demographic factors [48,49]. However, there
are other, more complex models that have been employed to study the dynamics of toxo-
plasmosis using other variables and hosts [47,50–53]. In addition, some researchers have
investigated and explored the effect of cat and swine vaccinations [32,33,47,50,51,54]. Also,
within-host mathematical models have been proposed to study the T. gondii dynamics within
the host [55]. In [26], an excellent overview of mathematical models for toxoplasmosis dynam-
ics is provided.

In this paper, we study the effects of the combination of two time delays on the
dynamics of toxoplasmosis, taking into account the cat population and the number of
oocysts in the environment. The introduction of two time delays allow us to study a
more realistic scenario despite the typical limitations of mathematical models for real-
world processes. One time delay is related to the cats’ exposed stage and the second
delay is related to the time it takes an oocyst to become infectious after being shed by
the cat. In particular, the first discrete time delay occurs due to the fact that, when a
susceptible cat has effective contact with an oocyst, that cat starts an incubation period
before being able to start shedding oocysts. Thus, the time delay is the incubation period
of the cat. In order to study the aforementioned effects, we construct a mathematical
model that uses a nonlinear system of delay differential equations. One key aspect of
the model is the fact that, once the cats have effective contact with the oocysts, they are
not able to produce oocysts instantaneously [2,6,20]. The inclusion of oocysts is crucial
since they are highly responsible for the persistence of the T. gondii [2,6,20,27,29,56,57].
The constructed model encompasses the fact that cats can get the T. gondii parasite through
effective contact with an oocyst. The model is more realistic than the mathematical model



Mathematics 2023, 11, 3463 3 of 20

presented in [47]. This previous model does not include any time delay related to more
realistic scenarios. There is a delay in the shedding of oocysts that lasts between 3 and
30 days after ingestion of tissue cysts [6,58,59]. The constructed model also includes the cats
due to their importance in the reproduction of T. gondii and therefore for the toxoplasmosis
disease [60]. Public health policies should take into account many factors to control the
spread of toxoplasmosis; for instance, domestic cats and other intermediate hosts [43]. There
are three major genotypes (type one, type two, and type three) of T gondii. In Europe and
the USA, type two is the most prevalent for congenital toxoplasmosis. Their pathogenicity
differs, but if we assume an average for all the types, then the model proposed in this study
will be applicable. However, if we differentiate the genotypes and their features regarding
pathogenicity then a more complex model will be required [61–63].

Mathematical models based on systems of delay differential equations have been used
to study different kind of infectious diseases, including between hosts and
within hosts [64–73]. The reason for including time delays is the fact that many processes
do not have instantaneous effects in the real world. However, there are some drawbacks of
employing mathematical models with delay differential equations. For instance, their anal-
ysis is usually more challenging and cumbersome. Furthermore, solving delay differential
equations is more difficult than ordinary differential equations [74–77]. The inclusion of de-
lays in the differential equations can have a great impact on the stability of the steady states
and oscillatory behavior can appear with some particular values of the time delays [78–85].
Moreover, the inclusion of multiple time delays makes the mathematical analysis more
complex and oftentimes intractable [86–91]. In particular, there are several works that
have studied mathematical models that have two time delays [92–94]. For instance in [95],
the authors used two time delays in a model to study the control of disease spreading
in networks.

In summary, in our study, one main objective is to investigate the effect of the com-
bination of two time delays on the toxoplasmosis infection dynamics. The importance
of the combination of two time delays resides in the fact that, if a stability switch occurs
in the model with only one time delay, then it might be possible that the result does not
hold for the model with two time delays (see [81,96]). Moreover, the model with two time
delays is closer to reality and also provides helpful insight into the mechanism of more
complex dynamics [92]. Therefore, we investigate if the time delays are able to produce
different behaviors and complexity in the toxoplasmosis dynamics. We explore the stability
of the steady states of the model. We prove that, if Rd

0 is greater than one, then there is
only one toxoplasmosis-endemic equilibrium point, but due to the presence of two discrete
time delays, we are not able to prove its stability. However, we obtained partial theoretical
results and performed numerical simulations that suggest that, ifRd

0 > 1, then the point is
globally stable. We also performed in silico simulations to support the theoretical results.
In addition, we simulated some scenarios to gain insight into the effect of the two time
delays on the toxoplasmosis dynamics.

2. Mathematical Model

We designed a new mathematical model to explore and investigate the dynamics of
toxoplasmosis in a population of cats. The proposed model includes two discrete time
delays, which makes the model closer to reality. The first delay is related to the time that it
takes for a cat to become infected after infectious contact with the oocysts. In particular,
the first discrete time delay is the incubation period before the cats start shedding oocysts.
Thus, the term βS(t)O(t) represents that the cats have effective contact with the oocysts at
time t and the term −β S(t− τ1)O(t− τ1)e−µτ1 represents the cats leaving the incubation
phase (after a time τ1) and becoming able to shed oocysts [69,97]. The second time delay is
related to the time that it takes the oocysts to sporulate and become infectious (somewhere
between 1 and 5 days) after they are shed in the environment by an infected cat [6,20,56,58].
The mathematical model includes vaccinated cats and infected cats [32,47,98]. The cats get
infected by contact with oocysts. These infections depend on the amount of T. gondii in the
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environment [54]. The model uses a system of delay differential equations. Further details
regarding the model can be seen in [47].

The model has five subpopulations: susceptible S(t), latent E(t), infected I(t), vaccinated–
recovered VR(t), and oocysts O(t). The vaccine provides life immunity [32,33,99,100]. A suscep-
tible cat goes to the latent stage after contact with an oocyst. The infected cats stay in this stage
for a mean time of 1

α . The change in the number of oocysts in the environment is proportional
to the infectious cats I(t). The oocysts in the environment suffer from natural degradation.

The mathematical model is given in terms of the following nonlinear delay differential
equation system

Ṡ(t) = µ (1− I(t))− βS(t)O(t)− (µ + γ)S(t),
Ė(t) = βS(t)O(t)− β S(t− τ1)O(t− τ1)e−µτ1 − µE(t),
İ(t) = β S(t− τ1)O(t− τ1)e−µτ1 − αI(t),

V̇R(t) = αI(t) + γS(t)− µVR(t),
Ȯ(t) = k I(t− τ2)− µ0 O(t).

(1)

We assume that the total population of cats is given by N(t) = S(t) + E(t) + I(t) +
VR(t) = 1 (without loss of generality). Therefore, since the state variable VR is not included
explicitly in the first three parts of model (1), we can analyze the model without this variable.
The graphical representation of mathematical model (1) can be observed in Figure 1. Note
that vertical transmission is included in the cat population [28,40,101–104].

Figure 1. Graphical representation of mathematical model (1) with two time delays τ1 and τ2.

For the sake of simplicity, model (1) can be studied using the following simplified system

Ṡ(t) = µ (1− I(t))− βS(t)O(t)− (µ + γ)S(t),
Ė(t) = βS(t)O(t)− β S(t− τ1)O(t− τ1)e−µτ1 − µE(t),
İ(t) = β S(t− τ1)O(t− τ1)e−µτ1 − αI(t),
Ȯ(t) = k I(t− τ2)− µ0 O(t),

(2)

where the parameters µ, γ, τ1, τ2, β, α, k are all positive. Consider

R4
+ = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, · · · , 4}.

In order to investigate the existence and uniqueness of model (2), we denote by
C
[
[−τ, 0],R4

+

]
(with τ = max{τ1, τ2}) the Banach space of continuous functions ζ defined

in ζ : [−τ, 0] → R4
+ such that ζ(t) = (ζ1(t), ζ2(t), ζ3(t), ζ4(t)) and a norm defined by

(see [105])

‖ζ‖ = sup
−τ≤s≤0

{|ζ1(s)|, |ζ2(s)|, |ζ3(s)||ζ4(s)|}.



Mathematics 2023, 11, 3463 5 of 20

Thus, for biological significance, we further assume that the initial conditions of
model (2) have the following structure:

S(s) = ζ1(s) > 0, E(s) = ζ2(s) ≥ 0, I(s) = ζ3(s) ≥ 0, O(s) = ζ4(s) ≥ 0, ∀s ∈ [−τ, 0],

S(0) = S0 = ζ1(0), E(0) = E0 = ζ2(0), I(0) = I0 = ζ3(0), O(0) = O0 = ζ4(0). (3)

Moreover, for the continuity of the initial conditions, it is required that

E(0) =
∫ 0

−τ
ζ1(w)ζ4(w)eµw dw.

The initial value of E(0) must be related to the initial values of the variables S and O
such that they satisfy the conditions in Equation (3), which is an integral constraint of the
function ζ2 : [−τ, 0]→ [0, ∞], and this is important so that the positivity of the solutions is
preserved [106]. From the theory of functional differential equations [107], we can apply
the theorem that comes next.

Theorem 1. Suppose O is an open set in R × C
(
[−τ, 0],R4

+

)
, f : Ω → R4 is continuous,

and f (t, ζ) is Lipschitzian in ζ in each compact set in Ω. If (σ, ϕ) ∈ Ω, then there is a unique
solution to model (2) through (σ, ϕ).

Proof. See [107] (p. 44).

Therefore, it follows that model (2) admits a unique solution provided that the condi-
tions shown in Equation (3) hold.

Next, the positivity and boundedness for model (2) are established with the subse-
quent theorem.

Theorem 2. The solution X(t) = (S(t), E(t), I(t), O(t)) to Equation (2) is positive and uniformly
bounded on [0,+∞) if Equation (3) holds.

Proof. From Equation (2), one can find that

Ṡ(t) = µ (1− I(t))− βS(t)O(t)− γS(t) ≥ −βS(t)O(t)− γS(t).

Thus,

S(t) ≥ S(0) exp
(
−
∫ t

0
(βO(s) + γ) ds

)
> 0, ∀t ≥ 0.

To show that the other variables preserve positivity over time, we proceed using the
method of steps [106]. With this order of ideas, let t ∈ [0, τ]. With the initial conditions
shown in Equation (3), it follows that S(t− τ)O(t− τ) ≥ 0 in this interval. Then, from the
third equation of system (2), and using the comparison criterion for differential equations,
it follows that I(t) ≥ 0 for all t ∈ (0, τ]. Analogously, it is verified that O(t) > 0 with
t ∈ (0, τ], and, therefore, the non-negativity for E(t) is a consequence of the simple fact that
the solution of the differential equation related to E(t) can be written as

E(t) = e−µt
(

E(0) +
∫ t

t−τ
S(w)O(w)eµw dw

)
, ∀t ∈ (0, τ].

The above reasoning can be applied for variables E, I, O in the interval (τ, 2τ] and
successively in intervals of the form (nτ, (n + 1)τ], for n ∈ N0. Next, from system (2),
one gets

Ṡ(t) + Ė(t) + İ(t) + Ȯ(t) ≤ µ + k−M(S(t) + E(t) + I(t) + O(t)),
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where M < min{µ + γ, µ, α + µ, µ0}. As a result, one obtains

lim sup
t→∞

(S(t) + E(t) + I(t) + O(t)) ≤ µ + k
M

.

Hence, we study the qualitative behavior of model (2) in the following region:

R =
{
(S, E, I, O) ∈ R4

+ : 0 < S(t) + E(t) + I(t) + O(t) ≤ µ + k
M

}
,

where R4
+ denotes the non-negative cone of R4. Thus, the setR is positively invariant.

Now, we can focus on the stability analysis of model (2) in the restricted regionR.

3. Stability Analysis of the Model

The qualitative analysis of the mathematical model from Equation (2) can be under-
taken by using linearizations and finding suitable Lyapunov functions [105,108]. Before we
begin the stability analysis, we would like to prove the positivity and boundedness of the
solutions to model (2).

3.1. Disease-Free Steady State for the Model without Delay

The steady states of model (2) without delay are the same as for the model with
the two time delays τ1 and τ2. The steady states are crucial for the study of dynamical
systems [108–110].

We can start analyzing the stability of the steady states of the model without consider-
ing the delays. This analysis has been performed previously and the details can be seen
in [47,111,112]. The model from Equation (2) without delay has a toxoplasmosis-free equi-
librium point F∗ and a toxoplasmosis-endemic equilibrium point. The toxoplasmosis-free
equilibrium point is given by

F∗ =
(

µ

µ + γ
, 0, 0, 0

)
. (4)

It has also been found that the basic reproduction number for model (2) without any
time delays is given by [47,52,111]:

R0 =

√
kβ µ

α µ0(γ + µ)
. (5)

If R0 < 1, the toxoplasmosis-free equilibrium point is globally asymptotically sta-
ble. On the other hand, the toxoplasmosis-free equilibrium point F∗ is unstable when
R0 > 1 [47,52,53].

3.2. Endemic Steady State

Model (2) also has a unique toxoplasmosis-endemic equilibrium point. It is im-
portant to determine this endemic point for the stability analysis of model (2). Indeed,
the toxoplasmosis-endemic equilibrium point is given by EP∗ = (S∗, E∗, I∗, O∗), where
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S∗ =
α µ0

β ke−µ τ1
,

E∗ =
α
(
−µ kβ e−µ τ1 + α γ µ0 + α µ0 µ

)(
e−µ τ1 − 1

)
β ke−µ τ1 (µ e−µ τ1 + α)µ

=

α2µ0(γ + µ)
(
1− e−µ τ1

)((
Rd

0

)2
− 1
)

β ke−µ τ1 (µ e−µ τ1 + α)µ
,

I∗ = −−µ kβ e−µ τ1 + α γ µ0 + α µ0 µ

β (µ e−µ τ1 + α)k
=

αµ0(γ + µ)

((
Rd

0

)2
− 1
)

β(µ e−µ τ1 + α)k
, (6)

O∗ = −−µ kβ e−µ τ1 + α γ µ0 + α µ0 µ

β µ0 (µ e−µ τ1 + α)
=

α(γ + µ)

((
Rd

0

)2
− 1
)

β(µ e−µ τ1 + α)
,

and where we define

Rd
0 =

√
µ kβe−µ τ1

µ0 (γ + µ)α
. (7)

Thus, this toxoplasmosis-endemic equilibrium makes biological sense if Rd
0 > 1.

Moreover, note that EP∗ is biologically feasible iff Rd
0 ≥ 1. In particular, if Rd

0 = 1, the
point EP∗ collides with F∗. Now, we proceed to study model (2), which contains two
discrete time delays τ1 and τ2.

3.3. Toxoplasmosis-Free Steady State Analysis

The steady states of model (2) can be found by setting the right-hand side as equal to
zero and setting any state variable with delay as a state variable without delay. To study
the stability of the toxoplasmosis-free steady state, we linearize system (2). The following
is the characteristic equation:

|J0 + Jτ1 e−λτ1 + Jτ2 e−λτ2 − λI| = 0,

where

J0 =



−γ− µ 0 −µ − β µ
γ+µ

0 −µ 0 β µ
γ+µ

0 0 −α 0

0 0 0 −µ0


, Jτ1 =



0 0 0 0

0 0 0 − β µ e−µ τ1

γ+µ

0 0 0 β µ e−µ τ1

γ+µ

0 0 0 0


, Jτ2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 k 0


As a result, the transcendental characteristic equation is given by

|J0 + Jτ1 e−λτ1 + Jτ2 e−λτ2 − λI| = (λ + µ)(λ + γ + µ) T(λ) = 0, (8)

where,

T(λ) =(γ + µ)λ2 + (γ α + α µ + γ µ0 + µ µ0)λ− e−λ τ1 β µ e−µ τ1e−λ τ2 k + α γ µ0 + α µ0 µ

=(γ + µ)λ2 + (γ + µ)(µ0 + α)λ− e−λ τ1 β µ e−µ τ1e−λ τ2 k + αµ0(γ + µ)

=(γ + µ)

(
λ2 + (µ0 + α)λ− αµ0

(
Rd

0

)2
e−λ(τ1+τ2) + αµ0

)
.

It is clear from Equation (8) that two eigenvalues are λ1 = −µ and λ2 = −µ − γ.
The other eigenvalues are given by the roots of T(λ). We propose the following theorem.

Theorem 3. The toxoplasmosis-free equilibrium F∗ of model (2) is locally asymptotically stable if
Rd

0 < 1 but unstable ifRd
0 > 1.
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Proof. Suppose that one eigenvalue λ has a non-negative real part. Then, T(λ) = 0 can be
written as

λ2 + λ(α + µ0) + αµ0 = αµ0

(
Rd

0

)2
e−λ (τ1+τ2). (9)

The modulus of the left-hand side of Equation (9) satisfies

|λ2 + λ(α + µ0) + αµ0| ≥ αµ0. (10)

On the other hand, the modulus of the right-hand side of Equation (9) satisfies

|αµ0

(
Rd

0

)2
e−λ (τ1+τ2)| < αµ0

(
Rd

0

)2
< αµ0, (11)

if Rd
0 < 1. Then, Equation (9) with inequalities (10) and (11) lead to a contradiction.

It follows that all the roots of the characteristic Equation (8) have a negative real part.
Thus, the toxoplasmosis-free equilibrium point is locally asymptotically stable whenever
Rd

0 < 1.

Now that we have obtained the local stability of the equilibrium point F∗, we can
proceed to investigate its global stability.

3.4. Global Stability Analysis of the Toxoplasmosis-Free Equilibrium F∗

We can try to investigate the global stability of F∗ by using the Lyapunov theorem or
the LaSalle variance principle [113]. Let us propose the following theorem.

Theorem 4. The toxoplasmosis-free equilibrium point F∗ of system (2) is globally asymptotically
stable inR ifRd

0 < 1.

Proof. Denoting yt as the translation of the solution to system (2), we have that
yt = (S(t + ξ), I(t + ξ), V(t + ξ)) where ξ ∈ [−τ, 0]. Let us propose the following Lya-
punov function:

L(I(t), S(t), O(t)) = β
∫ t

t−τ1

S(ξ) O(ξ) e−µτ1 dξ + α
∫ t

t−τ2

I(ξ) dξ + I(t) +
α

k
O(t). (12)

Note that, at F∗, one has that S∗= µ
µ+γ , I∗= 0, O∗= 0 and therefore L(F∗) = 0. The

Lyapunov function L satisfies

L(I(t), S(t), O(t)) > 0, (13)

at any point different from F∗. The time derivative of L(I(t), S(t), O(t)) through the
trajectories of model (2) is given by

L′ =βe−µτ1
[
S(t) O(t)− S(t− τ) O(t− τ)

]
+ α(I(t)− I(t− τ2)) + I′(t) +

α

k
O′(t)

=βe−µτ1
[
S(t) O(t)− S(t− τ1) O(t− τ1)

]
+ α(I(t)− I(t− τ2)) + αI(t− τ2)−

αµ0

k
O(t)

=βe−µτ1 S(t) O(t)− αµ0

k
O(t)

≤β
µ

µ + γ
O(t)e−µτ1 − αµ0

k
O(t)

=
αµ0

k
O(t)

(
µβke−µτ1

αµ0(µ + γ)
− 1
)

=
αµ0

k
O(t)(

(
Rd

0

)2
− 1),
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since, from first equation of system (2), one can deduce that S(t) ≤ µ
µ+γ . Thus, one gets

L′ ≤ α µ0

k
O(t)(

(
Rd

0

)2
− 1).

Therefore, L′ ≤ 0 ifRd
0 ≤ 1. Using LaSalle’s invariance principle, one finds that F∗ is

globally asymptotically stable (GAS) inR.

3.5. Stability Analysis of the Toxoplasmosis-Endemic Steady State

The characteristic equation for the toxoplasmosis-endemic steady state is given by

|JE + Jτ1 e−λτ1 + Jτ2 e−λτ2 − λI| = 0, (14)

where

JE =


−β O∗ − γ− µ 0 −µ −β S∗

β O∗ −µ 0 β S∗

0 0 −α 0

0 0 0 −µ0

, Jτ1 =


0 0 0 0

−β O∗ e−µ τ1 0 0 −β S∗ e−µ τ1

β O∗ e−µ τ1 0 0 β S∗ e−µ τ1

0 0 0 0

, and Jτ2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 k 0

.

The explicit form of Equation (14) is

− (µ + λ)
(
− S∗ e−λ τ1−λ τ2−µ τ1(γ β k + β kλ + β k µ) + O∗e−τ1 (µ+λ)β λ µ

+ O∗e−τ1 (µ+λ)β µ µ0 + O∗α β λ + O∗α β µ0 + O∗β λ2 + O∗β λ µ0 + γ α λ + α γ µ0

+ λ2α + α λ µ + α λ µ0 + α µ0 µ + γ λ2 + γ λ µ0 + λ3 + λ2µ + λ2µ0 + λ µ µ0

)
= 0.

Clearly, one eigenvalue is λ = −µ. The other eigenvalues are the roots of the follow-
ing equation

kS∗β(µ+γ+λ)e(−τ1−τ2)λ−µ τ1−(µ0+λ)
(

e−τ1(µ+λ)βµO∗+(α + λ)(βO∗+γ+λ+µ)
)
=0. (15)

Let us assume that a root λ of this equation has a non-negative real part. Thus,
Equation (15) can be rewritten as

−(µ0+λ)e−τ1(µ+λ)βµO∗=−kS∗β(µ+γ+λ)e(−τ1−τ2)λ−µ τ1 + (µ0+λ)(α+λ)(βO∗+γ+λ+µ).

The modulus of the left-hand side of this last equation satisfies∥∥∥−(µ0 + λ)e−τ1 (µ+λ)β µ O∗
∥∥∥ = ‖µ0 + λ‖ e−µ τ1 β µ O∗

∥∥∥e−τ1λ
∥∥∥

= ‖µ0 + λ‖ e−µ τ1 β µ
∥∥∥e−τ1λ

∥∥∥ α(γ + µ)

((
Rd

0

)2
− 1
)

β(µ e−µ τ1 + α)

< ‖µ0 + λ‖α(γ + µ)

((
Rd

0

)2
− 1
)

.

Now, the modulus of the right-hand side of Equation (15) satisfies∥∥∥−kS∗ β (µ + γ + λ)e(−τ1−τ2)λ−µ τ1 + (µ0 + λ)(α + λ)(β O∗ + γ + λ + µ)
∥∥∥

>
∣∣∣‖(µ0 + λ)(α + λ)(β O∗ + γ + λ + µ)‖ −

∥∥∥kS∗ β (µ + γ + λ)e(−τ1−τ2)λ−µ τ1
∥∥∥∣∣∣

> ‖γ + λ + µ‖
∣∣∣µ0α− kS∗β e−µ τ1

∥∥∥e(−τ1−τ2)λ
∥∥∥∣∣∣

> (γ + µ)

∣∣∣∣µ0α− k
α µ0

β ke−µ τ1
β e−µ τ1

∥∥∥e(−τ1−τ2)λ
∥∥∥∣∣∣∣ = (γ + µ)µ0α

∣∣∣1− ∥∥∥e(−τ1−τ2)λ
∥∥∥∣∣∣.
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Accordingly, one gets that

‖µ0 + λ‖α(γ + µ)

((
Rd

0

)2
− 1
)
> (γ + µ)µ0α

∣∣∣1− ∥∥∥e(−τ1−τ2)λ
∥∥∥∣∣∣

i.e.,

‖µ0 + λ‖
((
Rd

0

)2
− 1
)
> µ0

∣∣∣1− ∥∥∥e(−τ1−τ2)λ
∥∥∥∣∣∣, ∀Rd

0 > 1.

Thus, as Rd
0 → 1+, we have a contradiction. Therefore, λ cannot have a positive

real part.
Now, Equation (15) can be rewritten as

(µ0 + λ) (α + λ) (β O∗ + γ + µ + λ) + β µ O∗ (µ0 + λ) e−µ τ1−λ τ1

− β k S∗ (γ + µ + λ) e−µ τ1−λ τ1−λ τ2 = 0. (16)

Equation (16) is a function of λ, τ1, and τ2 with the following form

P(λ, τ1, τ2) =

(
P0(λ) + P1(λ) e−λ τ1

)
+

(
P2(λ) + P3(λ) e−λ τ1

)
e−λ τ2 , (17)

where P0(λ) = (µ0 + λ)(α + λ)(β O∗ + µ + γ + λ). It is clear that the degree of P0(λ) is
three. The other polynomials Pi(λ) are given by P1(λ) = β µ (µ0 + λ)O∗ e−µ τ1 , P2(λ) = 0,
and P3(λ) = −α µ0 (γ + λ + µ). Notice that

deg(P0(λ)) ≥ max{deg(P1(λ)), deg(P2(λ)), deg(P3(λ))},

and

3

∑
i=0

Pi(0) = µ0 α(β O∗ + µ + γ) + β µ µ0 O∗ e−µ τ1 − α µ0 (γ + µ).

The parameters of model (2) satisfy α > 0, µ0 > 0, µ > 0, and β > 0; then, the above
expression will be zero if O∗ = 0. Note that if O∗ is a component of the endemic equilibrium
point EP∗, then O∗ cannot be equal to zero. Hence, the above expression cannot be zero.
Thus, one gets that

P0(0) + P1(0) + P2(0) + P3(0) 6= 0.

Therefore, λ = 0 cannot be an eigenvalue or a root of Equation (14). Note that the poly-
nomials P0, P1, P2, and P3 do not have common zeros. On the other hand, the polynomials
P0(λ), P1(λ), P2(λ), and P3(λ) hold with

lim
λ→∞

(∣∣∣∣P1(λ)

P0(λ)

∣∣∣∣+ ∣∣∣∣P2(λ)

P0(λ)

∣∣∣∣+ ∣∣∣∣P3(λ)

P0(λ)

∣∣∣∣) < 1.

Therefore, Equation (17) is a characteristic equation (see [93]).
To study stability switching, we consider purely imaginary characteristic roots since

λ 6= 0 and roots of a real function always occur as conjugate pairs. Let us assume that
λ = i ω (ω > 0) is an eigenvalue. Substituting this into Equation (17), one obtains

P(i ω, τ1, τ2) =

(
P0(i ω) + P1(i ω)e−i ω τ1

)
+

(
P2(i ω) + P3(i ω)e−i ω τ1

)
e−i ω τ2 = 0. (18)

Since P2(iω) = 0 and
∥∥e−iω τ2

∥∥ = 1, it follows that

||P0(i ω) + P1(i ω) e−iω τ1 || = ||P3(i ω) e−iω τ1 || = ||P3(i ω)||. (19)
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Then, the above equation can be written as

(P0(iω) + P1(iω) e−iω τ1) (P̄0(iω) + P̄1(iω) eiω τ1) = (P3(iω) e−iω τ1) (P̄3(iω) eiω τ1).

After simplifying, one gets

‖P0(iω)‖2 + ‖P1(iω)‖2− ‖P3(iω)‖2 =− 2 Re(P0(iω) P̄1(iω))cos (ω τ1)

+ 2 Im(P0(iω) P̄1(iω))sin (ω τ1).

Hence,

‖P0(iω)‖2+‖P1(iω)‖2−‖P3(iω)‖2=2A1(iω) cos (ωτ1)− 2B1(iω) sin (ωτ1), (20)

where
A1(iω) = −Re(P0(iω) P̄1(iω)) and B1(ω) = −Im(P0(iω) P̄1(iω)). (21)

Suppose that there exists ω such that A1(iω)2 + B1(iω)2 = 0. Then

A1(iω) = B1(iω) = 0⇐⇒ P0(iω) P̄1(iω) = 0,

‖P0(iω)‖2 + ‖P1(iω)‖2 = ‖P3(iω)‖2. (22)

On the other hand, we have that

P0(i ω) =(−ω3 + α µ0 ω + (α ω + µ0 ω)(β O∗ + γ + µ)) i− (α ω + µ0 ω)ω

− (ω2 − µ0 α)(β O∗ + γ + µ),

and

P1(i ω) = e−µ τ1 β µ O∗ (µ0 + i ω), (23)

P̄1(i ω) = e−µ τ1 β µ O∗ (µ0 − i ω). (24)

After simplification, we can write the following equation

P0 P̄1 = β µ O∗ e−µ τ1 (µ2
0 + ω2) (β O∗ + α + γ + µ)

+ i β µ ω O∗ e−µ τ1 (µ2
0 + ω2) (α β O∗ + γ α + α µ−ω2) = 0.

Now, both the real part and the imaginary part of the above equation must be zero
separately

β µ O∗ e−µ τ1 (µ2
0 + ω2) (β O∗ + α + γ + µ) = 0, (25)

and
β µ ω O∗ e−µ τ1 (µ2

0 + ω2) (α β O∗ + γ α + α µ−ω2) = 0. (26)

Solving Equation (25) for ω, one gets that ω = ± µ0 i. Now, solving Equation (26),
one obtains that ω = ± µ0 i or ω = ±

√
O∗ α β + γ α + α µ. Therefore, the only option with

which both Equations (25) and (26) are satisfied is to have ω = ± µ0 i. Since ω is a positive
real number, P0 P̄1 cannot be zero for any value of ω for all τ1 ∈ R+.

Next, we should consider the case where A1(ω)2 + B1(ω)2 > 0. In [93], it is shown
that, if the inequality ∣∣∣|P0|2 + |P1|2 − |P2|2 − |P3|2

∣∣∣ ≤ 2
√

A2
1 + B2

1 (27)

is not satisfied, then we can guarantee that there is no real positive ω. Therefore, we would
be able to conclude that the toxoplasmosis-endemic equilibrium point EP∗ cannot lose
stability regardless of the values of the time delays τ1 and τ2. We were not able to prove that
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this inequality is not true for any positive parameter values and discrete time delays τ1 and
τ2. However, we tested the inequality with a large number of values for the parameters and
time delays and it was found that the inequality was not satisfied. Thus, these numerical
results suggest that EP∗ is locally stable and no Hopf bifurcation occurs [105].

In the next section, we provide numerical simulations that give support to all the
above mathematical theoretical results. Moreover, we describe numerical simulations that
show the importance of the time discrete delay and the basic reproduction numberRd

0 in
the delayed model. In addition, we discuss simulations that suggest that the toxoplasmosis-
endemic equilibrium point EP∗ cannot lose stability regardless of the values of the time
delays τ1 and τ2.

4. Numerical Simulations

In order to investigate the dynamics of toxoplasmosis and corroborate the theoretical
findings from the preceding sections, we undertook a range of in silico simulations of
mathematical model (1). For the purpose of acquiring distinct values forRd

0 andR0, we
investigated a range of scenarios with a variety of values for the time delays and the
parameters. In particular, we were interested in the values Rd

0 > 1 and Rd
0 < 1 since

these are the threshold values for the long-term behavior of the toxoplasmosis disease.
The in silico simulations provide further insights, such as into the transient and long-term
behavior of the toxoplasmosis disease in the cat population and the oocyst population. We
varied the values of the transmission rate and infectivity of the oocysts. Thus, we could
study different scenarios related to the dynamics.

We relied on the Matlab built-in function dde23 to compute the numerical solutions to
the delay differential equations [77,114]. For the in silico simulations, we used the values
presented in Table 1. The initial conditions were varied in order to obtain a more robust sup-
port for the theoretical results. In addition, the equilibrium points were computed for each
scenario using the numerical simulations and we contrasted them with the theoretical ones.

Table 1. Explanation of the parameters of the delayed model (1) and their values.

Parameter Description Value

µ Birth/death rates (cats) 1/260 (1/weeks) [115]
α Shedding period 1/2 (1/weeks) [56]
µ0 Clearance rate 1/26 (1/day) [54,56]
k Oocysts per day (cat) 20× 106 (1/day) [116]
β Transmission rate Varied
γ Vaccination rate Varied

4.1. Numerical Simulations for the Scenarios WhenRd
0 < 1

Here, we describe the in silico simulations where the basic reproduction number
Rd

0 < 1 and both time delays (τ1 and τ2) were different from zero. We used the following
initial condition: S(0) = 0.5, E(0) = 0.3, I(0) = 0.2, VR(0) = 0, and O(0) = 1. Figure 2
shows that the system reached the toxoplasmosis-free equilibrium F∗. In this case, we have
thatR0 > 1, but as can be seen, the crucial parameter isRd

0. It is important to mention that
when there are no time delays one obtains thatRd

0 = R0. Thus, it is possible that, for the
toxoplasmosis model without time delays, the disease can be prevalent, but when time
delays are taken into account, the disease is eradicated. This has a relevant impact from a
public health point of view, since it shows the relevance of the time delays in the dynamics
of toxoplasmosis. Figure 3 shows the same scenario but using much larger time delays
(τ1 = 10 and τ2 = 10). Again, the system reached the toxoplasmosis-free equilibrium F∗

since Rd
0 < 1. Notice that the increase in the time delays did not affect the value of F∗.

Finally, we increased the time delays to much larger values to show that long-term behavior
would be maintained despiteRd

0 being significantly lower. This can be observed in Figure 4.
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Figure 2. Dynamic behavior of the subpopulations when β = 0.17309 × 10−9 and γ = 0.001.
The components of the toxoplasmosis-free equilibrium point are S∗ ≈ 0.793, I∗ = 0, and O∗ = 0.
The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduction numbers
Rd

0 ≈ 0.999 andR0 ≈ 1.00003 > 1, and both time delays are different from zero (τ1 = 1 and τ2 = 1).

Figure 3. Dynamic behavior of the subpopulations when β = 0.17309 × 10−9 and γ = 0.001.
The components of the toxoplasmosis-free equilibrium point are S∗ ≈ 0.793, I∗ = 0, and O∗ = 0.
The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduction numbersRd

0 ≈ 0.96
andR0 ≈ 1.00003 > 1, and both time delays are different from zero (τ1 = 10 and τ2 = 10).

Figure 4. Dynamic behavior of the subpopulations when β = 0.17309 × 10−9 and γ = 0.001.
The components of the toxoplasmosis-free equilibrium point are S∗ ≈ 0.793, I∗ = 0, and O∗ = 0.
The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduction numbersRd

0 ≈ 0.7
andR0 ≈ 1.01 > 1, and both time delays are different from zero (τ1 = 100 and τ2 = 100).

4.2. Numerical Simulations for the Scenarios WhenRd
0 > 1

Here, we describe the simulations performed where the basic reproduction number
Rd

0 > 1 and both time delays (τ1 and τ2) were different from zero. Figure 5 shows that the
system reached the toxoplasmosis-endemic equilibrium EP∗. We increased the transmission
rate β in order to haveRd

0 > 1. The system must approach the endemic steady state EP∗

in accordance with the theoretical results. This section’s second numerical simulation
took a greater transmission rate β into account. Again, as Figure 6 shows, the system
reached the toxoplasmosis-endemic equilibrium EP∗ but with larger populations of infected
cats and oocysts. This was expected since the toxoplasmosis-endemic equilibrium EP∗

depends on the time delay β (see Equation (6)). Moreover, the theoretical toxoplasmosis-
endemic equilibrium EP∗ agreed with the numerical endemic equilibrium. The next
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simulation considered very large time delays to study the possibility of the system losing
stability. The results from the previous section suggest that this is not feasible from a
mathematical theoretical viewpoint. Figure 7 shows that the system still reached the
toxoplasmosis-endemic equilibrium EP∗ but with larger populations of infected cats and
oocysts due to the large transmission rate. It is important to mention that, for many models
based on delay differential equations, large time delays can give conditions such that
periodic solutions arise. This is an important aspect to consider since, instead of having
a steady state, oscillatory behavior could be obtained. It is important to understand this
situation from an ecological viewpoint since incorrect public health interventions can be
implemented. However, the numerical simulations from this section and the results from
the previous section suggest that the mathematical model from Equation (1) cannot have
periodic solutions, even for very large time delays. We tested further time delays, such as
τ1 > 1× 103 and τ2 > 1× 103. Although those numerical results are not shown here, they
were in good agreement with the previous results.

Figure 5. Dynamic behavior of the subpopulations when β = 0.18× 10−9 and γ = 0.001. The com-
ponents of the toxoplasmosis-endemic equilibrium point are S∗ ≈ 0.76, E∗ ≈ 0.00001, I∗ ≈ 0.0003,
and O∗ ≈ 1.05× 106. The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduc-
tion numbersRd

0 ≈ 1.03 andR0 ≈ 1.01 > 1, and both time delays are different from zero (τ1 = 0.1
and τ2 = 0.1).

Figure 6. Dynamic behavior of the subpopulations when β = 0.5× 10−9 and γ = 0.001. The com-
ponents of the toxoplasmosis-endemic equilibrium point are S∗ ≈ 0.27, E∗ ≈ 0.00025, I∗ ≈ 0.005,
and O∗ ≈ 1.81× 107. The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduc-
tion numbersRd

0 ≈ 2.88 andR0 ≈ 1.69 > 1, and both time delays are different from zero (τ1 = 0.1
and τ2 = 0.1).
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Figure 7. Dynamic behavior of the subpopulations when β = 0.5× 10−6 and γ = 0.001. The com-
ponents of the toxoplasmosis-endemic equilibrium point are S∗ ≈ 0.0128, E∗ ≈ 0.962, I∗ ≈ 0.00016,
and O∗ ≈ 5.88× 105. The initial state is S(0) = 0.5, I(0) = 0.3, and O(0) = 300. The basic reproduc-
tion numbersRd

0 ≈ 61 andR0 ≈ 53, and both time delays are different from zero (τ1 = 1× 103 and
τ2 = 1× 103).

4.3. Numerical Tests for Hopf Bifurcation WhenRd
0 > 1

Here, we show that, for a set of parameter values that are similar to the previous nu-
merical simulations, the inequality (27) is not satisfied. Therefore, a Hopf bifurcation cannot
occur for the set of parameter values that we chose. Let us first rewrite Equation (27) as∣∣∣|P0|2 + |P1|2 − |P2|2 − |P3|2

∣∣∣− 2
√

A2
1 + B2

1 ≤ 0. (28)

If we vary ω, we can compute the values of the left-hand side of the inequality (28).
Figure 8 shows these values for a large range of values for ω. We use the log scale for the
values of the left-hand side of the inequality (28) and, as can be seen, the inequality (28) is
not satisfied. It is important to point out that this numerical procedure is not a proof since
there are infinitely many potential values for the parameters of model (1). However, these
results and the previous numerical simulations suggest that a Hopf bifurcation cannot occur.

Figure 8. Graph of the values of the left-hand side of the inequality (28) for different values of ω.

5. Conclusions

In order to explore the dynamics of toxoplasmosis, we designed a more realistic
mathematical model in this work. The model considers two discrete time delays: the
first time delay τ1 is related to the time it takes the susceptible cats to become infected
after effective contact with an oocyst and the second time delay τ2 is the time that elapses
between when the oocysts become present in the environment and when they are able to
infect. The main achievement was finding the conditions under which the toxoplasmosis
can disappear from the cat population. This can only occur if there are no oocysts in
the environment. We also found conditions where the toxoplasmosis became endemic.
In addition, we investigated the impact of the two time delays on the toxoplasmosis
dynamics. Using dynamical systems theory, we were able to find the basic reproduction
number Rd

0 for the delay model, which differed from that for the model without delays.
We demonstrated that it is a threshold that determines the global long-term dynamics of
the toxoplasmosis. We proved that, if Rd

0 < 1, the toxoplasmosis would be eradicated
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and the toxoplasmosis-free equilibrium would be globally stable. On the other hand, we
proved that, if the threshold parameter Rd

0 is greater than one, then there is only one
toxoplasmosis-endemic equilibrium point. We obtained partial theoretical results and
performed numerical simulations that suggested that, ifRd

0 > 1, then the toxoplasmosis-
endemic equilibrium point is globally stable. This is a crucial result since it means that,
if the basic reproduction number Rd

0 is greater than one, the system goes exactly to the
toxoplasmosis-endemic steady state. Thus, a globally attractive toxoplasmosis-endemic
equilibrium exists regardless of the time delay. Additional numerical simulations were
performed and supported the theoretical stability results.

The results obtained in this paper allow us to discuss further the effect of vaccination
programs on toxoplasmosis under a more realistic scenario. We provided mathematical
analysis that is valid with any parameter values. It is important to mention that, in reality,
the values of the parameters have uncertainty, as is common in biology, epidemiology, and
public health. The proposed model can be calibrated to real data if we have enough data for
some state variables, such as the number of infected cats and the density of oocysts in the
environment. This calibration is possible since some values of the parameters are known
approximately. However, the uniqueness of the calibration would require identifiability
analysis [117,118]. Another aspect that we would like to point out is that the temperature
impacts the time delays related to the infectiousness of the oocysts [57]. Therefore, due
to climate change, the time delays may be modified in the future. In summary, this
study provides further insight into toxoplasmosis dynamics. However, there are still a
great number of open problems where even more realistic facts can be included in the
mathematical models. For instance, including intermediate hosts, such as mice, would be
an important aspect. This is one of the limitations of this work. As with any mathematical
model related to biological processes, there are some limitations related to the complex
real world. The developed model does not consider humans, who, in a very complex
process, might affect the toxoplasmosis dynamics. The model also includes homogeneous
mixing, which might not be suitable for some scenarios. Finally, future works that include
additional intermediate hosts or new time delays, although challenging, could be useful.
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