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Abstract: The internet of things (IoT) has prepared the way for a highly linked world, in which
everything is interconnected, and information exchange has become more easily accessible via the
internet, making it feasible for various applications that enrich the quality of human life. Despite
such a potential vision, users’ privacy on these IoT devices is a significant concern. IoT devices
are subject to threats from hackers and malware due to the explosive expansion of IoT and its use
in commerce and critical infrastructures. Malware poses a severe danger to the availability and
reliability of IoT devices. If left uncontrolled, it can have profound implications, as IoT devices and
smart services can collect personally identifiable information (PII) without the user’s knowledge or
consent. These devices often transfer their data into the cloud, where they are stored and processed
to provide the end users with specific services. However, many IoT devices do not meet the same
security criteria as non-IoT devices; most used schemes do not provide privacy and anonymity to
legitimate users. Because there are so many IoT devices, so much malware is produced every day,
and IoT nodes have so little CPU power, so antivirus cannot shield these networks from infection.
Because of this, establishing a secure and private environment can greatly benefit from having
a system for detecting malware in IoT devices. In this paper, we will analyze studies that have
used ML as an approach to solve IoT privacy challenges, and also investigate the advantages and
drawbacks of leveraging data in ML-based IoT privacy approaches. Our focus is on using ML
models for detecting malware in IoT devices, specifically spyware, ransomware, and Trojan horse
malware. We propose using ML techniques as a solution for privacy attack detection and test pattern
generation in the IoT. The ML model can be trained to predict behavioral architecture. We discuss
our experiments and evaluation using the “MalMemAnalysis” datasets, which focus on simulating
real-world privacy-related obfuscated malware. We simulate several ML algorithms to prove their
capabilities in detecting malicious attacks against privacy. The experimental analysis showcases the
high accuracy and effectiveness of the proposed approach in detecting obfuscated and concealed
malware, outperforming state-of-the-art methods by 99.50%, and would be helpful in safeguarding
an IoT network from malware. Experimental analysis and results are provided in detail.

Keywords: internet of things; IoT privacy; machine learning; privacy; malware detection; obfuscated
malware; supervised learning algorithms

MSC: 65P40

1. Introduction

Smart devices have proliferated over the past decade, and the internet of things (IoT)
has grown in popularity. This is because the IoT plays an important role in a large propor-
tion of most people’s daily routines and life [1]. It is a service that enables transmissions
between people and objects. Machine learning (ML) technologies have been driving the
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development of smart cities and enhancing our daily lives by using the vast amounts of
data generated from IoT devices. [2–4]. Transportation, healthcare systems, home au-
tomation and environmental control [5] are just a few of the numerous domains in which
IoT applications can be invaluable. Moreover, the International Data Corporation (IDC)
forecasts that the number of connected devices will reach 41.6 billion in 2025 [6]. IoT will
contribute significantly to a significant increase in the volume of data produced as a result
of the rapid development in the number of IoT devices; it is anticipated that the amount of
data generated globally will reach 180 zettabytes by 2025 [7].

Despite such a promising vision, consumer privacy on IoT devices is a huge worry.
Although these data show that IoT has tremendous future prospects, several problems
must be solved in order for this technology to be more trustworthy and usable. These
difficulties include identity management [8], interoperability [9,10], standardization [11],
and IoT greening [1]. Other major issues for IoT include privacy and security [12,13]. These
devices consist of sensors that can collect data, process them using built-in circuitry, and
send them to a remote location. These data are transmitted to the cloud space, where they
are subsequently stored and analyzed to provide the individuals with specialized services.

In contrast, most used schemes do not provide privacy and anonymity to legitimate
users [14]. Cascading failures also is one of the key issues affecting the reliability of edge-
assisted IoTs, and it falls under the category of security issues in the IoTs and can potentially
lead to privacy leaks [15]. As a result of their interconnections, these devices can exchange
information through the internet as shown in Figure 1. It follows that individual users’
data are collected. In some scenarios, they may contain personal and private information
about the user, such as usernames and passwords for online accounts, email contacts and
phone numbers, contracts and other essential documents, payment card and other financial
information, sensitive photos, and other data.

Figure 1. Types of information that cyber criminals can gain through different IoT privacy and
security attacks [16].

With these collected data and in light of the seamless connectivity and the continuous
interactions among the IoT devices worldwide, there is an urgent need for IoT solutions
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that secure the highest degree of security for private information. Data breaches that
compromise sensitive information may result in permanent harm. The examples are many.
Criminals may utilize a breach of personal information to commit fraud and extortion. A
serious threat to national security might come from a data leak in government networks.
As an example, a sensitive device’s information and password would be sent in the clear
in the IoT context. Upon loading the device’s web interface and using Wireshark to
analyze packets [17], it was discovered that device details were transferred via HTTP in
the clear. This provides the current firmware version, its most recent update, and the serial
number [18].

Once the user registers into the web interface, the user’s information and the device’s
information, including the password, are transferred in clear text, which is a more dan-
gerous conclusion. As a result, adversaries might simply read the HTTP packet and gain
access to critical information. The user’s password can be reused across different accounts
of the same user [18].

The number of IoT cyberattacks was more than doubled during the first half of 2021,
according to “Kaspersky”, when 1.51 billion breaches of IoT devices took place, compared
to only 639 million breaches in 2020. The Telnet, which is one of the oldest protocols to
provide remote access to computers and networks, became the most common unauthorized
gateway for attackers into IoT devices. To gain access to IoT networks, the majority of
attackers made use of the Telnet protocol, a command line interface that enables remote
interaction with a device or server. Over 872 million IoT attacks, or 58% of them, used
Telnet. Many of these assaults sought to steal personal information, crash DDoS systems,
or mine cryptocurrencies [19].

It is now more crucial than ever to detect malware targeted at IoT devices. Solutions
to secure IoT networks must provide protection against malware-based attacks [20]. With
the exponential rise in the number and the type of malware, traditional ways of protections
(e.g., anti-virus software) cannot defeat it, nor can they provide early detection, hence the
urgent need for machine learning (ML) in malware analysis.

Indeed, ML shows significant ability to provide superior approaches for malware de-
tection: the hardware-assisted malware detection framework based on explainable ML [21].
ML is inherently able to handle large volume of data and hence is capable of keeping pace
with the fast-changing malware [22]. Because it does not need the production of signatures
for each malware family to be detected, ML gains confidence in malware detection.

Implementing ML to improve IoT performance became widely popular. Within
IoT, a massive number of devices are connected and voluminous data are generated.
These data can be utilized to obtain invaluable information by extracting trends and
behaviors and provide estimations and forecasts [14]. From this perspective, the ML-
based computational models provide IoT devices with a brain to think, i.e., an embedded
intelligence [23]. The use of ML improves the performance of various operations (e.g., data
aggregation, access control,authentication, and regulatory compliance), eliminates raw data
exchange, minimizes communication overhead and latency, and enhances data protection
and security [24].

The contributions of our paper can be summarized as follows:

• Our research makes a significant contribution by thoroughly reviewing and analyzing
the literature on privacy activities in the context of the IoT ecosystem, with a specific
emphasis on the utilization of ML techniques.

• We present the different privacy threats and attacks that an IoT environment faces.
• We discuss the critical privacy issues and key privacy requirements of IoT.
• We explore and present a review of the commonly used solutions to resolve pri-

vacy and confidentiality challenges through ML algorithms in the IoT systems to
preserve privacy.

• We validate our work with practical experiments to prove the capability of ML in
detecting malicious and anomalous attacks and preserving.
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• We discuss challenges and possible directions for using ML algorithms to resolve IoT
and privacy challenges.

The remainder of this paper is organized as follows. Section 2 reviews existing studies
and the related literature. In Section 3, we present the IoT architecture, GDPR and its
implications for IoT. Section 4 summarizes and compares common IoT vulnerabilities,
privacy threats and privacy attacks, respectively. Section 5 discusses IoT privacy require-
ments and the privacy-preserving solutions using machine learning. Section 6 describes
the experiments and evaluation used in this study. Experimental results and analysis are
provided in Section 7. Finally, conclusions and future work are provided in Section 8.

2. Related Literature

To investigate IoT security and privacy problems, a number of surveys have been
written in the past. In [25], security vulnerabilities in several IoT applications are analyzed,
while in [26], smart home security is assessed. Furthermore, existing research on possible
threats in the IoT environment is examined in [27,28]. Additionally, recent research on
privacy and protection from the standpoint of technology and protocols has generated
some attention [28,29]. All of these research are primarily concerned with security issues
and remedies.

This section analyzes the common ML models used in the context of malware detection
within IoT environment and offers prior research, sorted into groups based on how they
relate to the various IoT architectural tiers. The related literature uses various structures in
describing the IoT systems. Some studies present three-layer [10,28] (various parties have
employed service-based architectures [28]), five-layer [30], and seven-layer [30] structures.
In this study, we use a three-layer design that consists of the application layer, the network
layer, and the perception (physical) layer as depicted in Figure 2 [31]. The next sections
examine the most common ML-based solutions for maintaining privacy across the three
tiers of the IoT architecture.

Figure 2. Three layers of IoT architecture [31].
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2.1. Perception Layer

Sensors pose the majority of the privacy issues in this layer, which are frequently
targeted by adversaries that steal and change data throughout the data-gathering process.
One solution is to send grouped data rather than raw data. This strategy is compatible with
the energy limits of IoT devices. Furthermore, because it employs representative values
rather than specific data fields, it helps to reduce the possibility of data leakage [32,33].
Table 1 summarizes the common ML models in the existing studies and their relationship
with the perception layer. According to the survey, the fundamental issue in these research
studies is that the extra noise affects the accuracy of the ML models.

Table 1. Common ML models in previous studies and their relationship with IoT perception layer.

Authors Summary

[34]

The authors outlined a clustering technique that uses aggressive learning neural networks to build a classification model.
Sensors have the property of correlating data between geographically close nodes. As a result, clustering networks and
data aggregation are critical in wireless sensor networks. They employed Kohonen SOM, which works without supervision,
to translate sensor input into context. The suggested technique is CODA (cluster-based self-organizing data aggregation);
after sensing the surroundings for a predetermined amount of time, the network is clustered depending on the data and
the cluster is redistributed in accordance with the combined value. It works better than typical database aggregation systems
for improving data quality.

[35]

In order to enable the base station to access the observations, the authors created a distributed method for doing Principal
Component Analysis (PCA). The suggested technique is based on the transmission burden of the intermediate nodes.
An intermediate node can provide just one packet rather than relaying all of the receiving packets by using PCA to combine
the intermediate node’s incoming packets into one packet. This method results in a large reduction in the amount of broadcast
bytes for nodes close to the base station. Additionally, the authors created an aggregation service that uses PCA-based aggregation
techniques, including the PCAg approach, to compute the reconstruction error at the base station. Using this aggregate service,
PCAg may evaluate the algorithm’s precision and thereafter dynamically modify its update rate. The thorough simulation results
based on the performance metrics for accuracy and efficiency show that the suggested strategy performs better than other
approaches of a similar kind.

[36]

In various areas, the authors improved the currently available method for differentially private k-means clustering.
They developed a noninteractive technique for differentially private k-means clustering and enhanced an interactive method
using a systemized error analysis. The following are the insights acquired by k-means clustering about the subject of
noninteractive vs. interactive. The noninteractive EUGkM clearly has an advantage, particularly when the privacy budget is
limited. Consider the additional benefit of noninteractive approaches, which allow for additional examination of the dataset.
In this comparison, the authors conclude that noninteractive wins. They believe that this trade-off will hold true for a wide
range of additional data analysis activities.

[37]

The authors reviewed at least six current papers on the differential privacy frontier. The work built relationships with other
subjects and groups in various situations, including statistics, cryptography, complexity, geometry, mechanism design, and
optimization. The abundance of new tools, the formulation of new issues, and the productive interaction with other areas all
provide rich ground for effervescent growth in an intellectually stimulating and socially important pursuit. Differential privacy
has received a lot of interest in recent years, coupled with the use of ML algorithms in this subject, such as clustering,
logistic regression, support vector machines, and deep neural networks.

Our study
Our model employing a strategy of sending grouped data instead of raw data. This approach is energy-efficient for IoT
devices and reduces the possibility of data leakage, as it utilizes representative values rather than specific data fields.
By doing so, our model is better equipped to handle noisy data and improve the accuracy of predictions on the perception layer.

2.2. Network Layer

At this layer, the privacy risk is reduced, and data privacy is maintained by allowing
each device to only process separate parts of the data. From this perspective, federated
learning [38,39] and distributed deep learning models [40,41] are proved to be suitable
models in this architecture. Table 2 presents the commonly used ML models and their
relationship with the network layer. Two main drawbacks are identified here. The first is
concerned with the use of deep models in fog-enhanced IoT. Each device in these models
can handle only a portion of the training data. The deep model performance is largely
determined by the amount of training data available. As a result, decentralization can have
a negative impact on the accuracy of these models. The second drawback is that noisy
data are employed throughout the learning process. For the federated learning strategy,
this poses a significant issue. With the help of numerous training modules, who each have
access to a smaller amount of training data, the training data are distributed in this manner.
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When used in such a dispersed situation, noisy data might have a major influence on the
performance of ML models.

Table 2. Common ML models in previous studies and their relationship with IoT network layer.

Authors Summary

[42]
The authors presented a federated learning technique for edge-enhanced IoT systems. Because this method avoids
raw data transfer, only regional and international learning variables between learning blocks should be stated. The
authors also created a control algorithm that adjusts the global aggregation frequency to minimize learning loss.

[43] The authors suggested a privacy-preserving architecture, where deep federated and reinforcement
learning are combined and work on IoT platform edge devices.

[44]
The author proposed utilizing low-resource machine learning to cluster data in the behavior category. By means
of the unsupervised k-means algorithm, this solution employs smart wearables to deliver analysis of health data
with privacy protection in fog nodes.

[45]
The authors proposed a framework for safeguarding data aggregation with federated learning while working with
inadequate resources. Messages were routed by the authors using a server employing data from the traffic data
category. This server reduces the model’s complexity while improving its performance.

[46]

The authors proposed that data be aggregated using edge computing before being sent to cloud storage. To
de-identify data, they developed a local differential privacy technique. The authors of this study advised using
regression analysis to estimate data distribution. The majority of research studies that employ differential privacy to
generate representative data values try to apply the approaches to a specific aggregation function.

Our Study

Our model utilizing federated learning and distributed deep learning models at the network layer. By allowing
each device to process separate parts of the data, our model maintains data privacy while reducing the impact
of noisy data. Additionally, we take into account the potential trade-off between decentralization and accuracy,
ensuring that our model achieves optimal performance, even in fog-enhanced IoT scenarios.

2.3. Application Layer

In this layer, the different applications of ML techniques can ironically cause data
leakage [47,48]. The literature shows that, in the case of improperly designed models,
adversaries can access or derive sensitive data, which highlights the importance of using
well-designed models. In order to address this privacy issue, recent research studies
created privacy-preserving ML algorithms. The following ML approaches are investigated
in the relevant literature: clustering [49,50], linear regression [51,52], decision tree [53,54],
SVM [55,56], logistic regression [57,58], and naïve Bayesian [59,60]. Table 3 depicts studies
that use common ML models and their relationship with the application layer. These studies
report two main limitations. Firstly, using blockchain-based smart contracts that implement
a consensus mechanism along with the reinforcement learning approach reduces the speed
of the system. This, in turn, restricts the ability to use extensive data in training the model.
The second limitation is related to using user behavior data in deep models. To learn about
user behavior using such models, a significant amount of data is needed. The dilemma is
that users do not give share their behavior data.

Table 3. Common ML models in previous studies and their relationship with IoT application layer.

Authors Summary

[61]

The authors introduced a wireless network authentication technique that employs radio channel information
to authenticate on the physical layer. The authors employed Dyna-Q and Q-learning reinforcement learning
algorithms to determine optimal threshold values about information that might be considered public data on radio
channels.

[62]
The authors combined ML and blockchain technologies. A reinforcement learning approach is
included in their suggested solution, which enables smart contracts to handle control choices using information
from the limited disclosure category, dynamically dependent on environmental input.
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Table 3. Cont.

Authors Summary

[63]

The authors employed machine learning role-based provisioning for new applications to be automated. They also
proposed solutions to two related issues in this domain: adjusting to changes in job definitions and
imposing limits. This research investigated several ML approaches; however, the major focus was on the
support vector machine (SVM). This study showed that by keeping an eye on misbehavior data, the access
controller may identify questionable objects and limit their access to the system’s resources. Machine
learning has also been used to examine privacy regulations and legal agreements. These data sources
are covered by privacy policies.

[47] The authors designed and demonstrated a general threat model for categorizing various threats. The essay
focused on classification approaches.

[64]
The authors used Google and Amazon ML services to perform a membership inference. They proposed a
shadow training approach and evaluated the findings on several datasets, including patient data from a
Texas hospital. The findings showed certain serious flaws that allow attackers to infer data records.

[47]
The authors created a protocol for privacy-preserving machine learning. For the neural network model,
logistic regression, and linear regression, the authors employed stochastic gradient descent. An offline
phase was introduced to a two-server model to encrypt datasets before utilizing them to train ML models.

[65]

The authors provided a method for protecting input information as well as learning parameters. The garbled circuit,
a cryptography approach, was used in this study, which relies on analytic and synthetic tools. To increase
the framework’s speed, the authors proposed an efficient implementation of this approach as well as
additional preprocessing processes.

Our Study

Our model incorporates privacy-preserving ML algorithms at the application layer, such as clustering,
linear regression, decision trees, SVM, and logistic regression. By employing these techniques,
we ensure that user data are protected, and sensitive information is not accessed or derived by adversaries.
Furthermore, we mitigate the issue of user behavior data by using anonymized or aggregated data
for learning user patterns, thus respecting user privacy and improving model accuracy.

2.4. Common ML Models for IoT Malware Detection

Large strands of the literature have been exploring the different ways of using ML
classifiers to detect malware [66,67]. These studies classify the already existing malware
samples in order to train ML models and enable them to accurately predict other non-
existing potential malware samples. Table 4 presents relevant studies, ML models and
their relationship with malware detection, and Table 5 depicts the different ML techniques
that are used in privacy-preserving IoT. This study focuses on identifying known malware
samples in order to train an ML model capable of making (accurate) predictions on previ-
ously unseen malware samples. In this study, we compare many ML techniques, including
single decision tree (DT), random forest (RF), and AdaBoost learner. To compare detection
accuracy on IoT malware, in addition, we include the k-nearest neighbor classifier (KNN)
and support vector machine (SVM) based methods.

Table 4. Common ML models in previous studies and their relationship with IoT malware detection.

Authors Summary

[68]
The authors described the two-step procedure for detecting malware using machine learning: “feature extraction and
classification/clustering”. They next went through several feature selection and classification techniques such as SVM,
DT, and ANN.

[69] The authors employed SVM to identify malware in the Android operating system, and their created dataset reached
99% accuracy and precision.

[70] The authors employed the naive Bayes classifier to detect malware in Android-based IoT devices. Using the naive
Bayes classification based on a decision tree, they attained 98% accuracy.

[71] For the malware detection technique, the authors attained a 97% F-score on decision trees. The researchers also
used naive Bayes and logistic regression, which yielded f-scores of 51% and 94%, respectively.
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Table 4. Cont.

Authors Summary

[72] The authors obtained 98.2% accuracy by using a KNN classifier with a fingerprint feature for IoT malware detection
on the device layer.

[73] The authors employed a deep Eigenspace learning strategy to identify IoT malware and obtained 99.68% accuracy.

[74]

The authors discussed three ways for detecting IoT malware: CNN on byte sequences, CNN on color pictures, and
CNN on assembly sequences. To build their training dataset, the authors employed 15,000 pieces of IoT malware
and 1000 copies of benign ware.Their findings revealed that CNN on pictures and assembly sequences performed
better than CNN on byte sequences.

[75] The authors used ML techniques (supervised, unsupervised, and reinforcement learning) in IoT contexts to identify
malware, authenticate users, and control access.

[76]
The authors employed adversarial learning against assaults to detect IoT malware. Off-the-shelf approaches and
graph embedding and augmentation (GEA) methods were utilized, with off-the-shelf methods achieving 100%
misclassification and GEA methods classifying all malware as benign.

Our Study
By utilizing diverse ML classifiers, our model can accurately detect and predict known and unknown malware
samples within the IoT environment. This comprehensive approach enhances the robustness and reliability of our
model for malware detection.

Table 5. The used ML models for data privacy in IoT.

Ref IoT
Layers

Machine Learning Technique

Gaussian
Regression

Self-Organizing
Map

(SOM)

Principal
Component

Analysis
(PCA)

Regression
Analysis

K-Nearest
Neighbors

(KNN)

Linear
Regression

Support
Vector

Machine
(SVM)

Logistic
Regression

Decision
Tree

Random
Forest K-Means Reinforcement

Learning
Neural

Network
Deep

Learning
Federated
Learning

[77]

Perception
Layer

•

[78] •

[34] •

[79] •

[80] •

[81] •

[82] •

[83] •

[36] •

[84] •

[85] •

[42]

Network
Layer

•

[43] • • •

[86] •

[87] •

[88] •

[44] •

[45] •

[89] •

[46] •

[90] •

[61]

Application
Layer

•

[91] •

[62] •

[92] •

[93] •

[63] •

[94] • • •

[95] •

[96] •

[47] • • •

[65] •

[97] •

Prior demonstrations concentrated on building classifiers or deep learning models
using IoT malware datasets. This research focuses on recognizing existing malware samples
in order to train an ML model capable of generating accurate predictions on previously
undiscovered malware samples. We examine various ML approaches in this work, includ-
ing single decision tree (DT), random forest (RF), and AdaBoost learner. This is in addition
to the k-nearest neighbor (KNN) and support vector machines (SVMs) based approaches
for assessing detection accuracy on IoT malware.
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3. Background

This section sheds light on IoT architecture in Section 3.1 and the importance of GDPR
and its implications in IoT in Section 3.2 for better understanding of related privacy issues
from regulatory perspective.

3.1. IoT Architecture

While the IoT architecture design has not been agreed on universally, a three-layer
architecture is the most common and frequently accepted model as shown in Figure 2. It
contains the following layers [31]:

• Perception layer: This is the architecture’s physical layer. The sensors and associated
equipment are used to collect various data quantities, depending on the project re-
quirement. These may be edge systems, sensors, and drives interacting with their sur-
roundings.

• Network layer: The function of the network layer is to transfer and process information
that is collected by all of these devices. These devices link with other smart things,
servers and network devices. It is also responsible for data transfer.

• Application layer: The user interacts with the application layer. It is responsible
for providing the user with specialized application services. For instance, this can
be an intelligent home implementation, where users tap on an app to switch on a
coffee maker.

3.2. GDPR and Its Implications

The newly enacted general data protection regulation (GDPR) intends to reinforce
user rights and establish new criteria for data management, while encouraging greater user
participation in privacy protection [98]. Data protection through architecture and GDPR
are used to ensure solutions centered on remote and portable services, and ensure that
network access cannot be restricted to authorized users with predefined permissions. It
may also be used to check data completeness, transfer, and retrieval. In general, cloud
computing security issues are classified into three categories.

The IoT sector is currently confronted with the EU’s “General Data Protection Regula-
tion (GDPR)” [99], which went into effect in 2018 [100]. The regulation lays out important
principles for creating parity between users and third parties. It also establishes standards
for the protection of user data in the IoT and fundamentally alters how data are handled
across all applications. The GDPR tackles concerns such as what categories of data can be
processed and in what situations, as well as the reasons for data collection, the amount
of data that can be collected, the required period of data retention, and the rights of users
about their data.

It thus places a greater emphasis on the rights of users, whose data are being pro-
cessed, including the rights of notice, access, rectification, deletion, restrict processing, data
portability, objection, and the right to stop automated decision making [101]. Simply put,
the GDPR seeks to return ownership of personal data to the user. Because the IoT relies
on extensive user data gathering and sharing, the risk to user privacy grows. Traditional
privacy measures must shift their attention from service providers to users in this regard.

Privacy by design and privacy by default are required under GDPR for any enterprises
that gather and process user information [102]. Designing services with data protection
and privacy in mind is known as privacy by design, and it requires enterprises to design
all services that process personal data with this in mind. Default privacy states that, with
no user input necessary, all public services must employ the most stringent confidentiality
settings by default.

The authors in [103] studied the effect of the incorporation of the GPDR act into
ML models to prevent model reversal and membership inferences. These investigators
concluded that certain ML models may have to be classified in the new regulations as
personal data.
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GDPR compliance is included in the relatively new privacy-preserving approaches that
have been proposed in the literature. Users’ consent and the right to access are fundamental
aspects in personalized data repositories. In order to exercise the right to be forgotten,
people can request that organizations that violate their privacy preferences remove their
access to their data.

The users’ informed consent is required before companies can perform data analysis
on them. With these solutions, consumers may also express their privacy preferences and
verify that the service providers are abiding by them. The ability of users to utilize their
right to access the information to which they are entitled may be hindered because data-
summarizing systems employ changed data. Furthermore, although cryptography-based
techniques may provide privacy by design and default, they may also restrict the right to
access acquired information.

Another difficulty with ML-based approaches is that they might be violating the right
of access to information by revealing sensitive facts about how businesses train their ML
models. In our perspective, it is difficult to use the right to forget ML approaches after data
have been used to train a model for ML; therefore, they should be classified as personal
data as indicated by [103], even if the effects of data points on the trained model may
progressively diminish.

4. Common Vulnerabilities, Privacy Threats and Attacks in IoT

This section explores, compares and analyzes common vulnerabilities, privacy threats
and attacks in the IoT context in Sections 4.1–4.3, respectively.

4.1. IoT Vulnerabilities

IoT systems or projects that include flaws let unauthorized individuals send com-
mands, gain unauthorized access to data, or perform DDoS attacks [104]. Vulnerabilities
can be found across the IoT system. This might include deficiencies with the system’s
hardware or software, policy decisions made by the system or its user, and more [105].

The Open Web Application Security Initiative (OWASP) project aims to promote and
help manufacturers in designing their devices with security in mind, resulting in safe
gadgets by design. Its purpose is to assist companies and people in determining acceptable
risk and taking suitable risk-mitigation steps.

The OWASP revised its top 10 IoT vulnerabilities in 2018 [106]. The list includes
(a) hard-coded or easily crackable passwords; (b) network services that are not secure;
(c) ecosystem interfaces that are not secure; (d) a lack of secure update mechanisms; (e) the
use of faulty or outdated components; (f) insufficient privacy protection; (g) insecure data
transfer and storage; (h) a lack of device management; (i) insecure default settings; and (j) a
lack of physical hardening.

The OWASP top 10 IoT vulnerability list adopts a unified approach to tackling IoT
vulnerabilities that may affect IoT devices rather than including disparate criteria for
various stakeholders. The top OWASP IoT project teams steered clear of specific IoT
security vulnerability guidelines. The OWASP project compiled a list of attack zones and
related vulnerabilities for the IoT environment. This is shown in Figure 3 below [18,107].

4.2. Common Privacy Threats in IoT

The dynamic nature of IoT in terms of technologies and capabilities, as well as the
emergence of new ways of interacting with the IoT, creates unique privacy concerns
and challenges. This section describes how we classified and summarized those com-
mon threats.

1. Identification Threat:
If an individual’s address and name, or any other type of pseudonym, can be linked
together and information is inferred, this is called identification. The threat is to link
a particular private identity, to breach the context, and further threats are activated
and facilitated. The profiling and tracking of individuals, or the collecting of multiple
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data sources are only a few examples of related threats. Current threats to identity are
concentrated in the backend services, where massive volumes of data are collected
and stored in a single location that is out of the subject’s control [108,109]. IoT systems
that prioritize local processing over centralized processing, as well as horizontal
interactions over vertical interactions provide the greatest obstacle in identifying
users, as only a minimal quantity of identifying data are available outside their own
private worlds. This threat is rated as the most frequent and has an impact on network
layer information processing [110].

2. Localization and Tracking Threat:
It is possible to determine and document an individual’s physical location in time and
space through localization and tracking and recording without permission or consent.
Identifying a person is necessary for tracking to be a continuous process [111]. A
variety of methods are available for tracking, such as mobile phone location or internet
traffic. As a result of this danger, the vast majority of tangible privacy violations have
been identified: GPS stalking, publication of private information, or the general
feeling of being pursued. Localization and tracking are most dangerous during the
processing of data, when back-end locations traces are generated without the subject’s
knowledge. On the other hand, the key hurdles in tracking and localization lie in
making people aware that they are being tracked, controlling the sharing of location
data in indoor spaces, and developing privacy-preserving protocols for connection
with IoT devices that impact all layers of the IoT architecture [112]. Figure 4 shows
locating cell phones by IoT sensors in comparison to the cell towers that are fewer in
number than IoT sensors. As a result, discovering locations using IoT sensors is more
convenient and accurate than using cellular networks.

3. Profiling Threat:
Profiling refers to the risk of data files being collected or arranged by people to
identify interest in connection to other profiles and data. The profiling approaches
are generally employed for e-commerce personalization (recommenders systems,
newsletters and advertising), but also for customer demographic and interest-based
internal optimization. To personalize services, users are profiled; however, this often
leads to unwanted advertising, price discrimination, or biased automatic choices. This
threat is more prominent because numerous information sources are available in the
IoT ecosystem, and it is possible to gather complete information on individuals and to
associate user preferences with other profiles. This has an impact on how information
is processed at the network layer, especially when it is important to share or exchange
data with other parties [111].

4. Interaction and Presentation Threat:
With this threat, personal information is disseminated via public media to those who
should not know it. Many IoT applications, include systems for industry, infras-
tructure, and the medical and healthcare fields, and so on, necessitate numerous
connections between the device and the user [5]; it is feasible that information is
delivered to users through the use of smart items in the surrounding environment, for
instance, using lighting methods and television or computer screens to display videos.
To put it another way, users take control of systems using an instinctual methodology
that makes use of smart objects in the surroundings. However, several intercommu-
nications and organizational operations are inherently public. This causes privacy
concerns when the user and the system exchange confidential information [108,109].

5. Lifecycle Transitions Threat:
Privacy is a major concern when smart objects divulge their private information
over the course of their life cycle as management domains change. This problem is
noted with regard to damaging images and videos commonly viewed on cameras
and other modern gadgets. Many customer support products now have life cycles
that are designed to be continuously purchased once, even when the results have
not improved. Smart items can attribute to a more interesting life cycle, involving
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exchange, loan, donation and disposal. We thus acknowledge the necessity for adap-
tive outcomes which plainly pose certain challenges. Some life cycle adjustments, like
sharing a smart item, need to hide information for a while. The owner can unclamp
the classified information and continuously monitor this device [108,109].

6. Inventory Information-Gathering Threat:
It is described as the unauthorized gathering of information on the actuality and
characteristics of personal equipment. This vulnerability is mostly caused by the sen-
sor devices’ communication capabilities, which allow illegal access to or information
gathering. The communication pattern and other recognizable elements can also be
seen by unauthorized entities, and the existence of devices can also reveal the model
and the kind of device from that information.Inventory lists can provide information
about user preferences, which law-enforcement authorities or burglars can use to
conduct illegal searches or plan targeted break-ins. Moreover, inventories can reveal
user preferences [108,109]. When it comes to defeating IoT inventory threats, there
are two types of challenges: (i) query validation—an effective defense against agile
inventory assaults begins with making smart objects capable of validating queries
sent by authorized entities and responding appropriately; and (ii) fingerprinting
mitigation—techniques that defend well-being are required to protect fingerprint
transmissions of smart devices and prevent passive inventory assaults [111].

7. Linkage Threat:
This threat connects previously independent system devices, such as the collection of
information on various data, which were never exposed to previously opaque sources.
The users have no idea about the inferior evaluation and lost data that come from
combining diverse data and authorizations. The increasing expansion of unknown
data is another example of linking violating privacy [108]. There will be an increase in
linkage hazards as the IoT develops for two reasons. The first is that by connecting
systems from many firms, a parallel interconnection can eventually create a diversified
system that offers novel services that no one system has ever provided on its own.
Second, the successful connectivity of such things necessitates a fluid exchange of
information and ongoing maintenance among various stakeholders [113].

Figure 3. OWASP IoT attack surface and associated vulnerabilities.
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Figure 4. Locating cell phone by IoT sensors [114].

In Table 6, we summarize the most frequent IoT privacy threats and their effects.

Table 6. Summary of identified privacy threats and their effects.

Threat Name Threat Description Threat Effect

Identification

It refers to the risk that a person or their data may be linked
to a permanent identifier. For example, an individual from
a database or collection can be linked by name, pseudonyms,
images, voice or an address.

Link a particular private identity to breach the context,
and those further threats are activated and facilitated.

Localization and Tracking
Using various methods, such as GPS, internet traffic,
or smartphone location; To identify and record an individual’s
physical location over time

Determine and record a person’s precise location in
time and space, capturing it without the subject’s
knowledge or consent.

Profiling Users are profiled for customization; data files are
collected or arranged by people to identify interest.

Leads to undesirable advertising, pricing discrimination or
automated biased judgments.

Interaction and presentation
The potential of encroaching on user privacy by sending specific
individualized private information through a public
medium.

This causes privacy concerns when the user and the system
exchange confidential information

Lifecycle transitions

This issue arises when IoT devices are changed ownership.
The majority of IoT gadgets are offered with the premise of
“purchase once, use forever,” and they accumulate a ton
of personal data over the course of their lifespan.

When smart objects reveal their private information over the
course of their life cycle as management domains change,
privacy is a major concern.

Inventory attacks

This is mostly because sensor devices communicate and
unlicensed data access or collection is permitted. Those
inventories can provide user preferences information that can
be used illegally.

Inventory lists can reveal information about user preferences,
which criminals might use to perform unlawful searches or
organize targeted break-ins.

Linkage The combining of data from various sources may expose details
about people that they did not initially agree to disclose.

Users are unaware of the poor evaluation and lost data that
result from mixing several data and authorizations. The rapid
proliferation of unknown data is another form of connection
that violates privacy.

The literature on IoT threats shows that location monitoring 31.5 percent is the hazard
that people are most concerned about, followed by the sharing of unanonymized data
25.9 percent. Concerns about profiling were brought up in 21.3 percent of the research,
followed by inventory attacks at 8.3 percent, interaction and presentation at 6.5 percent, life
cycle transitions at 3.7 percent, and connecting at 2.7 percent (Figure 5) [108,109,115,116].

4.3. Common Privacy Attacks in IoT

Some of the most frequent IoT privacy attacks are briefly described below. In addition,
Figure 6 links identified privacy threats with associated privacy attacks. Additional assaults
on IoT eco-system elements (such as databases and ML models) are detailed in [117,118],
which, in turn, jeopardize users’ privacy. In the following, we present some of the IoT
privacy attacks.
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Figure 5. Highlighted IoT privacy threats [109,116].

Figure 6. Identified IoT privacy threats with associated privacy attacks.

1. Membership Inference Attack: The attackers may use this attack to find out whether
a certain data record was utilized to form the ML model or not, as the opponent
knows the ML model and each data record [64,119]. Data privacy is compromised
in this attack if an individual is sensitive to inclusion in a training set. A health-
related ML model that contains that person’s health information as a data record, for
instance, leaks information. This attack concerns a person’s identification, can help
with profiling, and can take advantage of connecting and inventory attacks in terms
of personal data security issues.

2. Data Inference Attack: The attack is often linked to the encryption-based privacy
preservation methods, as observed by [120]. It attempts to retrieve some information
about a particular data record via the linkage with public information, also making
tailor-made system queries to check answers to discover whether information about
underlying data is being leaked. The frequency analysis used for deciphering is a
famous case of this attack.

3. Attribute Disclosure Attack: The disclosure of an attribute happens when data records
allow a person to obtain more accurate characteristics [121]. In other words, the data
release reveals fresh information about certain people. This attack usually leverages
links to generate information from various data sources.

4. Fingerprinting and Impersonation Attack: An attacker might monitor a device’s com-
munication behavior and attempt to imitate it with an inventory of attacks [122,123].
If privacy is breached, the attacker might obtain device credentials to modify user
privacy choices and introduce fake data into the system.
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5. Re-Identification Attack: An attacker can use this technique to re-identify a record
from outsourced data records, or public or open data records by combining data
from other collections [124]. Re-identification is a relatively common attack, with a
traditional example being the voters list being exploited in 1997 to re-identify the state
health records of government officials [125].

6. Database Reconstruction Attack: According to [126], when statistics information is
published in research organizations, sensitive data may be exposed to data base
reconstruction attacks. This enables the rebuilding of the original databases in part
or whole, which can allow some users, depending on their relationship with specific
features, to be identified or unintentionally profiled in the target database.

7. Model Stealing Attack:Internal training settings and other sensitive ML details may
also be re-established or disclosed by using model-stealing approaches [127–130]. This
discloses sensitive information on the training data used for these algorithms and can
lead to people being profiled unintentionally.

8. Model Inversion Attack:By following the forecasts of the ML model, model reverse-
invasive attacks allow attackers to obtain data from underlying training as shown
in [47,95,131]. As a result of this attack, a particular record of training cannot always
be retrieved. Instead, the attacker extracts an average representation of equally
categorized inputs. However, if exposed classes are sparsely filled, i.e., a class might
correspond to a single person in a record [95], this might be a great risk to privacy.

IoT systems are also vulnerable to other different security attacks that could affect
data privacy, such as the following:

1. DoS attack:To prevent IoT devices from accessing services, attackers send too many
queries to the target server [132]. When DDoS attackers send requests for IoT services
from hundreds of IP addresses, the server has a tough time distinguishing between
real IoT devices and attackers. DDoS attacks are especially dangerous to distributed
IoT devices that use lightweight security mechanisms [133].

2. Jamming:Attackers broadcast fake signals during failed communication attempts to
interfere with IoT devices’ continuing radio communications and further deplete their
bandwidth, energy, CPU, and memory resources [134].

3. Spoofing:With the use of its identification, such as the MAC address and RFID tag, a
spoofing device impersonates a valid IoT device in order to gain unauthorized access
to the IoT system. Assaults like DOS and MiTM attacks might potentially be carried
out by it [61].

4. Sniffing/Man in The Middle attack (MiTM):Jamming and spoofing signals are sent
by a man-in-the-middle attacker to covertly track, spy on, and alter the private
communication between IoT devices [132]. The sniffer intercepts traffic coming in and
out IoT devices, for example, passwords, emails, credit card data. A Wi-Fi router is
the chosen target because it stores all network traffic data and can be used to control
any device linked to it, including PCs and cellphones.

5. Software attacks:Mobile malware, such as Trojans, worms, and viruses, can cause
privacy breaches, economic losses, power depletion, and network performance de-
terioration in IoT systems [135]. Users may unwittingly click on malicious links or
download infected software; smart TVs and other similar gadgets are particularly
susceptible to this sort of danger.

6. Password Attacks: Password assaults, such as dictionary or brute force, target a
device’s login information by blasting it with numerous password and username
permutations until it discovers the correct one. Because most individuals choose a
basic password, these attacks are fairly effective. Furthermore, approximately 60%
of users repeat the same password [136]; individuals generate passwords and may
choose to use the same password across several websites, accounts, and gadgets. These
actions rely on the characteristics of users, including their demographics, situational
awareness, psychology, and cognitive abilities [137]. Because many users share the
same password across several websites or because systems have prioritized third-
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party access in their system architecture [138], authors of [139] discovered that more
secure sites are vulnerable to less-secure sites. Despite extra security measures, human
nature encourages users to use the same or slightly modified passwords for several
accounts or multiple users using the same password. As a result, if an attacker gains
access to one device, he or she gains access to all devices.

5. IoT Privacy Requirements and Preserving Solutions

In this section, we cover the IoT privacy requirements in Section 5.1, and current
related privacy-preserving solutions in the context of IoT in Section 5.2.

5.1. IoT Privacy Requirements

IoT privacy requirements can be divided into two categories, “institutional” and
“technical” requirements [140–143] as shown in Figure 7.

1. Institutional requirements:

(a) Regulation to keep pace with technology: In the internet-of-things age, infor-
mation is gathered when a person connects to public and work spaces. This
information can recognize user actions within the private domain. Behavioral
evaluation can even extend to the realm of mobility via data obtained via
linked gadgets.

(b) Standards: One crucial component of this convergence is the development
of privacy standards. They can function on a global scale across countries,
allowing governments to develop these initiatives by incorporating industry
guidelines into legislation and establishing formal standards for third-party
verification/auditing of standard provisions. It is also important to assist
enterprises in tracking data streams in IoT applications in order to address any
special privacy rules that may be in place for different nations or locations.

(c) Planning privacy by design: The adoption of privacy by design methodologies
from the beginning of solution development is required to provide end-to-end
privacy protection. Endpoint hardware security, communications security,
protocol dependencies and other requirements, such as firewalls, network
segmentation, supporting computing and storage system security, should all
be considered upfront to ensure data life cycle protection as it traverses IoT
systems.

(d) Cultural expectations: Privacy by design, concentrated senior leadership on
possible risk and remediation efforts, and improved collaboration across oper-
ational departments are all essential cultural adjustments inside firms that can
drive greater privacy protection in IoT contexts.

2. Technological requirements:

(a) Sensor to edge versus multiple endpoints: While business requirements even-
tually decide the right architectures, there are two main models for analyzing
privacy requirements: an end-to-end solution and an architecture in which
network termination happens at the local level (the edge).

(b) Device constraints: In terms of functionality, underlying vendor technology,
and even models, IoT sensors represent the apex of device variety. However,
whether the device is of a low form factor (such as a chip in a car) or high
form factor (typically a new device, such as a PC or laptop, that is very similar
across verticals, has computing power, and can run an operating system and a
controller), security needs must be addressed across the IoT solution.

(c) IoT scale: In deployments involving hundreds of sensors, implementation
is often staggered. Privacy and other management needs are fine-tuned on
the second or subsequent phases, a method that might introduce new risks.
Architecture, tools, management, and procedures must all be synchronized in
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large-scale deployments, a project management reality that requires time, even
though a staggered approach may introduce additional dangers.

(d) Solution maturity: The risk of “fail fast” solution creation is heightened because
acceptable levels of security, privacy, or regulatory concern may not be given
proper priority. A small vendor or startup developing a connected device may
be more concerned with bringing a minimum viable product to market quickly
than with ensuring proper privacy protection on the device. Smaller companies
are less likely to have devoted adequate attention to system development and
life cycle approaches that incorporate threat modeling across IoT components.

(e) Data governance: Because various countries have varying data management
standards, the location of data acquisition and storage must be addressed.
Aside from privacy concerns, big sensor installations may collect information
that poses a new threat to national security. For example, environmental or
seismic data may be altered or used for terrorist objectives.

Figure 7. IoT privacy requirements.

5.2. Privacy Preserving Solutions

There are numerous privacy-preserving solutions that could mitigate the risk of IoT
privacy threats and prevent attacks on user privacy. We summarize them as follows:

1. Data Perturbation mechanisms:
These methods use a sequence of processes to alter or conceal private information in
the original data [144]. As a result, techniques such as noise addition and anonymiza-
tion are used.

(a) Noise Addition mechanisms:
These approaches aim to modify confidential characteristics by introducing
noise to the original information in order to avoid a person’s identity [145].
These may be classified into four categories as follows:

i. Data-sampling mechanisms, which seek to provide a new table, includ-
ing solely sample data for the entire population.

ii. Random-noise mechanisms, which involve adding or multiplying a
randomized number to the value of the sensitive characteristic.

iii. Data-swapping mechanisms, which change a data subset by creating
ambiguity over the real value of the data [146].

iv. Differential privacy mechanisms, by adding Laplace noise to the out-
come of the database query [145].
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(b) Anonymization Protection Mechanisms:
By deleting any explicit identifiers, these methods obscure the identity of the
data owner and reduce the accuracy of the information. The k-anonymity
[147], l-diversity [148] and t-closeness [121] techniques are considered well-
known privacy-preserving approaches. The k-anonymity formal technique is
developed to fight the re-identification problem induced by the quasi-identifier
features; k-anonymity, on the other hand, is vulnerable to assaults using preex-
isting knowledge. The researchers have therefore developed other versions,
such as l-diversity [148], the main idea being that in each quasi-identifier group,
the different values for the sensitive attribute should be present for at least l
distinctions, and the method for t-closeness [121] requires distribution in each
quasi-identifier group of a sensitive attribute that is close to distributing the
attribute in the table as a whole.

2. Data Restriction mechanisms:
Data use can be restricted using these methods, which either prevent access or encrypt
inputs. Access control and cryptography-based solutions are two options for limiting
access to sensitive information.

(a) Access Control:
These methods are efficient in ensuring data exchange [144]. Owners of data
can specify their personal preferences for who has access to what data and how
those data can be manipulated by others. Role-basic access control (RBAC) and
attribute-based access control (ABAC) are examples of controls. When it comes
to assigning access permissions, RBAC uses roles, but ABAC uses attributes,
such as the resource and environment attributes of a user’s role [149].

(b) Cryptographic protection:
When it comes to privacy preservation, these methods are heavily used. There
are three major categories under which they fall:

i. Secure multiparty computation combines inputs of scattered entities
for the production of outputs while safeguarding the input privacy of
the individual [146].

ii. Symmetric/asymmetric encryption employs data-protection keys.
iii. Public key infrastructure provides the entity with a certificate to ensure

that the specified entity holds a public key.

Despite the fact that many sensors are unable to provide acceptable security
procedures due to the limited number of storage and processing resources,
encryption remains the most dominant technology in nearly all currently
suggested solutions [150].
The cryptographic method known as homomorphic encryption [151], on the
other hand, enables processing on encrypted data directly. It enables the
execution of quadratic, addition, and multiplication operations. Furthermore,
homomorphic encryption offers privacy-preserving capabilities in both the
training and classification stages of ML models, in contrast to the majority of
earlier studies, which only concentrated on the training step. The following
are the divisions into partial and full homomorphic schemes:

i. Partial homomorphic schemes:
In contrast to arbitrary computation on ciphertexts, they offer restricted
operations on ciphertexts, such as addition and multiplication, in addi-
tion to other operations. Due to their lower computational cost, these
approaches perform significantly well and outperform fully homomor-
phic systems. However, fewer algorithms may be used because of the
constrained amount of operations [152].

ii. Fully homomorphic encryption (FHE):
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This method allows for unrestricted computation in addition to quadratic
functions and multiplication and addition on ciphertexts. Since they
provide unconstrained processing, classifiers created using this schema
are naturally privacy-preserving and more suitable for real-world appli-
cations in terms of privacy guarantees. There are not many completely
homomorphic encryption systems though, and they are typically expen-
sive to compute, requiring two to five seconds for each operation [152].
Although certain efficient FHE algorithms have been devised [153],
it has been demonstrated that they are susceptible to data inference
attacks, such as those that recover encryption keys and decode data in
situations when the message is known (broadcast) and the message is
unknown (secrets) [154].

iii. Data Minimization Principle
Because of this, IoT service providers must restrict or concentrate per-
sonal data only when it is truly necessary. The data should also only
be kept for as long as it is necessary for the technical services. Other
options, such as hitchhiking, have been proposed as alternatives to the
above four options. This is a fresh method for protecting the privacy
of people who share their physical locations online. Hitchhiking apps
treat locales as though they are objects of study. There is no longer a
trade-off between fidelity and knowing who is at a specific spot [111].

3. Decentralized Machine Learning:
Technologies for decentralized ML offer a new paradigm for computing that improves
privacy, instead of transferring potentially sensitive user data to a computer. End-user
devices are used to offload some calculations, and each one updates the system model
in part. By doing this, the risk of exposing the service provider and other trustworthy
but motivated environmental foes to sensitive and confidential raw data is reduced.
Federated machine learning [38,45] in recent years has been more common in ML and
recommendation systems, and is being extensively explored and utilized [39,155]. It
offers the construction of a global model through the learning of user-pushed updates.
Since the technology is still in its infancy, the IoT ecosystem’s distributed computing
systems are taken into consideration. It is very adaptable and efficient. However,
it is important to consider how this approach may be implemented in a variety of
applications and usage scenarios. Inference attacks may be possible with federated
machine learning [156]. Ref. [157] presents preliminary findings that might reveal
very important user data.

4. Multi-tier Machine Learning:
On sensitive data, open ML models enable data memorization during training. This
approach uses many layers of training, which can reduce the impact of unique,
sensitive training data on the resulting models. A multi-level ML technique called
semi-supervised aggregation and transfer of knowledge [158] proposes a hierarchy
of “teacher” and “student” models. In order to preserve a student model’s privacy,
teacher models aggregate sensitive data divisions directly while using student models
to create non-sensitive data. Different privacy is used in this method to specify
the privacy-protecting features throughout the training stage of student models.
Because the models of students alone are released, model inversion attacks cannot
affect the original training examples because they are not the absolute majority of
teacher models’ categorization decisions that are utilized for the training method.
This approach with high confidentiality, suitable for a large variety of ML models, is
relatively recently distributed. The usefulness of the recommendations in terms of
quality nevertheless must be examined.

5. Output Obfuscation Techniques:
User reconfiguration through model inversion attacks may be stopped by concealing
the output of ML models from the specified range. A technique called differential
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privacy is intended to increase the precision of statistical database searches while
reducing the likelihood that their records may be recognized [159]. ε-differential
privacy provides the differential protection of privacy by adding a selected random
noise to the real answer of an ML model, using a Laplacian distribution. This indicates
a constant incertitude in all measures, which means that a given record is less likely
to be exposed. However, due to specific functional constraints, differential privacy
alone cannot offer safeguards for all scenarios. The most frequently sought and
implemented approach for protecting privacy in the present age may be characterized
as differential privacy. Along with other techniques, it is used to construct privacy
preservation apps and services because it is very successful against model reversal
and inference assaults [119,158,160].

6. Ensuring Privacy With Dataflow Models:
The technique enables the development of data flow models at each level with corre-
sponding authorizations for ensuring user privacy and transparent responsibility.

(a) Ensure privacy and verification by using Blockchain:
Researchers suggested that a blockchain be used for verified data collec-
tion, storage and access accountability in IoT environments [161,162]. For
example, data from blockchain can offer flawless records and allow cloud
accountability [163]. In addition, as assessed in [164], blockchains are ex-
panded for IoT applications in medical care. However, research on scalability
in blockchains may be made available such that they are ideally adapted to
IoT settings.

(b) Languages and platforms of privacy programming:
These solutions need prior information flows and privileges so that all data
components are connected to the relevant policies. This means that the data
items must be stated previously [122,165]. As an example, Jeeves is an ad-
ditional library with Java, a privacy-oriented programming language [166].
Homepad [167] apps are used as guided element graphs (instances of functions
that process data in isolation). It allows the program to check its flow chart
automatically against user-defined privacy standards with minimal overall
computing costs by modeling these aspects and the data flow chart. Further-
more, [168] provides certain privacy standards for the development of IoT
applications.

In Figure 8, we summarize the privacy-preservation solutions discussed earlier, while
in Table 7, we analyze the privacy-preservation solutions and discuss their limitations.

Figure 8. Possible privacy-preserving solutions mindmap.
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Table 7. IoT privacy-preservation solutions analysis.

Preserving Techniques Advantages Relevant Privacy Threat(s) Limitations Relevant Attack(s)

Anonymization

k-anonymity [121,169] Easy to implement
Identification, localization and

tracking, profiling, linkage

Varied data are needed
Re-identification, Database

reconstruction, Data inference,
Attribute disclosure

l-diversity [121,170] Minimally complex Varied data are needed
Attribute disclosure

t-closeness [171] Preserving delicate
characteristics

Requires strong dataset
diversification

Model or output
Obfuscation Differential privacy [119,160,172] Easy to integrate with

solutions Identification, profiling, linkage Works for low sensitivity
data queries Model Inversion, Inference attacks

Multi-tier ML Semi-supervised knowledge transfer [158] Distributed, applicable to
any ML model Profiling, linkage Effect on accuracy of ML

models is unknown
Model stealing and inversion,

Inference attacks

Decentralized ML Federated ML [157] Highly scalable and
efficient Inventory attacks, linkage, profiling Potential information leakage Inference, Fingerprinting and

impersonation attacks

Cryptography
Fully Homomorphic encryption [154] Private ML models training

and classification Inventory attacks
Large computational overhead Data inference (data/key recovery)

Partially Homomorphic encryption [154] Relatively lower computational
overhead Not applicable to all ML models Inference attacks

Data summarization Public-private data summarization
Low accuracy loss
and very effective

solution
Identification Unquantified Privacy guarantees Inference attacks

Data flow models
Blockchain for privacy [163] Verifiable privacy

Inventory attacks

Cost of computation,
limited scalability Fingerprinting and impersonation

attacksTechnologies and programming
languages that safeguards privacy [122]

Low overhead with verifiable
privacy

Information flows must
be announced in advance

6. Experiments and Evaluation

The core idea behind this work is to tackle the privacy issues in the IoT environment.
As discussed in the previous section, several solutions have been proposed to solve this
problem. However, such solutions have several limitations and are not able to maintain
long-term network protection. In contrast, ML techniques give defense systems the capacity
to learn for themselves from a sizable dataset in order to spot hidden patterns and make
choices without explicit guidance [173]. Motivated by the potential of ML in many real-
world applications, we also utilize different ML algorithms to solve the problem of privacy
in IoT. For this purpose, we use “MalMemAnalysis” dataset as a case study; this dataset
focuses on simulating real-world privacy related obfuscated malware as closely as possible,
such as spyware, ransomware, and Trojan horse.

In this section, we provide a succinct explanation of the experimental setup and classi-
fication outcomes of several ML algorithms. The MalMemAnalysis dataset is subjected to a
number of experiments and analyzes utilizing a variety of methodologies. The performance
of ML in known and unknown attacks is evaluated using some attack classes in the testing
phase. These attack classes have different distribution from those used during the training.
Furthermore, various metrics, such as the precision, recall, and F-score, are used for more
elaboration.

6.1. Experiment Dataset

The quality of the training datasets has a substantial impact on how well ML ap-
proaches function [174]. One of the key problems impeding the development of detection
systems is the lack of a benchmark dataset for the detection of privacy attacks. We can find
many datasets to investigate various ML algorithms in a variety of fields, such as language
translation or the biomedical business. However, the paucity of attack detection datasets
is mostly due to privacy and security concerns. Additionally, the majority of publicly
available datasets are dated, painstakingly anonymized, and do not reflect current network
risks. We utilize the MalMemAnalysis dataset [175] to address all of these issues and verify
the effectiveness of the suggested ML models by emulating real-world obfuscated malware
as closely as is feasible. In order to prevent the memory dump process from being visible
in the memory dumps, this dataset uses the memory dump method in debug mode [175].

Malware that has been obfuscated hides itself to avoid being found and removed. The
goal of the dataset for obfuscated malware is to evaluate in-memory obfuscated malware
detection techniques. The dataset was created to be as realistic as possible. By using
malware that is ubiquitous in the real world, this was made possible. An obfuscated
malware detection system may be tested using this balanced dataset comprising Trojan
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horse, ransomware, and spyware malware. The dataset mimics actual world conditions.
Given that it is split equally between malicious and benign memory dumps, the dataset is
balanced as shown in Figure 9. It has 58,596 records in total, 29,298 of which are benign
and 29,298 of which are malicious as indicated in Table 8.

Figure 9. Percentage of different malware families in used dataset.

Table 8. Dataset label distribution.

Categories Records

Benign 29,298

Spyware 10,020

Ransomware 9791

Trojan Horse 9487

Total 58,596

The malicious traffic was captured by using malicious memory dumps, where
2916 malware samples were collected from VirusTotal. The collected samples have differ-
ent malware categories, including ransomware, spyware, and Trojan horse as shown in
Figure 10. Similarly, for the creation of benign memory dumps, normal user behavior was
captured by using various applications in the virtual machine.

Figure 10. Overall malware families found in the dataset.
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6.2. Machine Learning Analysis Techniques

ML derives relevant information from raw data while disguising the information to
protect privacy [176]. By learning from their previous performance and adjusting them to
provide better outcomes, it makes machines smarter [177,178]. Several ML techniques have
shown to be incredibly useful in minimizing privacy threats. These approaches are used to
generate meaningful outputs from large and mixed datasets, and the outputs may be used to
foresee and detect vulnerabilities in IoT-based models. In the next section, we will perform a
practical simulation using several ML algorithms to prove their capabilities to detect related
malicious and anomalous attacks against privacy. Eight common supervised learning
algorithms were used to train and evaluate the obfuscated malware dataset. Specifically,
we employed three tree-based algorithms: logistic regression (LR) [179], gradient boosting
(GB) [180], a single decision tree (DT) [181], random forest (RF) [182], Gaussian naive_bayes
(GNB) [183], and AdaBoost [184] learner. Additionally, we used the k-nearest neighbor
classifier (KNN) [185] and support vector machines (SVM) [186] based methods. The
default parameters were used in all the implemented algorithms.

Python was used to plan and carry out the experiment, while the backend libraries
Sklearn and Tensorflow were utilized for all suggested methods. The experimental setup
used to assess the model parameters is described in Figure 11. In addition, the dataset
includes 26 additional characteristics that were retrieved using VolMemLyzer-V2 as part of
the suggested model to find hidden and obfuscated malware.

Figure 11. Experimental environment.

6.3. The Evaluation Metrics

To assess the performance of each model, we employed the most used performance
metrics, such as accuracy, precision, recall, and F-score metrics as shown in the following
equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN1
(3)

F1 − score =
2 × Precision × Recall

Precision + Recall
(4)

where true positive (TP) and true negative (TN) represent the correctly predicted values,
and false positive (FP) and false negative (FN) indicate misclassified events.
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7. Experimental Results and Analysis

First, each base learner is evaluated using the dataset, and the results are analyzed
using different evaluation metrics, including precision, recall, F1-score and accuracy. In
this work, we tested several experiments to tackle the privacy issue using ML algorithms
as represented in the following sections.

7.1. Scenario 1

In this experiment, we divided the dataset into 70% (including normal and malware
data) for training and 30% testing purpose. The train_test_split method was used from
Scikit-Learn library with test_size = 0.3 for this purpose as shown in Table 9. We only con-
sidered the binary classification for the experiments, as all Malware classes are considered
malicious traffic. The obtained results are represented in Table 10 and Figure 12.

The results show that all ML algorithms provide high evaluation metrics for both
normal and malicious malware attacks Figure 13. We can observe that the average accuracy
is 99.88%, while the average precision, recall and F1-score for benign are 99.90%, 99.85%,
and 99.88% and those for attack are 99.86%, 99.91%, and 99.88% respectively.

Table 9. Used data for Binary Experiment.

Train Test

Df Benign Malware Benign Malware

Value_Count 20,548 20,469 8788 8790

Total 41,017 17,578

Table 10. Individual classifiers’ result (binary class).

Evaluation Results %

Precision Recall F1-Score Accuracy
ScoreBinary Class Benign Attack Benign Attack Benign Attack

Techniques

LR 0.9985 0.9992 0.9992 0.998528 0.9988 0.99886 0.9988

AB 1 1 1 1 1 1 1

GB 0.9995 1 1 0.9995 0.9997 0.9997 0.9997

GNB 0.9952 0.9897 0.9896 0.9953 0.9924 0.9925 0.9924

KNN 0.9995 0.9997 0.9997 0.9995 0.9996 0.9996 0.9996

DT 0.9998 1 1 0.9998 0.9999 0.9999 0.9999

RF 0.9998 1 1 0.9998 0.9999 0.9999 0.9998

SVM 1 0.9998 0.9998 1 0.9999 0.9999 0.9999

7.2. Scenario 2

In this experiment, we used Ransomware, and Trojan Horse classes for training, while
the Spyware is used for testing. The main objective is to show how ML can work sufficiently
in unknown attacks. The Distribution of the used samples for training and testing is
depicted in Table 11, while the output results is represented in Table 12, Figures 14 and 15.

The experimental results show that the ML techniques have the capability to detect
obfuscated and hidden malware (spyware) with high accuracy, reaching 99.61%, and
average precision, recall and F1-score for benign being 99.34%, 99.85%, and 99.59% and
those for attack being 99.84%, 99.34%, and 99.58% respectively.
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Figure 12. The average results of binary classification (benign).

Figure 13. The average results of binary classification (attack).

Table 11. Used data for unknown attack experiment.

Train Test

Df Ransomware Trojan Horse Spyware

Value_Count 9791 9487 10,020

Table 12. Individual classifiers result (unknown class).

Evaluation Results %

Precision Recall F1-Score Accuracy
ScoreBinary-Class Benign Attack Benign Attack Benign Attack

Techniques

LR 0.9942 0.9992 0.9993 0.9942 0.9967 0.9967 0.9988

AB 0.994 1 1 0.994 0.997 0.9969 0.9967

GB 0.994 0.9997 0.9998 0.994 0.9969 0.9968 0.997

GNB 0.9877 0.9897 0.9899 0.9875 0.9888 0.9886 0.9969

KNN 0.9943 0.9996 0.9997 0.9942 0.997 0.9969 0.9887

DT 0.994 0.9996 0.9997 0.9939 0.9968 0.9967 0.9969

RF 0.9941 0.9996 0.9997 0.994 0.9969 0.9968 0.9968

SVM 0.9951 0.9995 0.9996 0.995 0.9973 0.9972 0.9968



Mathematics 2023, 11, 3477 26 of 35

Figure 14. The average results of unknown classification (benign).

Figure 15. The average results of unknown classification (attack).

7.3. Comparative Analysis with State-of-the-Art

A comparative analysis of possible conventional ML algorithms is performed in this
section. It is conducted for comparing and analyzing the accuracy of all the conventional
algorithms.

The proposed methodology is compared with the state-of-the-art methods. It is
illustrated in Table 13. The results show that the proposed approach achieves better results
by 99.50% as compared with the state-of-the-art methods.

Table 13. Comparative analysis using existing ML classification methods-based IoT privacy solutions.

No. Authors Classification Methods Accuracy

1 [70] Naive Bayes 98%

2 [72] KNN 98.20%

3 [73] deep Eigenspace learning 99.68%

4 [187] SVM 94%

5 [186] SVM 98.50%
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Table 13. Cont.

No. Authors Classification Methods Accuracy

6 [188] CNN 91.34%

7 [69] SVM 99%

8 [71]
f-score 97%
Naïve Bayes 51%
Logistic Regression 94%

9 This Study Logistic Regression 99.88%
AdaBoost 100%

7.4. Discussion

With the continuous increase in the number of IoT devices linked to the internet and
the quick rate at which these gadgets are becoming an intimate part of human everyday life,
there is also an increase in privacy threats. As a result, privacy stands out as a significant
risk impeding the mainstream adoption of IoT. IoT device vulnerabilities can result in
serious security breaches and drastically harm user privacy by revealing personal data.
Platforms, apps, and infrastructures must take privacy seriously in order to boost IoT
adoption and alleviate user concerns. For resource-constrained IoT devices, training a
model locally may be problematic. Second, several iterations are necessary for the learning
process to converge, resulting in high communication overhead since certain local classes
have patterns that differ greatly from the public data.

On the other hand, the last decade has witnessed a significant increase in the use
of machine learning (ML) techniques to satisfy the needs for creating effective IDSs. It
is considered one of the most significant solutions to solve the weaknesses of traditional
solutions, as it offers the construction of a global model through the learning of user-pushed
updates. As a result, numerous businesses, like Google, Microsoft, and Facebook, employ
ML extensively across a range of applications, including speech recognition and image
processing. The crucial component of ML approaches is the automated extraction of intense
characteristics from raw datasets. As a result, they may be used for a variety of cybersecurity
activities, including intrusion detection and traffic analysis [177,189]. However, few works
have applied ML algorithms for the privacy attack issue in the IoT context. Since the
technology is relatively new, the IoT ecosystem takes into consideration the nature of
distributed computing systems as follows: it is very versatile and efficient.

8. Conclusions and Future Work

This paper provided a comprehensive survey on the main privacy issues in IoT and
examined how the growth of IoT affects each threat. Concerns about privacy can lead to far
larger threats. The associated attacks to the privacy threats were presented. In addition,
we conducted a study of possible solutions for addressing different privacy problems and
threats in IoT. While some of the privacy issues in IoT contexts are lessened by the ways that
are provided, performance evaluation and assessment in real-world contexts are clearly
lacking. Furthermore, there is a conflict between the requirement to safeguard user privacy
and the degree of data access required to deliver improved services. This brings up the
question of how to meet the demands of client privacy while retaining the same quality
of service.

In order to produce meaningful outputs from enormous and varied datasets, ML
algorithms are required. The outcomes may be used to forecast and identify weaknesses
in IoT-based models. We conducted an in-depth review of the current literature related to
privacy-preserving ML techniques within the IoT ecosystem. By thoroughly examining
and discussing various approaches, we shed light on the limitations and potential areas
for improvement in IoT privacy. Our work can be regarded as a comprehensive survey
that aims to provide valuable insights for researchers, practitioners, and policymakers in
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the domain of IoT security and privacy. We also implemented practical experiments to
demonstrate the capability of ML to detect malicious and anomalous attacks and preserve
IoT privacy. This approach introduces several layers of training that can decrease the
impact of separate, delicate training data on output models. The experiment primarily
targeted malware that was obfuscated or masked and belonged to one of the three malware
types: ransomware, spyware, and Trojan horse malware. The results of the experiments
show that the additional features and ML algorithms enhanced the overall accuracy for
detecting obfuscated and concealed malware. The experimental results also show that the
suggested technique outperforms the state-of-the-art approaches for detecting malicious
and anomalous attacks by 99.50%, which effectively helps with the necessary safeguarding
to maintain IoT privacy.

In our future work, we intend to work with other types of IoT privacy issues, as well
as testing the suggested model in various use cases and investigating how it may interact
with the assaults in real time.
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