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Abstract: We derive a mathematical model that describes the competition of two populations in a
chemostat in the presence of a virus. We suppose that only one population is affected by the virus. We
also suppose that the substrate is continuously added to the bioreactor. We obtain a model taking the
form of an “SI” epidemic model using general increasing growth rates of bacteria on the substrate and
a general increasing incidence rate for the viral infection. The stability of the steady states was carried
out. The system can have multiple steady states with which we can determine the necessary and
sufficient conditions for both existence and local stability. We exclude the possibility of periodic orbits
and we prove the uniform persistence of both species. Finally, we give some numerical simulations
that validate the obtained results.
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1. Introduction

A bioreactor (Figure 1) is a tank (a lake) in which microorganisms multiply (yeasts,
bacteria, fungi, algae, etc.) which consume substrates or feed on other organisms to develop,
and which use precursors and activators to produce biomass, synthesize metabolites, or
even bioconvert molecules of interest (e.g., depollution). Thanks to the bioreactor, it is
possible to control the culture conditions (temperature, pH, aeration, etc.) and, therefore,
to collect relatively reliable experimental data for monitoring bacterial growth and/or the
chemical reaction of interest. If we consider a competition between two species for an
essential substrate, a classical postulate, known as the competitive exclusion principle,
suggests that, at most, one species can survive and the other species disappear. This
principle has been frequently demonstrated mathematically and validated experimentally
(see, for example, [1–5]). Several works [6–14] have tried to explain coexistence of bacterial
competitors using several approaches. Increasingly interested in aquatic environments,
researchers are discovering that the organisms colonized by viruses are much more varied
than the bacterial species anticipated [15]. The shape and size of some viruses are also
surprising. Finally, we are beginning to measure the impact of viral diversity on the living
world. Through various mechanisms, such as the destruction of a dominant species to the
benefit of rarer species [16] or the transfer of viral genes to the host, viruses (bacteriophage)
maintain the biodiversity of aquatic ecosystems and facilitate genetic mixing [17]. Several
works [17,18] confirm that viruses have a significant role in aquatic bacterial diversity.
Therefore, the role of viruses in aquatic ecosystems cannot be neglected and should be
taken into account when modeling bacterial competition in an aquatic ecosystem.
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DSin D(S, Xs, Xi, X2)

Figure 1. A chemostat is a well-stirred bioreactor [19] where a limiting substrate (Sin) is continuously
added to a liquid culture containing two competitors (Xs, Xi, X2) in the presence of a virus affecting
only the first competitor.

Note that a viral infection can be modeled with an epidemiological model, using either
a deterministic, delayed, or stochastic approach [20–24]. One of the basic models for the
spread of a disease was proposed in [25], dividing the population into three compartments,
namely the infected population compartment (I), the susceptible population compartment
(S), and the recovered population compartment (R), known as the “SIR” model. An
extension of the “SIR” models is given by the “SEIR” (Susceptible, Exposed, Infected,
Recovered) ones [26–29]. The “SEIR” epidemic models were extended to “SVEIR” models
(Susceptible, Vaccinated, Exposed, Infected, Recovered), taking into account the proportion
of immigrants who have been vaccinated [30–33]. Most of these works investigated the
proposed models by giving the basic reproduction number and the local and global stability
of the steady states using local linearisation and Lyapunov theory.

An important question has been asked in [34]: does the presence of a virus induce the
stable coexistence of bacterial competitors in an aquatic-like system?

The response was given by proposing and analyzing a mathematical model of ex-
ploitative competition in a continuous reactor containing a virus [34]. The authors assume
that only the species which have the best affinity with the substrate are affected by the
virus. They proved under certain conditions that the coexistence of competitor bacteria is
possible. Mestivier et al. [35] and Weitz et al. [36] proposed some mathematical models
where the virus dynamics are given explicitly. It is shown that the coexistence between
two competitor bacteria is possible in the presence of a virulent virus. Similarly, in [37], the
authors considered a mathematical model where the virus behaviour is given explicitly
and they give some conditions satisfying the coexistence of all competitors.

In this paper, we propose a generalized model of the one given in [34] by considering
general increasing growth rates of bacteria on the substrate and a general increasing
incidence rate for the viral infection. We introduce the model in Section 2 and we give
some general results. In Section 3, we discuss the case where there is no viral infection
where the competitive exclusion principle is valid. In Section 4, we reduce the system to a
three-dimensional one which facilitates the mathematical analysis. We discuss the local
analysis in Section 4.1, we prove that there is no periodic orbits on the faces in Section 4.2,
and then we conclude on the persistence in Section 4.3 and the uniform persistence in
Section 4.4. Then, we return in Section 5 to the main model where we discuss the uniform
persistence. Then, we give some numerical simulations in Section 6. Finally, we summarize
the main results and discuss certain implications in Section 7.

2. Modeling Bacterial Competition in the Presence of a Virus

Consider a bio-reactor in which the bacterial competition of two species in the presence
of a virus that affects only species 1 was studied (see Figures 1 and 2). Therefore, species
1 is present in two compartments, susceptibles (Xs) and infectives or bacteriophage (Xi);
however, species 2 is present in a single form (X2). We know that a virus requires a host
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to replicate; that is why we do not explicitly model the virus dynamics and we assume
that the virus spreads when an infected species takes contact with a susceptible one, which
is the case of the classical epidemic models (“SI”, “SIS”, “SIR”, “SIRS”, “SEIR”, “SEIRS”,
“SVEIR”). The limiting substrate (S) was added instantaneously to the reactor with a flow
rate D and a concentration Sin. The culture liquid, containing the substrate, species 1(either
infected or not), and species 2, is continuously mixed and removed at the same flow rate,
D. Note that the viral infection concerns only species 1. We neglected all natural mortality
rates compared to the dilution rate.

X2

S Xs

Xi

µ 2(
S)X

2

µs(S)Xs

µ
i (S)X

i

DSin

f (
X i)

X s

DS

DX2

DXs

DXi

Figure 2. Competition diagram of the competition of the two species in the presence of a virus inside
a bioreactor. Compartments S, Xs, Xi, and X2 are described by circles and transition rates between
compartments are described by arrows and labels.

We proposed a mathematical model describing the competition of two species for a
single non-reproducing growth-limiting substrate in a continuous reactor that it is well-
stirred in the presence of a virus that affects only species 1 (species 2 is not susceptible to
the virus attack, Figure 2). The mathematical model takes the form of an “SI” epidemic
model where the main goal is to find under what conditions the coexistence of all species
is possible. This model is a generalization of the model proposed in [34] by considering
generalized growth rates for all species and also a generalized incidence rate for the viral
infection. The model is given by the following fourth-dimensional system of ordinary
differential equations:

Ṡ = D(Sin − S)− µs(S)
Y1

Xs −
µi(S)

Y1
Xi −

µ2(S)
Y2

X2,

Ẋs = µs(S)Xs − DXs − f (Xi)Xs,
Ẋi = µi(S)Xi − DXi + f (Xi)Xs,
Ẋ2 = µ2(S)X2 − DX2.

(1)

Here, S denotes the concentration of the resource with S(0) ≥ 0, whereas Xs, Xi, and X2
stand for the concentrations of susceptible species 1, infected species 1, and species 2,
respectively, with initial conditions satisfying Xs(0) > 0, Xi(0) > 0 and X2(0) > 0. Note
that D and Sin describe the dilution rate and the substrate input concentration, respectively,
and are assumed to be constant and positive. Y1 and Y2 denote the yield coefficients,
commonly referred to as the substrate-to-species-1 (either infected or not) and substrate-to-
species-2 yields, respectively. The significance of the variables and parameters is shown in
Table 1.
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Table 1. Variables and parameters meaning of system (1).

Notation Description

µs(·) Specific growth rate of susceptible species 1

µi(·) Specific growth rate of infected species 1

µ2(·) Specific growth rate of species 2

f (·) Saturated incidence rate

Sin Substrate input concentration

D Flow rate

Y1
Yield coefficient expressing the
substrate-to-species-1 yield

Y2
Yield coefficient expressing the
substrate-to-species-2 yield

By making the following change of variable, we obtain a more simplified model. Let

s = S, sin = Sin, xs =
Xs

Y1
, xi =

Xi
Y1

, x2 =
X2

Y2
, and µ(xi) = f (Y1xi). Then, the model takes

the form: 
ṡ = D(sin − s)− µs(s)xs − µi(s)xi − µ2(s)x2,
ẋs = µs(s)xs − Dxs − µ(xi)xs,
ẋi = µi(s)xi − Dxi + µ(xi)xs,
ẋ2 = µ2(s)x2 − Dx2.

(2)

Let us define some operating parameters as follows: Ds = µs(sin), D2 = µ2(sin), and
Di = µi(sin). All the mentioned parameters are positive. Through the paper, we will
consider the most important case by using the following assumption:

Assumption 1. The growth rates µs, µi, and µ2 are increasing, non-negative, C1(R+) functions,
such that µs(0) = µi(0) = µ2(0) = 0. Furthermore, µi(s) < µ2(s) < µs(s) for all s ∈ (0, sin)
and Di < D < D2.

Let us define the values s̄1 and s̄2 as the solutions of µs(s) = D and µ2(s) = D,
respectively.

Remark 1.

1. Assumption 1 expresses that species 1 has the best affinity with the substrate and then it wins
the competition in the absence of the infection. Once the infection is present, Assumption
1 expresses that the non-infected species 1 (xs) still has the best affinity with the substrate;
however, infected species 1 (xi) has a growth rate (µi) smaller than both growth rates (µs and
µ2) of the non-infected species 1 and species 2.

2. Monod functions (or Holling’s functions type II) are candidate functions that can express
growth rates (Figure 3):

µs(s) =
µ̄ss

ks + s
, µi(s) =

µ̄is
ki + s

, µ2(s) =
µ̄2s

k2 + s
and µ(s) =

µ̄s
k + s

where ks, ki, and k2 are Monod constants. µ̄s, µ̄i, and µ̄2 are positive constants. All constants
can be chosen such that the functions µs, µi, and µ2 satisfy Assumption 1. For example, we
can take µ̄s > µ̄2 > µ̄i and ks = k2 = ki.
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µs(s)
µ2(s)
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Figure 3. Typical growth rates µs(·), µi(·) and µ2(·) where s̄1 < s̄2 < sin and Di < D < D2 < Ds.

The model (2) of the chemostat is a dynamical system defined on the non-negative
cone, for which we recall some fundamental properties (see, for instance, [38]).

Proposition 1. System (2) satisfies

1. All solutions of system (2) are defined, non-negative, and bounded.
2. Σ =

{
(s, xs, xi, x2) ∈ R4

+ | s + xs + xi + x2 = sin
}

is a positively invariant attractor set of
solutions of the system (2).

Proof.

1. The invariance of R4
+ is confirmed by the following points: s(t) = 0⇒ ṡ(t) = Dsin > 0,

xi(t) = 0⇒ ẋi(t) = 0, xs(t) = 0⇒ ẋs(t) = 0, and x2(t) = 0⇒ ẋ2(t) = 0 .
Consider the variable M(t) = s(t) + xs(t) + xi(t) + x2(t)− sin. By adding all equa-
tions of model (2), we deduce that:

Ṁ(t) = −DM(t) , (3)

and, therefore, we obtain:

s(t) + xs(t) + xi(t) + x2(t) = sin + M0e−Dt

with M0 = s(0) + xs(0) + xi(0) + x2(0)− sin. Since all compartments of the sum are
non-negative, we can conclude on the boundedness of the solution.

2. It can be deduced from the relation (3).

Lemma 1. s̄1 and s̄2 exist and are unique and satisfy 0 < s̄1 < s̄2 < sin.

Proof. The function µs is continuous and increasing, such that µs(0) = 0 and D < Ds =
µs(sin); therefore, s̄1 ∈ (0, sin) exists and is unique. The function µ2 is continuous and
increasing, such that µ2(0) = 0 and D < D2 = µ2(sin); therefore, s̄2 ∈ (0, sin) exists and is
unique. Since µ2(s) < µs(s) for all s ∈ (0, sin) then s̄1 < s̄2 < sin.

Assumption 2. The incidence rate µ is an increasing, non-negative, C1(R+) concave function,
such that µ(0) = 0. Furthermore, µ satisfies:

µs(s̄2) < D + µ(sin − s̄2) (4)
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and

µ′i(0) < µ′(xi) ∀ xi ∈ R+. (5)

Remark 2. Monod (or Holding type II) function is a candidate function that can express the

incidence rate µ(x) =
µ̄x

k + x
, where k is the Monod constant. µ̄ is the maximum incidence rate.

Note that µ satisfies Assumption 2.

The incidence rate µ satisfies the following lemma.

Lemma 2. The incidence rate µ satisfies µ′(x) ≤ µ(x)
x
≤ µ′(0), ∀x > 0.

Proof. Let x, x1 ∈ R+, and the function ϕ1(x) = µ(x)− xµ′(x). Since µ′(x) ≥ 0 (µ is an
increasing function) and µ′′(x) ≤ 0 (µ is a concave function), then ϕ′1(x) = −xµ′′(x) ≥ 0
and ϕ1(x) ≥ ϕ1(0) = 0. Therefore, µ(x) ≥ xµ′(x). Similarly, let ϕ2(x) = µ(x)− xµ′(0);
then, ϕ′2(x) = µ′(x)− µ′(0) ≤ 0 once µ is a concave function. Thus, ϕ2(x) ≤ ϕ2(0) = 0
and µ(x) ≤ xµ′(0).

Let us define the basic reproduction numberR0 for system (2) using the next-generation
operator approach proposed in [39] and deduced from the third equation (infected com-
partment) of system (2) and, therefore, given by:

R0 =
µi(s̄1) + µ′(0)(sin − s̄1)

D
.

Here, µi(s̄1) + µ′(0)(sin − s̄1) describes the mean number of infective produced in a chemo-
stat by introducing a single infective into a totally susceptible population inside the reactor.
1
D

describes the average time that an infective individual passes inside the chemostat as
an infective.

For the rest of the paper, we consider the most important case whereR0 > 1.

Assumption 3. R0 > 1 or, equivalently, sin >
D + µ′(0)s̄1 − µi(s̄1)

µ′(0)
.

Let us recall the classical ’chemostat’ model in the absence of the virus.

3. Virus-Free Subsystem

Consider the following three-dimensional system which is the virus-free subsystem:
ṡ = D(sin − s)− µs(s)xs − µ2(s)x2,
ẋs = µs(s)xs − Dxs,
ẋ2 = µ2(s)x2 − Dx2.

(6)

This model is the same as (2) in the absence of the viral infection (xi = 0). This model
predicts the competitive exclusion; that is, under Assumption 1, at most, the first species
(which has the best affinity with the substrate) avoids extinction; however, the second
species goes to extinction (see, for example, [19,38,40,41]). Let us define the steady-states of
system (6) on the non-negative quadrant by SS0, SS1, and SS2 with :

SS0 = (sin, 0, 0), SS1 = (s̄1, sin − s̄1, 0), SS2 = (s̄2, 0, sin − s̄2)

where s̄1 < s̄2 (according to Lemma 1). Therefore, we have:

Proposition 2. The equilibrium point SS1 is globally asymptotically stable [38].
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Note that by introducing a virus that affects only species 1, which has the best affinity
with the nutriment, we aim to give a possibility of the coexistence of both competing species.

4. Reduction to Three-Dimensional System

Note that all solutions of the 4D-dynamics (2) converge toward Σ. Now, because we
are interested by the asymptotic behavior of the dynamics (2), we will restrict the study
to Σ. Thanks to Thieme’s results [42], the asymptotic behavior of the reduced dynamics
will be informative for the dynamics (2); see [19,43] for other applications. The reduced
dynamics of (2) on Σ is given by:

ẋs = µs(sin − xs − xi − x2)xs − Dxs − µ(xi)xs = xs h1(xs, xi, x2),
ẋi = µi(sin − xs − xi − x2)xi − Dxi + µ(xi)xs = xi h2(xs, xi, x2),
ẋ2 = µ2(sin − xs − xi − x2)x2 − Dx2 = x2 h3(xs, xi, x2),

(7)

where the functions h1, h2, and h3 are given by:
h1(xs, xi, x2) := µs(sin − xs − xi − x2)− D− µ(xi),

h2(xs, xi, x2) := µi(sin − xs − xi − x2)− D +
µ(xi)

xi
xs,

h3(xs, xi, x2) := µ2(sin − xs − xi − x2)− D.

(8)

Thus, for (7) the state-vector (xs, xi, x2) belongs to the following subset of R3
+ :

Λ =
{
(xs, xi, x2) ∈ R3

+ : xs + xi + x2 ≤ sin

}
.

Formally, let F000, F100, F001, and F111 be the four equilibrium points of dynamics (7) on
Λ. F000 reflects the extinction of all species and predators, and F100 reflects the extinction
of the infected first species and the second species while the non-infected first species is
present. F001 reflects the extinction of the first species (either infected or not) while the
second species is present. Finally, F111 reflects the coexistence of both species including the
first species in its two forms, infected or not.
F000, F100, F001, and F111 are given by:

1. F000 = (0, 0, 0).
2. F100 = (sin − s̄1, 0, 0), where s̄1 is the unique solution of the equation µs(s) = D.
3. F001 = (0, 0, sin − s̄2), where s̄2 is the unique solution of the equation µ2(s) = D.
4. F111 = (x̌s, x̌i, x̌2), where (x̌s, x̌i, x̌2) is the solution of the three-dimensional system

given by:
h1(xs, xi, x2) = µs(sin − xs − xi − x2)− D− µ(xi) = 0,

h2(xs, xi, x2) = µi(sin − xs − xi − x2)− D +
µ(xi)

xi
xs = 0,

h3(xs, xi, x2) = µ2(sin − xs − xi − x2)− D = 0.

(9)

From the third equation of system (9), and by Assumption 1, there exists a unique value
s̄2 ∈ (0, sin), such that s̄2 = sin − xs − xi − x2. Thus, x2 = sin − xs − xi − s̄2 and the
system (9) is reduced to:  µs(s̄2)− D− µ(xi) = 0,

µi(s̄2)− D +
µ(xi)

xi
xs = 0.

(10)

From the second equation of (10), we have xs = (D− µi(s̄2))
xi

µ(xi)
. Let ϕi(xi) = µs(s̄2)−

D− µ(xi). Therefore, from the first equation of (10), we have:

ϕi(xi) = µs(s̄2)− D− µ(xi) = 0.
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The derivative of ϕi is given by:

ϕ′i(xi) = −µ′(xi) < 0.

Furthermore, we have:

ϕi(0) = µs(s̄2)− D > 0,
ϕi(sin − s̄2) = µs(s̄2)− D− µ(sin − s̄2)

< 0 by Assumption 2.
(11)

Therefore, the equation ϕi(xi) = 0 admits a unique solution x̌i ∈ (0, sin − s̄2) and, thus, the
existence and uniqueness of the equilibrium point F111 corresponding to the coexistence of
all species:

F111 = (x̌s, x̌i, x̌2) = ((D− µi(s̄2))
x̌i

µ(x̌i)
, x̌i, sin − (D− µi(s̄2))

x̌i
µ(x̌i)

− x̌i − s̄2).

The following equilibrium points are either not generic or not possible; that is why
they are neglected.

1. F101 = (x̃s, 0, x̃2), where (x̃s, x̃2) is the solution of the two-dimensional system given by:{
h1(xs, 0, x2) = µs(sin − xs − x2)− D = 0,
h3(xs, 0, x2) = µ2(sin − xs − x2)− D = 0.

(12)

This case will be ignored since it is non-generic because we obtain s̄1 = s̄2 (classical
model of bacterial competition in a chemostat).

2. F011 = (0, x̂i, x̂2), where (x̂i, x̂2) is the solution of the two-dimensional system given by:{
h2(0, xi, x2) = µi(sin − xi − x2)− D = 0,
h3(0, xi, x2) = µ2(sin − xi − x2)− D = 0.

(13)

This case will be ignored since we obtain µ2(sin − xi − x2) = µ2(s̄2) = µi(s̄2) = D,
which is impossible because µi(sin) = Di < D.

3. F010 = (0, sin − s̄3, 0), where s̄3 is the solution of the equation µi(s) = D. Again, this
equilibrium is not possible since µi(sin) = Di < D.

4. F110 = (x̄s, x̄i, 0), where (x̄s, x̄i) is the solution of the two-dimensional system given by: h1(xs, xi, 0) = µs(sin − xs − xi)− D− µ(xi) = 0,

h2(xs, xi, 0) = µi(sin − xs − xi)− D +
µ(xi)

xi
xs = 0.

(14)

Let:
Γ1 =

{
(xs, xi, 0) ∈ Λ; µs(sin − xs − xi)− D− µ(xi) = 0

}
and

Γ2 =
{
(xs, xi, 0) ∈ Λ; µi(sin − xs − xi)− D +

µ(xi)

xi
xs = 0

}
.

Γ1 and Γ2 are non-empty and can intersect at a finite number of positive equilib-
rium points of the form F110 = (x̄s, x̄i, 0), such that x̄s > 0 and x̄i > 0. Functions

xs → µs(sin − xs − xi) − D − µ(xi) and xs → µi(sin − xs − xi) − D +
µ(xi)

xi
xs are

decreasing. Therefore, the isoclines are the graphs of two functions xs = ϕ1(xi)
and xs = ϕ2(xi) and, then, ϕ1(0) = sin − s̄1 and ϕ1(sin − s̄3) = 0. x̄i is solution of
ψ(x̄i) = 0, where ψ(xi) = ϕ2(xi) − ϕ1(xi) . The derivatives of ϕ1 and ϕ2 are given by
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ϕ′1(xi) = −1− µ′(xi)

µ′s(sin − xs − xi)
and ϕ′2(xi) = −1 +

(
µ′(xi)−

µ(xi)

xi

)
xs

xi
− µ(xi)

xi

µ′i(sin − xs − xi)−
µ(xi)

xi

.

According to Assumption 2, we have µ′i(sin − xs − xi)−
µ(xi)

xi
< 0, and by Lemma 2,

we have µ′(xi)−
µ(xi)

xi
≤ 0; therefore, one deduces that:

ψ′(xi) = ϕ′2(xi)− ϕ′1(xi)

=
µ′(xi)

µ′s(sin − xs − xi)
+

(
µ′(xi)−

µ(xi)

xi

)
xs

xi
− µ(xi)

xi

µ′i(sin − xs − xi)−
µ(xi)

xi
> 0.

(15)

Note that ψ(0) = ϕ2(0)− sin + s̄1 > 0, since R0 > 1 by Assumption 3. Therefore,
there is no equilibrium points of the form F110 if Di < D < D2.

Therefore, we will consider only the equilibrium points F000, F100, F001, and F111 to be
the four equilibrium points of dynamics (7) on Λ and we resume them in Proposition 3.

Proposition 3. Under Assumptions 1–3, the dynamics (7) admit four equilibrium points F000,
F100, F001, and F111.

4.1. Local Stability

The Jacobian matrix at a point (xs, xi, x2) solution of system (7) is given by:

J(xs, xi, x2) =

 −µ′sxs + µs − D− µ(xi) −µ′sxs − µ′(xi)xs −µ′sxs
−µ′ixi + µ(xi) −µ′ixi + µ′(xi)xs + µi − D −µ′ixi
−µ2x2 −µ2x2 −µ′2x2 + µ2 − D

.

1. The Jacobian matrix calculated at the steady-state F000 is given by:

J000 =

 Ds − D 0 0
0 Di − D 0
0 0 D2 − D

.

J000 admits three eigenvalues: λ1 = Ds − D > 0, λ2 = Di − D < 0, and
λ3 = D2 − D > 0. Then, the steady-state F000 is a saddle point.

2. The Jacobian matrix calculated at the steady-state F100 = (sin − s̄1, 0, 0) is given by:

J100 =

 −µ′s(s̄1)(sin − s̄1) −µ′s(s̄1)(sin − s̄1)− µ′(0)(sin − s̄1) −µ′s(s̄1)(sin − s̄1)
0 µ′(0)(sin − s̄1) + µi(s̄1)− D 0
0 0 µ2(s̄1)− D


where µs and µ2 are expressed at s̄1. J100 admits three eigenvalues: λ1 = −µ′i(s̄1)(sin−
s̄1) < 0, λ2 = µ′(0)(sin − s̄1) + µi(s̄1)− D = D(R0 − 1) > 0, and λ3 = µ2(s̄1)− D <
0. Then, the steady-state F100 is a saddle point.

3. The Jacobian matrix calculated at the steady-state F001 = (0, 0, sin − s̄2) is given by:

J001 =

 µs(s̄2)− D 0 0
0 µi(s̄2)− D 0

−µ2(s̄2)(sin − s̄2) −D(sin − s̄2) −µ′2(s̄2)(sin − s̄2)
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where µs and µ2 are expressed at s̄2. J001 admits three eigenvalues: λ1 = µs(s̄2)−D > 0,
λ2 = µi(s̄2)− D < 0, and λ3 = −µ′2(s̄2)(sin − s̄2) < 0. Thus, the steady-state F001 is a
saddle point.

4. The Jacobian matrix calculated at the steady-state F111 = (x̌s, x̌i, x̌2) is given by:

J111 =


−µ′s x̌s −(µ′s x̌s + µ′(xi)x̌s) −µ′s x̌s

−µ′i x̌i + µ(x̌i) −
(

µ′i x̌i − µ′(x̌i)x̌s + µ(x̌i)
x̌s

x̌i

)
−µ′i x̌i

−Dx̌2 −Dx̌2 −µ′2 x̌2


where µs, µi, and µ2 are expressed at (sin − x̌s − x̌i − x̌2).

P(λ) =

∣∣∣∣∣∣∣∣
−(λ + µ′s x̌s) −(µ′s x̌s + µ′(xi)x̌s) −µ′s x̌s

−µ′i x̌i + µ(x̌i) −
(

λ + µ′i x̌i − µ′(x̌i)x̌s + µ(x̌i)
x̌s

x̌i

)
−µ′i x̌i

−Dx̌2 −Dx̌2 −(λ + µ′2 x̌2)

∣∣∣∣∣∣∣∣.
J111 admits three eigenvalues: λ1, λ2, and λ3, roots of the characteristic polynomial
given by:

λ3 + a2λ2 + a1λ + a0 = 0

with:

a0 = µ′s x̌s

[
µ′2 x̌2

(
µ′i x̌i − µ′(x̌i)x̌s + µ(x̌i)

x̌s

x̌i

)
− Dx̌2µ′i x̌i

]
−(µ′i x̌i − µ(x̌i))[µ

′
2 x̌2(µ

′
s x̌s + µ′(xi)x̌s)− Dx̌2µ′s x̌s]

+Dx̌2

[
µ′i x̌i(µ

′
s x̌s + µ′(xi)x̌s)− µ′s x̌s

(
µ′i x̌i − µ′(x̌i)x̌s + µ(x̌i)

x̌s

x̌i

)]
= µ′s x̌sµ′2 x̌2

(
µ(x̌i)

x̌i
− µ′(x̌i)

)
x̌sµ′2 x̌2µ′i x̌i + µ(x̌i)µ

′
2 x̌2µ′s x̌s + µ(x̌i)µ

′
2 x̌2µ′(xi)x̌s

+Dx̌2µ′i x̌iµ
′(xi)x̌s + Dx̌2µ′s x̌sµ′(x̌i)x̌s − µ′i x̌iµ

′
2 x̌2µ′(xi)x̌s − Dx̌2µ(x̌i)µ

′
s x̌s

−Dx̌2µ′s x̌sµ(x̌i)
x̌s

x̌i
,

a1 = µ′s x̌sµ′i x̌i + µ′s x̌2
s

(
µ(x̌i)

x̌i
− µ′(x̌i)

)
+ µ′s x̌sµ′2 x̌2 + µ′2 x̌2µ′i x̌i

+µ′2 x̌2

(
µ(x̌i)

x̌i
− µ′(x̌i)

)
x̌s − Dx̌2µ′i x̌i − µ′i x̌iµ

′
s x̌s − µ′i x̌iµ

′(xi)x̌s + µ(x̌i)µ
′
s x̌s

+µ(x̌i)µ
′(xi)x̌s − Dx̌2µ′s x̌s,

a2 = µ′s x̌s + µ′i x̌i − µ′(x̌i)x̌s + µ(x̌i)
x̌s

x̌i
+ µ′2 x̌2

= µ′s x̌s + µ′i x̌i +

(
µ(x̌i)

x̌i
− µ′(x̌i)

)
x̌s + µ′2 x̌2.

We can verify, by using Maple, that a2 > 0, a1 > 0, a0 > 0, and a2a1 > a0. Then, the
steady-state F111 is locally asymptotically stable once it exists.

According to Assumptions 1–3, we resume the local stability of equilibrium points in
the following proposition.

Proposition 4. F000, F100, and F001 are saddle points; however, F111 is stable node.

4.2. No Periodic Orbits on the Faces

We start by excluding the possibility of periodic trajectory in one of the faces of the
invariant set Λ.



Mathematics 2023, 11, 3530 11 of 17

• Consider a trajectory of dynamics (7) on the part of Λ where x2 = 0:{
ẋs = µs(sin − xs − xi)xs − Dxs − µ(xi)xs,
ẋi = µi(sin − xs − xi)xi − Dxi + µ(xi)xs.

(16)

defined on Λxsxi , given by:

Λxsxi =
{
(xs, xi) ∈ R2

+ : xs + xi ≤ sin

}
.

Note that the axes xs = 0 and xi = 0 are invariant. Let us apply the transformation
ηs = ln(xs) and ηi = ln(xi) for xs, xi > 0. Then, one gets the following new system:{

η̇s = gs(ηs, ηi) := µs(sin − eηs − eηi )− D− µ(eηi ) ,
η̇i = gi(ηs, ηi) := µi(sin − eηs − eηi )− D + µ(eηi )eηs−ηi .

(17)

Note that using Lemma 2, we have:

∂gs

∂ηs
+

∂gi
∂ηi

= −eηs µ′s(sin − eηs − eηi )− eηi µ′i(sin − eηs − eηi )

+eηi µ′(eηi )eηs−ηi − µ(eηi )eηs−ηi

= −eηs µ′s(sin − eηs − eηi )− eηi µ′i(sin − eηs − eηi )

+eηs
(

eηi µ′(eηi )− µ(eηi )
)

< 0.

(18)

By the criterion of Dulac [38], system (17) (and then, system (16)) has no periodic
solution. Therefore, system (7) has no periodic solution in xsxi-face (x2 = 0).

• Consider a trajectory of dynamics (7) on the part of Λ where xs = 0:{
ẋi = µi(sin − xi − x2)xi − Dxi,
ẋ2 = µ2(sin − xi − x2)x2 − Dx2.

(19)

defined on Λxix2 , given by:

Λxix2 =
{
(xi, x2) ∈ R2

+ : xi + x2 ≤ sin

}
.

Note that the axes xi = 0 and x2 = 0 are invariant. Let ua apply the transformation
ηi = ln(xi) and η2 = ln(x2) for xi, x2 > 0. Then, one gets the following new system:{

η̇i = gi(ηi, η2) := µi(sin − eηi − eη2)− D ,
η̇2 = g2(η1, η3) := µ2(sin − eηi − eη2)− D .

(20)

Note that:

∂gi
∂ηi

+
∂g2

∂η2
= −eηi µ′i(sin − eηi − eη2)− eη2 µ′2(sin − eηi − eη2) < 0. (21)

From the Dulac criterion [38], system (20) (and then, system (19)) has no periodic
solution. Therefore, system (7) has no periodic solution in xix2-face (xs = 0).

• Consider a trajectory of dynamics (7) on the part of Λ where xi = 0:{
ẋs = µs(sin − xs − x2)xs − Dxs,
ẋ2 = µ2(sin − xs − x2)x2 − Dx2.

(22)

defined on Λxsx2 , given by:

Λxsx2 =
{
(xs, x2) ∈ R2

+ : xs + x2 ≤ sin

}
.
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Note that the axes xs = 0 and x2 = 0 are invariant. Let ua apply the transformation
ηs

1 = ln(xs) and η2 = ln(x2) for xs, x2 > 0. Then, one gets the following new system:{
η̇s = gs(ηs, η2) := µs(sin − eηs − eη2)− D ,
η̇2 = g2(η2, η3) := µ2(sin − eηs − eη2)− D .

(23)

Note that:

∂gs

∂ηs
+

∂g2

∂η2
= −eηs µ′s(sin − eηs − eη2)− eη2 µ′2(sin − eηs − eη2) < 0. (24)

By the criterion of Dulac [38], system (23) (and then, system (22)) has no periodic
solution. Therefore, system (7) has no periodic solution in xsx2-face (xi = 0).

4.3. Persistence

In this subsection, we aim to prove the coexistence of both species 1 (either infected or
not) and species 2 by proving the uniform persistence of dynamics (7). The saddle points
F000, F100, and F001 are the only boundary steady states for the dynamics (7). Then, we apply
the proof used in [37,43,44] using the Butler-McGehee Lemma [38] frequently to prove the
persistence of system (7).

Theorem 1. Dynamics (7) is persistent.

Proof. All the faces xsxi, xsx2, and xix2 are invariant. Furthermore, stable and unstable
manifolds of the boundary equilibrium points are represented in Figure 4.

xs

xi

x2

x̌2

x̌s

x̌i

F111

F100

F001

F000

Figure 4. Equilibria configuration. F000, F100, and F001 are saddle points; however, F111 is an asymp-
totically stable interior equilibrium.

Consider a solution~z = (xs(t), xi(t), x2(t)) with an initial condition~z(0) = (xs(0), xi(0),
x2(0)), where xs(0) > 0, xi(0) > 0, and x2(0) > 0 are given data. Let us denote
ω = ω(γ+(~z(0))) to be the omega limit set of γ+(~z(0)), where γ+(~z(0)) is the positive
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semi-orbit passing through~z(0). We aim to prove that the omega limit set has no points on each
of the three faces.

• Assume that F000 ∈ ω. Then, ∃ z∗ 6= F000 inside ω ∩Ws(F000)\{F000}. The stable
manifold Ws(F000) is one-dimensional and is restricted to the xi-axis. Therefore,
the entire orbit passing through z∗, which is inside ω, becomes unbounded, which
contradicts the existence of z∗.

• Assume that F100 ∈ ω. F100 is a saddle point with a stable manifold, Ws(F100), of
dimension two, restricted to the xsx2-plane. Therefore, {F100} is not the entire omega
limit set ω. Using the Butler-McGehee Lemma [38], there exists a point z∗ 6= F100
inside ω ∩Ws(F100)\{F100}. Since Ws(F100) lies entirely in the xsx2-plane, and since
the entire orbit through z∗ is in ω, this orbit is unbounded, which contradicts the fact
that F100 is inside ω.

• Assume that F001 ∈ ω. Since F001 is a saddle point where its stable manifold Ws(F001)
is of dimension two and is restricted to the xix2-plane, then {F001} is not the entire
omega limit set ω. Therefore, using the Butler-McGehee Lemma [38], there exists a
point z∗ 6= F001 inside ω ∩Ws(F001)\{F001}. Since Ws(F001) lies entirely in the xix2-
plane, and since the entire orbit through z∗ is in ω, this orbit is unbounded, which
contradicts the fact that F001 is inside ω.

Now, let z = (xs(t), xi(t), x2(t)) with at least one of the components xs(t), xi(t), and
x2(t) is zero, and suppose that z ∈ ω. Thus, the entire orbit passing through z should be
inside ω. However, since the orbit should lie entirely inside either xsxi, xix2, or xsx2 faces,
it should converge to one of the boundary equilibrium points, since there is no periodic
trajectory. Therefore, this boundary equilibrium point is inside ω, which contradicts the fact
that all boundary equilibrium points are saddle points. Therefore, each of the components
of the trajectory is greater than zero:

lim inf
t→∞

xs(t) > 0, lim inf
t→∞

xi(t) > 0 and lim inf
t→∞

x2(t) > 0,

and then system (7) is persistent (see Section 4.3 in [44] for another example).

4.4. Uniform Persistence of System (7)

Persistence and uniform persistence [45] are equivalent in many examples of mathemat-
ical models. Recall a theory in [45] stating that if D is a dynamical system, such that R3

+ and
∂R3

+ are both invariant, then D is uniformly persistent if it satisfies the following statements.

1. D is weakly persistent;
2. D is dissipative;
3. ∂D is isolated, where ∂D be the restriction of D to ∂R3

+;
4. ∂D is acyclic.

Consider the dynamics D on the invariant attractor bounded set Σ. We can apply
the theorem given in [45] if ∂Σ = Σ1 ∪ Σ2 and D is invariant on Σ1, but repelling into the
interior of Σ on Σ2 if Conditions 3 and 4 are satisfied when restrictingD to Σ1. It is clear that
condition 1 is satisfied. Condition 2 is also satisfied according to Theorem 1. Condition 3
is satisfied because all boundary equilibrium points are hyperbolic and then their union
forms a covering of the omega limit sets of Σ1. Condition 4 is also satisfied because the
boundary equilibrium points are not linked cyclically. Thus, we conclude on the uniform
persistence of system (7).

Theorem 2. Dynamics (7) is uniformly persistent, i.e., ∃ β > 0, such that:

lim inf
t→∞

xs(t) > β, lim inf
t→∞

xi(t) > β, lim inf
t→∞

x2(t) > β.
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5. Uniform Persistence of System (2)

Return to the main mathematical model (2) describing the competition of two bac-
teria in a chemostat in the presence of a virus that affects only the first bacteria. System
(2) admits E000 = (sin, 0, 0, 0), E100 = (s̄1, sin − s̄1, 0, 0), E001 = (s̄2, 0, 0, sin − s̄2), and
E111 = (sin − x̌s − x̌i − x̌2, x̌s, x̌i, x̌2) as equilibrium points. E000, E100, and E001 are saddle
points; however, E111 is locally asymptotically stable. We need to prove the uniform per-
sistence of the main system (2). Let ~z0 = (s(0), xs(0), xi(0), x2(0)) with s(0) ≥ 0, xs(0) ≥
0, xi(0) ≥ 0 and x2(0) ≥ 0; then, ω(~z0) ∈ Σ. Furthermore, assume that ∃ ~ø ∈ R4

+\Σ such
that the the solution converges to~ø. This is not possible since Σ is a global attractor accord-
ing to proposition 1. Now, suppose that ω(~z0) contains a point on one of the faces where
one of the variables xs, xi, or x2 is zero; therefore, the entire trajectory passing through this
point should be inside ω(~z0). Thus, the omega limit set ω(~z0) should be entirely inside Σ.

Theorem 3. Dynamics (2) is uniformly persistent, i.e., ∃ η > 0, such that:

lim inf
t→∞

s(t) > η, lim inf
t→∞

xs(t) > η, lim inf
t→∞

xi(t) > η, lim inf
t→∞

x2(t) > η.

6. Numerical Simulations

We cofirm the theoretical findings by some numerical results using Monod functions
(or Holling’s functions type II) to express all growth rates and the incidence rate:

µs(s) =
µ̄ss

ks + s
, µi(s) =

µ̄is
ki + s

, µ2(s) =
µ̄2s

k2 + s
and µ(s) =

µ̄s
k + s

where ks, ki, k2, and k are Monod constants. µ̄s, µ̄i, µ̄2, and µ̄ are positive constants. We used
Holling type-II functions as typical examples [46,47] since they are nonlinear and satisfied
all our assumptions on growth rates and incidence rates. All constants are chosen such that
the functions µs, µi, µ2, and µ satisfy Assumptions 1–3.

Consider the parameters values given in the following Table 2.

Table 2. The parameter values are used to illustrate the theoretical results, but they have no
biological significance.

Parameter µ̄s µ̄i µ̄2 µ̄ ks ki k2 k sin Ds D2 Di

Value 3 1 2.4 3 3 2.5 5 2 10 2.3 1.6 0.8

We give two examples that satisfy Assumptions 1–3, which ensures the persistence of
both species 1 (either infected or not) and species 2, as seen in Figures 5 and 6.

Figure 5. D = 1.4 and R0 = 8.27 and then Assumptions 1–3 are satisfied. The solution of the
system (2) converges to the equilibrium F111 where the two species coexist (either infected or not).
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Figure 6. D = 1.2,R0 = 10.37 and then Assumptions 1–3 are satisfied. The solution of the system (2)
converges to the equilibrium F111 where the two species coexist (either infected or not).

7. Conclusions

Since we aim to prove that the competitive exclusion principle is not usually valid
when two competitors grow on a single essential resource, we add, in this paper, an
additional mechanism of competition by adding a virus in the chemostat that affects only
the first species, and then the coexistence becomes possible. We propose a mathematical
model that describes the competition of two species in a chemostat in the presence of a
virus. We suppose that only one population is affected by the virus. We suppose also that
the substrate is continuously added to the bioreactor. We obtain a model taking the form
of an ’SI’ epidemic model. The stability of the steady states was carried out. The system
can have multiple steady states with which we can determine the necessary and sufficient
conditions for both existence and local stability. We exclude the possibility of periodic orbits
and we prove the uniform persistence of both species. Finally, we give some numerical
simulations that validate the obtained results.

The main result of this work is that the presence of the virus allows the coexistence
of the two bacterial species when the species cannot coexist unless the virus is present. A
biological explanation of this result is that the virus affects the species which should win
the competition and then it gives the opportunity to the second species to persist.
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