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Abstract: Wherever there is group life, there has been a social division of labor and resource allocation,
since ancient times. Examples include ant colonies, bee colonies, and wolf colonies. Different roles are
responsible for different tasks. The same is true of human beings. Human beings are the largest social
group in nature, among whom there are intricate social networks and interest networks between
individuals. In such a complex relationship, how do decision makers allocate resources or tasks to
individuals in a fair way? This is a topic worthy of further study. In recent decades, fair allocation has
been at the core of research in economics, mathematics and other fields. The fair allocation problem
is to assign a set of items to a set of agents so that each agent’s allocation is as fair as possible to
satisfy each agent. The fairness measurements followed in current research include envy-freeness,
proportionality, equitability, maximin share fairness, competitive equilibrium, maximum Nash social
diswelfare, and so on. In this paper, the main concern is the allocation of chores. We discuss this
problem in two parts: divisible and indivisible. We comprehensively review the existing results,
algorithms, and approximations that meet various fairness criteria in chronological order. The
relevant results of achieving fairness and efficiency are also discussed. In addition, we propose some
open questions and future research directions for this problem based on existing research.
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1. Introduction

The fair allocation problem refers to the allocation of a set of items to a set of agents
such that each agent is satisfied with the items they obtain. Although this problem is an
extremely old one, academic research on fair allocation was initiated by Steinhaus (1948) [1]
at the meeting of the Society of Econometrics in 1947. Since then, a large number of
scholars in the fields of economics and mathematics have devoted themselves to theoretical
research on fair allocation among agents. In international disputes and daily life, there
is always a fair allocation problem. Traxler (2002) [2] studied how to allocate the cost of
climate change mitigation and adaptation among countries in international cooperation.
In the absence of a public supervisory organization that monitors the implementation of
relevant agreements by countries, only the allocation of equal shares can better promote
the achievement of international cooperation. Traxler solved this problem based on the
principles of responsibility and fair allocation. Bulmer et al. (2020) [3] considered the
problem of student allocation projects, assigning several students to a project, ensuring that
all the requirements of the project are met and taking into account the social relationship
between students. Payan (2022) [4] applied fair allocation technology to the allocation
of reviewers. The cost of mitigating and adapting to climate change, the projects to be
allocated, and the reviewers in the above examples can all be considered as items to be
allocated in the fair allocation problem. This paper focuses on the fair allocation problem
of chores, where the cost of mitigating and adapting to climate change can be seen as the
allocation of chores among countries. However, many allocation problems in real life have
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not been formally defined, and no more fairness criteria have been proposed to measure
the fairness of allocation. Because of the wide applicability of fair allocation and the lack of
relevant content, researchers have paid increasing attention to it.

The objective of the fair allocation problem is to calculate a fair allocation, i.e., an
allocation that meets a desired fairness criterion. In this paper, we summarize different
definitions to measure the fairness of allocation, including envy-freeness (EF), proportion-
ality (PROP), equitability (EQ), and maximin share (MMS) fairness. EF and PROP were
also fairness criteria that were the focus of early research on this problem. However, some
fair allocations of chores do not always exist. The simplest example is to consider assign-
ing two single-person tasks with significant cost differences to two workers. The worker
assigned to the high-cost task must envy those assigned to the low-cost task. Obviously,
the EF allocation in this example does not exist. This is also one of the reasons why many
researchers have studied the relaxation of fairness. In addition, compared with the fair
allocation of goods, some properties of the fair allocation of chores may not have or need
to be explained in a different way, for example, the well-known envy-cycle elimination
algorithm (Lipton et al. (2004) [5]). For indivisible goods, we only need to construct a
general envy graph and then eliminate the envy-cycle in the graph to obtain an allocation
of envy-free up to one chore (EF1). For indivisible chores, EF1 is defined as removing the
chores in the envy agent’s bundle to ensure EF. Therefore, using the general envy graph can
lead to an irreparable envious relationship between agents (detailed details can be found in
Example 11). To avoid this, EF1 allocation of indivisible chores can only be achieved by
eliminating the top-trading envy-cycle (Bhaskar et al. (2020) [6]) in the top-trading envy
graph. (The top-trading envy graph is also constructed through the envious relationship
between agents. The difference is that, among all envious objects of an agent, the agent
only forms a directed edge with its most envious object).

The difference between this paper and existing relevant reviews is that we focus
on existing research on the fair allocation of divisible and indivisible chores. To help
readers understand the relevant research comprehensively, we classify the existing research
using different concepts of fairness. In this paper, we introduce the main contributions of
the relevant literature in order of publication time, including algorithm technology and
improvement of existing results. In addition, we put forward some relevant open questions
and future research directions for readers’ reference.

This section mainly introduces the research background of the fair allocation problem
of chores. The rest of the survey is organized as follows. In Section 2, we review surveys
from different perspectives on the fair allocation problem and the current research status of
the unrelated parallel machine scheduling problem, which is similar to the fair allocation of
chores. In Section 3, we first introduce the fair allocation problem of divisible and indivisible
chores, as well as some concepts of fairness. In Section 4, we present the research results of
envy-freeness and its relaxation forms in recent years. In Section 5, the research results of
proportionality and its relaxation forms in recent years are introduced. In Section 6, we
introduce the research status of equitability and its relaxation forms in recent years. The
research status of maximin share fairness and its variant forms in recent years is presented
in Section 7. In Section 8, we introduce research related to the fair allocation of chores from
three aspects: competitive equilibrium, maximum Nash social diswelfare, and the Fisher
market. We summarize our survey and propose some future research directions for this
problem in Section 9. Finally, we list the symbols used in this paper and corresponding
instructions in the Appendix A.

2. Related Work

The fair allocation of chores can be seen as a scheduling problem for unrelated parallel
machines (R||Cmax). The chore corresponds to the job. The agent corresponds to the
unrelated parallel machine. In the fair allocation problem of chores, the disutility of
each agent for each chore can be seen as the time consumed by each machine to process
each job in the scheduling problem. Similar to the fair allocation problem of chores,
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scheduling problems require assigning each job to one of the machines for processing.
For R||Cmax, Lenstra et al. (1990) [7] designed a 2-approximation algorithm by using
techniques such as linear programming relaxation and rounding. It is also proven that,
unless P = NP, there is no approximation algorithm whose approximation ratio is strictly
less than 3/2. When the machine processing time for the job in problem R||Cmax is pij = pj,
then the problem is transformed into a scheduling problem for the identical parallel machine
(P||Cmax). McNaughton (1959) [8] studied the parallel machine problem for the first time.
Hochbaum and Shmoys (1987) [9] designed the first polynomial time approximation scheme
(PTAS), that is, given instance I, for ∀ε > 0, there is a family of algorithms Aε, where the
approximation ratio of the algorithms in Aε does not exceed 1 + ε—these are polynomial
time poly(|I|) algorithms. The same authors in the following year provided PTAS for
uniform parallel machine scheduling problems (Hochbaum and Shmoys (1988) [10]). Alon
et al. (1998) [11] first proposed an efficient polynomial time scheme (EPTAS). Compared
to PTAS, its running time has been improved to f ( 1

ε ) + poly(|I|). Jansen et al. (2020) [12]

further improved the algorithm runtime, reducing it to 2(1/ε) logO(1)(1/ε) + nO(1).
Research on fair allocation has not stopped since it was proposed. There are sev-

eral papers investigating the fair allocation problem from different perspectives. Brams
(2008) [13] discussed the fair allocation problem from the perspective of political science.
Procaccia (2013) [14] introduced research on cake cutting in the field of computer science. In
addition, how to design efficient and unaffected cake-cutting algorithms and how to apply
cake-cutting research to the allocation of computing resources were discussed. Moulin
(2019) [15] conducted a review from an economic perspective. Walsh (2020) [16] analyzed
how to allocate items fairly and efficiently from a computational perspective. Aleksandrov
and Walsh (2020) [17] focused on the fair allocation problem in the online context. The
review provided by Aziz et al. (2022) [18] mainly focused on the fair allocation of indivisible
items. They conducted a survey of the literature in recent years by the prism of algorithms.
Amanatidis et al. (2022) [19] surveyed some important results regarding the fair allocation
of indivisible goods. However, this paper focused on the fair allocation of chores, which
was first proposed by Gardner (1978) [20]. The difference between this fair allocation study
and the fair allocation study proposed in 1947 is that the fair allocation of chores proposed
in 1978 has negative utilities in the allocation of items. The problem proposed in 1947 has
nonnegative utilities on the allocation of items. For the fair allocation of goods, each agent
wants to obtain the most utility goods. For the fair allocation of chores, each agent prefers
low disutility chores. Liu et al. (2023) [21] discussed fair division with mixed types of
resources, which has received growing attention, and focused on three mixed fair division
domains. Amanatidis et al. (2023) [22] conducted a comprehensive review of the latest
developments in the literature on fair allocation problems, emphasizing different methods
for relaxing the concept of fairness, common algorithm design techniques, and the most
interesting problems in future research.

3. Preliminaries

In this section, we introduce a mathematical model for the fair allocation of chores.
According to the divisible and indivisible characteristics of chores, the fair allocation
problem of chores can be divided into two categories. In the following text, we introduce
the models of these two types of problems separately.

The fair allocation problem can be regarded as a multi-agent system. In this paper, we
use agents to represent the individuals participating in the allocation. A multi-agent system
refers to a group system composed of many agents (Dorri et al., 2018 [23]). It completes a
large and complex amount of work that a single agent cannot complete by means of mutual
communication, cooperation and competition among agents.

Consider an instance of divisible chores < N, C,F >, where N represents a set of
n agents, divisible chores C are represented by the interval [0, 1], and F represents a
nonnegative density function family of divisible chores. For divisible chores, each agent
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i ∈ N has its own density function fi : [0, 1] → R>0, so that, for any measurable subset
S ⊂ [0, 1], the disutility [6] of agent i to S is

di(S) =
∫

S
fi(x)dx.

For the allocation problem of divisible chores, the most classic example is the problem
of cutting a bad cake. Every agent does not want to obtain more bad cakes. If an agent is
not satisfied with the bad cake assigned, the allocator can cut off a part of the agent’s cake
or cut a part of the unallocated cake to other agents for fairness. Note that the cake can be
cut at will.

Consider an instance of indivisible chores < N, C,D >, where N represents a set of n
agents, C represents a set of m indivisible chores, and D = {d1, d2, · · · , dn} represents the
nonnegative disutility function set of each agent, where di : 2C → R>0 and di(j) represents
the disutility of agent i ∈ N on chore j ∈ C.

For the allocation problem of indivisible chores, we consider the example of assigning
individual tasks, where a task can only be completed independently by one player. No
player wants to be assigned more tasks or high-cost tasks. However, individual tasks cannot
be divided and assigned to multiple players. Nurse scheduling and course matching are
both such problems.

The difference between the allocation of divisible and indivisible chores lies in the
characteristics of the chores to be allocated. During the allocation process, divisible chores
can be split for allocation, while indivisible chores cannot be split. This leads to the alloca-
tion of divisible chores satisfying some fair properties, while the allocation of indivisible
chores does not.

For disutility functions, researchers mainly focus on the following four classes in the
literature on the fair allocation of chores.

The first is the binary disutility function, which is the simplest class function among
all disutility functions. The value range of this class function can only take two numbers.

Definition 1 ([6]). A disutility function di is binary if, for ∀i ∈ N, j ∈ C, di(j) ∈ {0, 1}.

The second is the additive disutility function, which is the most commonly used
disutility function.

Definition 2 ([24]). A disutility function di is additive if, for ∀S ⊆ C, di(S) = ∑j∈S di(j).

The third is the submodular disutility function, which reflects the decline in marginal
disutility.

Definition 3 ([25]). A disutility function di is submodular if, for ∀S1 ⊆ S2 ⊆ C and c ∈
C\S2, di(S2 ∪ {c})− di(S2) 6 di(S1 ∪ {c})− di(S1).

The fourth is the subadditive disutility function. The value returned by the sum of any
two elements in the domain of the function is less than or equal to the sum of the values
returned by the two elements.

Definition 4 ([25]). A disutility function di is subadditive if, for ∀S1, S2 ⊆ C, di(S1 ∪ S2) 6
di(S1) + di(S2).

Figure 1 shows the applicability of the four disutility functions. All four disutility
functions are applicable to the fair allocation problem of indivisible chores, while only
additive disutility functions are applicable to the fair allocation problem of divisible chores.
In addition, some studies only consider the partially ordered relation between the disutility
of agents, without considering the specific disutility value of each agent.
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The fair allocation 
problem of chores

indivisible chores

divisible chores

binary disutility function

additive disutility function

subadditive disutility function

submodular disutility function

additive disutility function

Figure 1. Classification of disutility functions.

Suppose an allocation A = (A1, A2, · · · , An) is an n partition of set C, where Ai is the
bundle assigned to agent i. We define the set of all feasible allocations through A. If A ∈ A,
Ai needs to satisfy

Ai ∩ Aj = ∅, i 6= j, and
⋃

i∈N
Ai = C.

The goal of the fair allocation problem is to find a fair allocation, that is, the allocation
needs to meet an ideal fairness. To measure fairness, the literature proposes different
definitions. The commonly used definitions are EF, PROP, MMS, and their relaxation forms.
In addition, other types of concepts for measuring fairness are also discussed.

To quantify the social diswelfare of fair allocation loss, the concept of the price of
fairness is applied. First, there are two ways to define the allocation A of social diswelfare.

The first is utilitarian social diswelfare, which takes into account the disutility of all
agents.

Definition 5 ([26]). The utilitarian social diswelfare of allocation A is u(A) = ∑i∈N di(Ai).

To quantify the loss of utilitarian social diswelfare due to fair allocation, the concept of
fair price with utilitarian diswelfare is defined as follows.

Definition 6 ([27]). For any given fairness property F, the price of fairness with utilitarian diswel-
fare on a given instance I is

POFu = sup
I

min
A∈F(I)

u(A)

OPT(I)

where F(I) represents all fair allocations corresponding to fair property F under this instance I .
The fairness property F can be envy-freeness, envy-free up to one chore, envy-free up to any chore,
proportionality, proportionality up to one chore, proportionality up to any chore, maximin share
fairness, and so on. OPT(I) is defined as the optimal social diswelfare of instance I , which is the
minimum social diswelfare among all allocations in that instance.

The second is egalitarian social diswelfare, which reflects the disutility of the worst-off
agent.

Definition 7 ([26]). The egalitarian social diswelfare of allocation A is eq(A) = maxi∈N di(Ai).

To quantify the loss of egalitarian social diswelfare due to fair allocation, the concept
of fair price with egalitarian diswelfare is defined as follows:

Definition 8 ([27]). For any given fairness property F, the price of fairness with egalitarian
diswelfare at a given instance I is

POFe = sup
I

min
A∈F(I)

eq(A)

OPT(I)
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where F(I) represents all fair allocations corresponding to fair property F under this instance I .
The fairness property F can be envy-freeness, envy-free up to one chore, envy-free up to any chore,
proportionality, proportionality up to one chore, proportionality up to any chore, maximin share
fairness, and so on. OPT(I) is defined as the optimal social diswelfare of instance I , which is the
minimum social diswelfare among all allocations in that instance.

Next, we introduce relevant research based on fairness criteria and their relaxations.
Our introduction in each section is based on the publication date of the paper.

4. Envy-Freeness and Its Relaxations

In this section, we mainly introduce relevant research on envy-freeness (EF) and its
relaxations in fair allocation. EF is one of the fairness criteria that received much attention
in early research.

4.1. Envy-Freeness

If no agent in an allocation thinks that the bundle received by other agents is better
than his own, the allocation is said to be envy-free. In 1930, Tinbergen [28] first proposed
the fair concept of EF.

Definition 9 ([27]). An allocation A ∈ A is envy-free if, ∀i, j ∈ N, di(Ai) 6 di(Aj).

For divisible chores, the most classic problem is the problem of cutting bad cakes. Some
studies discuss the existence of EF allocation of chores. Su (1999) [29] gave an envy-free
chore allocation algorithm for n agents, but it is ε-approximate. Peterson and Su (2002) [30]
designed a simple and bounded algorithm for EF allocation among four agents. This
algorithm is also a bad cake-cutting algorithm, which requires 16 cuts at most. The main
core of the algorithm is to irretrievably trim and mark the smallest block considered by two
agents based on the last allocation until the two agents have no consensus on which block is
the smallest. Peterson and Su (2009) [31] designed an n-agents EF chore division procedure.
However, this procedure may require any number of cuts to solve the problem. Based on
the generalization of Sperner’s lemma (Su (1999) [29]), Segal-Halevi (2018) [32] proved that
there is EF division in cutting the cake between three agents. Dehghani et al. (2018) [33]
provided a discrete and bounded EF algorithm for fair allocation among arbitrary numbers
of agents. In addition, they provided a powerful tool design algorithm of disutility objects
for fair allocation. At the same time, it was also found that the application of these tools
simplifies the core protocol proposed by Aziz and Mackenzie (2016) [34]. Bogomolnaia et al.
(2019) [35] defined two chore allocation rules and proved that, in the case of dividing at
least two bad cakes between at least four agents, if one rule is single-valued and continuous,
then the other rule cannot also be efficient and EF. Nyman et al. (2020) [36] considered the
EF allocation problem of collections of k pieces from a given chore set among n agents. They
combined the topological method in hypergraph theory to prove that at least a number of
agents proportional to the value obtains the most-desired k cakes when n takes a different
value. Bhaskar et al. (2020) [6] proved that determining the existence of an EF allocation
is NP-complete even for binary disuility. Sanpui (2023) [37] wais concerned about the
problem of externality chore division (the concept of externality comes from psychological
research, where each agent believes that their disutility is influenced by both their own
bundle and the bundles of other agents). He proved that at least n cuts are required to
obtain swap envy-free allocation and that n− 1 cuts are required when needed individually.

Another segment of articles studied algorithms for achieving fairness and efficiency. To
quantify social diswelfare losses, some researchers have introduced fair prices. Caragiannis
et al. (2012) [27] found that the price of EF with utilitarian diswelfare is 9

8 for the divisible
chore allocation problem of two agents, and the price of EF with utilitarian diswelfare is at

least (n+1)2

4n for the divisible chore allocation problem of n agents. Heydrich and van Stee
(2015) [26] observed that the price of EF with utilitarian diswelfare and egalitarian diswel-
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fare is ∞ under continuous allocation. Sandomirskiy and Segal-Halevi (2022) [38] studied a
fair and fractional Pareto optimal (fPO) allocation algorithm problem that minimizes the
number of shares. They proved that there exists an EF+fPO division with at most n− 1
shares in any instance with n agents. Azharuddin (2023) [39] proved that, even if every
agent has a nonzero disutility, there is no deterministically truthful EF mechanism.

For indivisible chores, Caragiannis et al. (2012) [27] proved that the price of EF with
utilitarian diswelfare is infinite for the indivisible chore allocation problem of n agents,
and the price of EF with utilitarian diswelfare is two for the indivisible chore allocation
problem of two agents. Bouveret et al. (2019) [40] analyzed the existence of EF allocation
of indivisible chores based on different graph structures. The constructed graph is an
undirected graph with chores as its vertex, and the chores in the bundle allocated by
each agent are connected on the graph. This document discusses three graph structures:
complete graphs, paths, and stars. For additive disutility and maximization disutility, the
problem is NP-complete (NP means nondeterministic polynomial) on complete graphs
and stars. For additive disutility, maximum disutility, and binary disutility, the problem is
NP-complete on the paths. The graph structure of the path is shown in Figure 2.

Figure 2. Schematic diagram of the path.

Höhne and Stee (2021) [41] arranged chores in a line and allocated them to seek a fair
allocation of chores. They showed that the prices of EF with utilitarian and egalitarian
diswelfare are unbounded. Aziz et al. (2022a) [42] proved that there is a polynomial-time
algorithm to verify whether there is EF allocation for two types of chores. Note that, for the
general example of indivisible chores, this problem is NP-hard. Hosseini et al. (2022) [43]
proved that, even for lexicographic chore-only instances, determining the existence of EF
allocation is NP-complete.

4.2. Envy-Free up to One Chore

EF is an ideal criterion to measure fairness in fair allocation. Unfortunately, in some
scenarios, EF allocation may not exist, so envy-free up to one chore (EF1) was introduced
(Conitzer et al. (2017) [44]).

Definition 10 ([24]). An allocation A ∈ A is envy-free up to one chore if ∀i, j ∈ N, di(Ai\c}) 6
di(Aj), where c represents some chore allocated by agent i.

For indivisible chores, Aleksandrov (2018) [24] proved that EF1 allocation always
exists for additive disutility and can be calculated in polynomial time O(m) by a responsive
draft algorithm. For anti-monotone identical disutility, the Lipton algorithm (Lipton
et al. (2004) [5]) can be applied to solve the problem. However, the result will not be
ideal, as it will allocate all the chores to a single agent. For this reason, by improving
the Lipton algorithm, the new algorithm can also obtain the EF1 allocation for general
cases. Bhaskar et al. (2020) [6] provided a polynomial-time algorithm for computing an
EF1 allocation under monotone disuility. A counterexample (see Example 1 for details) is
given to illustrate that, even when each agent has additive disutility, it is difficult for the
envy-cycle elimination algorithm to find an EF1 allocation, and the conclusion is contrary
to that in Aziz et al. (2022b) [45]. Finally, to calculate the EF1 allocation of indivisible
chores, they improved the famous envy-cycle elimination algorithm for indivisible goods
by Lipton et al. (2004) [5] and obtained the top-trading envy-cycle elimination algorithm.

Example 1 ([45]). Consider the following example: there are six indivisible chores and three agents
with additive disutility.
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c1 c2 c3 c4 c5 c6
a1 1 2 2 3 1 3
a2 1 4 3 1 4 4
a3 3 1 1 2 2 3

Assume that the allocation order of the algorithm is to allocate the chores to three
agents in the order of increasing the number of chores, so agent 1 obtains chores 1 and 4,
agent 2 obtains chores 2 and 5, and agent 3 obtains chores 3 and 6. This allocation scheme
is called allocation A. It is verified that the allocation is EF1, not EF, and its envy graph is
shown in Figure 3a.

Figure 3. Envy graphs under various allocations, where (a) is the envy graph of allocation A, (b) is
the envy graph obtained by eliminating the envy-cycle between agents a1 and a2, and (c) is the envy
graph obtained by eliminating the envy-cycle between agents a2 and a3.

In the envy graph of allocation A, there are two envy cycles: the first is formed between
agent 1 and agent 2, and the second is formed between agent 2 and agent 3. Then, the
envy-cycle elimination algorithm is run on the two envy cycles, and the allocations X and Y
are obtained. The envy graphs are shown in Figure 3b,c. Although these two envy graphs
are acyclic, the allocation Y violates the property of EF1.

Sun et al. (2021a) [46] proved that, when the cost function is additive, one fairness is
approximately guaranteed to the other fairness. In addition, the efficiency of fair allocation
is compared with that of optimal allocation. To quantify the efficiency loss, the concept of
the price of fairness is applied. When n = 2, the fair price of EF1 is 5

4 . When n > 2, the fair
price of EF1 is unbounded. Garg et al. (2021) [47] gave a strong polynomial-time algorithm
to calculate the EF1 allocation of the bivalued instance. Aziz et al. (2022b) [45] considered a
circular algorithm. In this algorithm, agents take turns selecting their favorite unallocated
chores. This algorithm can be used to find the EF1 allocation of indivisible chores. However,
if some are goods and others are chores, this algorithm cannot find EF1 allocation. For
the general example of bivalued disutilities, Ebadian et al. (2022) [48] divided chores into
categories of easy and difficult for each agent, and the cost of easy chores was lower than
that of difficult chores for each agent. In this context, EF1 allocation is found in polynomial
time using the Fisher market-based algorithm.

In addition to computing a fair allocation, another natural requirement is efficiency.
Some studies have explored the relationship between EF1 and Pareto optimality (PO).
Chaudhury et al. (2022a) [49] verified that, when the disutility function of the agent is a
binary disutility, there is always an allocation that satisfies both EF1 and PO. Aziz et al.
(2022a) [42] gave a polynomial-time algorithm for calculating the EF1+fPO allocation for
two types of chores. Garg et al. (2022) [50] proved that EF1+fPO allocation always exists in
the case of three agents and at most two binary disutility functions, where fPO requires PO
in all fractional results. In the generalized binary disutility (a disutility function di is gen-
eralized binary if, for ∀i ∈ N, j ∈ C, di(j) ∈ {0, 1} and di is an additive disutility function)
scenario of chores, the algorithm of Camacho et al. (2023) [51] can give the allocation of
EF1+PO in polynomial time O(mn). The problem discussed by Barman et al. (2023) [52]
is the fair allocation of indivisible chores under binary supermodular disuility functions.
They proved that EF1 allocation always exists for these disuility functions. Akrami et al.
(2023) [53] introduced the concept of k 6 n surplus and proposed a polynomial-time algo-
rithm to obtain EF1 and PO allocation with (n− 1) surplus, which corresponds to surplus
in the setting where good is charity (Caragiannis et al. (2019) [54]). For a lexicographic
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mixed instance with at least n− 1 common terrible chores, Hosseini et al. (2023) [55] proved
the existence of EF1 and PO allocation, which can be computed in polynomial time.

4.3. Envy-Free up to Any Chore

The allocation of envy-free up to any chore (EFX) was introduced by Aleksandrov
(2018) [24]. However, EFX is a stronger form of EF1.

Definition 11 ([24]). An allocation A ∈ A is envy-free up to any chore if, ∀i, j ∈ N, di(Ai\{c}}) 6
di(Aj), where c represents any chores allocated by agent i when allocating indivisible chores.

For indivisible chores, Aleksandrov (2018) [24] proved that the Leximax solution (it
selects an allocation that maximizes the minimum disutility, and then the second minimum
disutility, and so on) is an EFX allocation for the same antimonotone disutility, the anti-
monotone disutility, and the case with two agents. For the case of the additive disutility
function, the EFX allocation can be calculated in polynomial time O(m). Chen and Liu
(2020) [56] promoted the Leximax solution and verified that the EFX allocation of goods
and chores combination always exists for agents with general and the same disutility. Gafni
et al. (2021) [57] showed that EFX allocation exists when each agent has a leveled disutility
function, where the larger set of chores is always more burdensome than the smaller set. In
addition, they established a new characteristic for the important problem of the existence of
EFX allocation. This characteristic incurs the rationality of the new fairness criterion EFXwc,
which requires each agent i to prefer her own bundle more than any other agent j’s bundle
if any chore that is not in the bundle of i is removed from j’s bundle. Aziz et al. (2022a) [42]
proved that EFX allocation always exists and can be calculated in polynomial time for
instances with two types of chores. Kobayashi et al. (2023) [58] studied the existence of
EFX allocation in three special cases: cases with m 6 2n chores and each agent having an
additive disutility, cases with n− 1 agents having identical ordering disutility, and cases
with n = 3 and each agent having a personalized bi-valued disutility.

To quantify the social diswelfare of EFX allocation loss, the concept of the price of
EFX is applied. Sun et al. (2021a) [46] proved that, when n = 2, the fair price of EFX is 2.
When n > 2, the fair price of EFX is unbounded. Zhou and Wu (2022) [59] proved that,
for three agents, five-approximation EFX allocation can be calculated in polynomial time.
For n > 3 agents, the algorithm proposed in this paper can always obtain an allocation
that is a 3n2-approximation EFX allocation. In addition, for bivalued instances, each agent
has at most two disutility values for each chore, which verifies that EFX allocation can be
obtained in polynomial time when n = 3 and (n− 1)-approximation EFX allocation when
n > 3.

To further explore the properties of EFX, Yin and Mehta (2022) [60] introduced the
relaxation form of EFX, tEFX (an allocation A ∈ A is tEFX if, for any i, j ∈ N, di(Ai\{c}}) 6
di(Aj ∪ {c}), ∀c ∈ Ai). For this relaxation, they considered the problem of assigning a set
of indivisible chores to three agents, two of which have additive disutilities. In addition,
it was proven that EFX allocation always exists if two of the three agents share the same
chore ordering and the disutility function is additive. It was also proven that, if two of the
three agents have an additive disutility function, the tEFX allocation always exists. Based
on the research of Yin and Mehta, Akrami et al. (2023) [53] proposed a polynomial-time
algorithm that returns proportional allocation or tEFX allocation in the case of chores with
three agents.

Some studies have explored the relationship between EFX and PO. Given a chore
instance, Hosseini et al. (2022) [43] proved that EFX and PO allocation can be obtained
in polynomial time. In the generalized binary disutility scenario of chores, the algorithm
of Garg et al. (2022) [50] proved that EFX+fPO allocation always exists for three agents
with bivalue disutility. Camacho et al. (2023) [51] can give the EFX+PO allocation in
O(mlogm + mn) time.
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4.4. Other Relaxation of Envy-Free

Group envy-freeness (GEF) implies both EF and PO, which are the core concepts of
fairness and efficiency.

Definition 12 ([61]). An allocation A ∈ A is group envy-free if, for every S, T ⊂ N, such that
|S| = |T| 6= 0, there is no A′ ∈ Π(AT , S), such that |S||T|di(A′i) 6 di(Ai), ∀i ∈ S, with one
inequality is strict, where Π(AT , S) is the set of all the allocations over AT and S, and AT is the set
of chores allocated to all agents in T.

In the same spirit as EF1 and EFX, group envy-freeness up to one chore (GEF1) and
group envy-freeness up to any chore (GEFX) can be defined similarly to GEF. Aziz and
Rey (2019a) [61] combined the GEF proposed by Berliant et al. (1992) [62] to further
relax EF1, yielding GEF1 (an allocation A ∈ A is GEF1 if, for every S, T ⊂ N, such that
|S| = |T| 6= 0, there is no A′ ∈ Π(AT , S), and for every i ∈ S, there exists ci ∈ Ai, |ci| 6 1,
such that |S||T|di(A′i\{ci}) 6 di(Ai\{ci}), ∀i ∈ S, with one inequality being strict) and s-
GEF1 (compared to GEF1, s-GEF1 has no condition of |S| = |T|). The nature of s-GEF1 is
stronger than that of GEF1, which is not limited by the size of the group. They designed
a polynomial-time algorithm and proved that the allocation returned by the algorithm
is GEF1 by invoking Hall’s marriage theorem. In addition, it is proven that determining
whether a given allocation satisfies GEF1 is coNP-complete. Segal-Halevi and Suksompong
(2023) [63] divided all agents into groups and found EF allocation between the groups. In
addition, they demonstrated that the result is not applicable to the mixed cake (for a certain
part of a cake, some agents believe that it is good, while others believe that it is bad).

To obtain a more fine-grained approximate EF allocation, the concept of envy-free
up to k dubious chores (DEF-k) was introduced. It takes an epistemic approach utilizing
information asymmetry by introducing dubious chores.

Definition 13 ([64]). An allocation A ∈ A is envy-free up to k dubious chores if ∃ a dubious
multiset D and dubious allocation AD, such that D consists of up to k dubious chores copied from C
and A ∪ AD is envy-free, where dubious chores do not have any cost to the receiving agent, while
other agents consider them expensive, and AD is an n-partition of the multiset D.

Hosseini et al. (2023) [64] defined a new concept of fairness called DEF-k. It achieves
disutility information asymmetry by introducing dubious chores. They proved that, for
binary disutility instances, determining an allocation that is DEF-k is NP-complete, every
EF1 allocation is DEF-n(n− 1), and RoundRobin always returns a DEF-(n− 1) allocation. In
addition, they also demonstrated that the allocation satisfying DEF-(2n− 2) and PO always
exists, and, for instances with two types of chores, the allocation satisfying DEF-(n− 1)
and PO always exists and can be calculated in polynomial time.

For a general fair allocation problem, each agent has equal obligations. In real life,
this is often not the case, as each agent will have different obligations due to their different
social statuses. The weight in weighted envy-freeness (WEF) represents the obligation of
each agent on the chores.

Definition 14 ([65]). An allocation A ∈ A is weighted envy-free if, for ∀i, j ∈ N,

di(Ai)

wi
6

di(Aj)

wj
,

where each agent i ∈ N has a weight wi > 0, and ∑i∈N wi = 1.

According to the definition of WEF, EF1 can naturally be extended to weighted envy-
free up to one chore (WEF1).
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Definition 15 ([65]). An allocation A ∈ A is weighted envy-free up to one chore if, for ∀i, j ∈ N,
either Ai = ∅ or ∃ a chore c ∈ Ai, such that

di(Ai\{c})
wi

6
di(Aj)

wj
,

where each agent i ∈ N has a weight wi > 0, and ∑i∈N wi = 1.

Wu et al. (2023) [65] proved that there exists a polynomial-time algorithm that com-
putes WEF1 allocations for the allocation of chores to weighted agents, and there exists a
polynomial-time algorithm that computes WEF1 and PO allocations for bivalued instances.
The price of WEF1 is unbounded for three or more agents and is 4+α

4 for two agents, where

α = max{w1,w2}
min{w1,w2}

.
Next, we will consider the more natural relaxation form of WEF1, weighted envy-free

up to removal of a chore in the first bundle and addition of another chore from the other
bundle (weighted-EF1

1 ).

Definition 16 ([66]). An allocation A ∈ A is weighted envy-free up to removal of a chore in the
first bundle and addition of another chore from the other bundle if, for ∀i, j ∈ N, ∃ an item c ∈ Ai
and c′ ∈ C, such that

di(Ai\{c})
wi

6
di(Aj ∪ {c′})

wj
,

where each agent i ∈ N has a weight wi > 0, and ∑i∈N wi = 1.

Brânzei and Sandomirskiy (2023) [66] proved that there exists an indivisible allocation
A that is Pareto optimal in the divisible problem and satisfies weighted-EF1

1 for any chore
allocation problem.

To quantify the social diswelfare of EF allocation loss, the concept of the price of EF is
applied. The fair prices with utilitarian diswelfare related to the EF and relaxation forms of
EF are shown in Table 1. Because there are only a few results of EF prices with egalitarian
diswelfare, they are not displayed here.

Table 1. The prices of EF with utilitarian diswelfare (α = max{w1,w2}
min{w1,w2} , where wi is the weight of

agent i).

EF EF1 WEF1 EFX

Indivisible
2 for n = 2 5/4 for n = 2 (4+α)/4 for

n = 2 2 for n = 2

∞ for n > 3 ∞ for n > 3 ∞ for n > 3 ∞ for n > 3
Caragiannis et al. [27] Sun et al. [46] Wu et al. [65] Sun et al. [46]

Divisible
9/8 for n = 2

(n + 1)2/4n for n > 3
Caragiannis et al. [27]

Recently, more scholars have focused on envy-free up to k goods (EFk) (an allocation
A ∈ A is EFk if, ∀i, j ∈ N and ∃ goods c1, · · · , ck, ui(Ai) > ui(Aj\{c1, · · · , ck}), where ui is
the utility function of agent i on the goods, Warut (2021) [67]). The fair allocation problem of
goods has been addressed and some related algorithms have been designed. For example,
Barman et al. (2023) [68] designed a simple, greedy, polynomial-time algorithm that finds
EF2 allocation under budget constraints.

Open problem 1. For fair allocation of chores, does the definition of EFk need to differ from the
fair allocation of goods?
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5. Proportionality and Its Relaxations

In this section, we mainly introduce relevant research on proportionality (PROP) and
its relaxations in fair allocation. PROP is one of the fairness criteria that received much
attention in early research.

5.1. Proportionality

To compare the relationship between evenly allocating all chores and the agent’s own
bundle, the fair concept of PROP was introduced. If the agent prefers the bundle they are
assigned to more than the even allocation, the allocation is called PROP allocation.

Definition 17 ([27]). An allocation A ∈ A satisfies proportionality to n agents (PROP) if,
∀i ∈ N, di(Ai) 6

di(C)
n .

For divisible chores, Caragiannis et al. (2012) [27] found that the price of PROP with
utilitarian diswelfare is 9

8 for two agents, and, for n agents, the price of PROP with utilitarian

diswelfare is at least (n+1)2

4n and at most n. Farhadi and Hajiaghayi (2017) [69] gave a lower
bound Ω(nlogn) for PROP allocation. In the proof process, the dual concept of the disutility
function was introduced, and they demonstrated how to use the dual function to simplify
some problems in chore allocation to similar problems in cake cutting. Yedidsion et al.
(2021) [70] considered a new variant of fair allocation called sequential online chore division
(when the agent performs chores, they arrive and depart online). It was also found that
the best fairness and efficiency can be guaranteed in the centralized setting. For a single
game in a distributed environment, there is only relatively weak fairness, that is, ex ante
PROP share and ex-post PROP share (the variants of PROP in a dynamic environment).
Francis (2022) [71] proposed a deterministic algorithm with a piecewise uniform disutility
function called the split rulership algorithm, which can return PROP and strategy-proof
chore allocation. The algorithm allocates all the chores, and there is no overlap between the
bundles, which is PO. Sanpui (2023) [37] proved that PROP allocation can require at least
n− 1 cuts and that at most n cuts are required to obtain PROP allocation when needed
individually.

For indivisible chores, Caragiannis et al. (2012) [27] found that the price of PROP with
utilitarian diswelfare is at most two for two agents, and the price of PROP with utilitarian
diswelfare is at least n and at most n for the indivisible chore allocation problem of n agents.
Bouveret et al. (2019) [40] analyzed the existence of PROP allocation based on different
graph structures. This document discusses three graph structures: complete graphs, paths,
and stars. For additive disutility, the PROP allocation problem on the complete graphs is
NP-complete. For additive disutility, maximum disutility, and even binary disutility, the
problem on the paths is NP-complete. Segal-Halevi et al. (2020) [72] assumed a preference
order called diminishing differences (DD). According to this assumption, the complete
characteristics of allocation that are necessary PROP or possibly PROP are given. Based on
this feature, a polynomial-time algorithm, the balanced round-robin allocation algorithm,
is designed, which can find the necessary DD-PROP allocation at any time. Höhne and
Stee (2021) [41] used fair prices to express the social diswelfare of allocating losses. The
results of this paper show that, for divisible and indivisible chores, their PROP prices
with utilitarian diswelfare are n and their PROP prices with egalitarian diswelfare are
1. Mishra et al. (2022) [73] introduced PROP-E (n allocation A ∈ A satisfies PROP-E if,
∀i ∈ N, di(Ai) 6

1
n ∑j∈N di(Aj)) for general valuations in the presence of full externalities

and derived relations with existing PROP extensions.

5.2. Proportionality up to One Chore

The relaxed form of PROP, proportionality up to one chore (PROP1) was first proposed
by Conitzer et al. (2017) [44]. This fairness relaxation weakens both EF1 and PROP.
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Definition 18 ([45]). An allocation A ∈ A satisfies proportionality up to one chore if, ∀i ∈
N, di(Ai) 6

di(C)
n or di(Ai) + di(c) 6

di(C)
n , for some chore c ∈ C\Ai, or di(Ai)− di(c) 6

di(C)
n ,

for some chore c ∈ Ai.

For the allocation of indivisible chores, Aziz et al. (2022b) [45] reduced EF1 to PROP1,
found that there is a PROP1 and continuous allocation, and verified that, for the additive
utility function, an EF1 allocation satisfies PROP1. The relationship within the above
fairness is shown in Figure 4. This figure illustrates that an EF allocation satisfies EF1 and
PROP, a PROP allocation satisfies PROP1, and an EF1 allocation satisfies PROP1.

EF1

EF

PROP

PROP1

Figure 4. The relationships between types of fairness.

Chen and Liu (2020) [56] found through Leximin solutions that, for three or four agents
with additive valuation, there are always chore allocations of PROP1 and PO. Similar to the
PROP price, Sun and Li (2022) [74] received the price of PROP1 with egalitarian of Θ(n),
the price of PROP1 with utilitarian is n

2 for n 6= 3, and the price of PROP1 with utilitarian is
2 for n = 3. Li et al. (2022a) [25] considered PROP1 allocation and proved that no algorithm
is better than the n-approximation for the valuation of packing and job scheduling, and
any allocation algorithm can achieve this tight approximation. The following provides an
allocation that satisfies PROP1 but not PROP.

Example 2. Consider the following example (similar to the example in Section 4.2): there are six
indivisible chores and three agents with additive disutility.

c1 c2 c3 c4 c5 c6
a1 1 2 2 3 1 3
a2 1 2 3 1 6 4
a3 3 1 1 2 2 3

Assume that the allocation order of the algorithm is to allocate the chores to three
agents in the order of increasing the number of chores, so agent 1 obtains chores 1 and 4,
agent 2 obtains chores 2 and 5, and agent 3 obtains chores 3 and 6. This allocation scheme is
called allocation A. It is verified that the allocation is PROP1, but not PROP. The disutility
of agent 2’s bundle is greater than d2(C)

3 . We can only make the disutility of agent 2 less

than d2(C)
3 by removing chore 5 from its bundle.

For a general fair allocation problem, each agent has equal obligations. In real life,
this is often not the case, as each agent will have different obligations due to their different
social statuses. The weight in weighted-proportional up to one chore (weighted-PROP1)
represents the obligation of each agent on the chores.

Definition 19 ([66]). An allocation A ∈ A is weighted-proportional up to one chore if, for
∀i, j ∈ N, ∃ an item c ∈ Ai, such that

di(Ai\{c}) 6
wi

∑n
j=1 wj

di(C),

where each agent i ∈ N has a weight wi > 0, and ∑i∈N wi = 1.

Brânzei and Sandomirskiy (2023) [66] proved the existence of weighted-PROP1 allocation.
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5.3. Proportionality up to Any Chore

Regarding the allocation of goods, Aziz et al. (2020) [75] pointed out that the existence
of allocation proportionality up to any good cannot be guaranteed. For the fair allocation
of chores, Moulin (2019) [15] first proposed the concept of proportionality up to any chore
(PROPX).

Definition 20 ([15]). An allocation A ∈ A satisfies proportionality up to any chore (PROPX) if,
∀i ∈ N, di(Ai\{c}) 6 di(C)

n , ∀c ∈ Ai.

Li et al. (2022b) [76] proved the existence of PROPX allocation for symmetric agents
(the agents may have the same share for the chores) and verified that the allocation returned
by the bid-and-take algorithm is weighted PROPX and two-approximate anyprice share
fairness (APS; first introduced by Babaioff et al. [77] in 2021). They also found the tight
approximation ratio of the optimal social cost constrained by PROPX. For the unweighted
case, the tight bound of the price of PROPX is Θ(n). For the weighted and same-order
case, the tight bound of the price of PROPX is Θ(m). For the weighted case, the price of
PROPX is unbounded. For both symmetric and asymmetric agents (the agents may have
different shares for the chores), the algorithm designed by Aziz et al. (2023) [78] returns an
allocation of two-approximate (weighted) PROPX under ordinal preferences. In addition,
they proved that PROPX and PO are not compatible in general.

To quantify the social diswelfare of PROP allocation loss, the concept of the price
of PROP is applied. The fair prices with utilitarian diswelfare related to the PROP and
relaxation forms of PROP are shown in Table 2. Because there are only a few results of
PROP price with egalitarian diswelfare, they are not displayed here.

Table 2. The prices of PROP with utilitarian diswelfare (the IDO instance indicates that all agents
have the same ordinal preference for the chores).

PROP PROP1 PROPX Weighted-PROPX

Indivisible
2 for n = 2 2 for n = 3 Θ(n) Θ(m) (IDO)
n for n > 3 n/2 for n 6= 3 ∞

Caragiannis et al. [27] Sun and Li [74] Li et al. [76] Li et al. [76]

Divisible
9/8 for n = 2

(n + 1)2/4n for n > 3
Caragiannis et al. [27]

6. Equitability and Its Relaxations

In this section, we mainly introduce relevant research on equitability (EQ) and its
relaxations in fair allocation. EQ can ensure that the overall level of fairness among all
agents is consistent.

6.1. Equitability

EQ requires all agents to obtain the same value in the allocation. As a standard of
interpersonal fairness, it also affects the choice and behavior of agents when facing one-
shot distribution problems (Engelmann and Strobel (2004) [79]) and voluntary cooperative
games (Fehr and Schmidt (1999) [80]). However, the goal of EQ is difficult to achieve in
general cases.

Definition 21 ([27]). An allocation A ∈ A is said to be equitable if, for ∀i, j ∈ N, we have
di(Ai) = dj(Aj).

Caragiannis et al. (2012) [27] proved that, for divisible chores, the price of EQ for two
agents is two and the price of EQ for n agents is n. For indivisible chores, the price of
EQ is ∞. Heydrich and van Stee (2015) [26] observed that, under continuous allocation,
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the utilitarian of EQ is n and the egalitarian of EQ is one for divisible chores. Bei and
Suksompong (2019) [81] studied approximate EQ allocation. Freeman et al. (2020) [82]
proved that, for instances with identical disutilities, an allocation satisfies EF if and only if
it satisfies EQ, and it is strongly NP-complete to determine whether a given fair allocation
instance allows EQ allocation even for identical disutility. Bouveret et al. (2019) [40]
analyzed the existence of EQ allocation of indivisible chores based on different graph
structures. This paper discusses three graph structures: complete graphs, paths, and stars.
For additive disutility, the EQ allocation problem on the complete graphs, paths, and stars
is NP-complete. For maximum disutility and even binary disutility, the EQ allocation
problem on the paths is NP-complete. For maximum disutility, the EQ allocation problem
on the complete graphs and stars is P. Höhne and Stee (2021) [41] observed that, under
continuous allocation, the price of EQ is ∞ for indivisible chores.

6.2. Equitable up to One Chore

In the context of EQ, chores can be similar to the definition of goods (Freeman et al.
(2019) [83]). Equitability up to one chore (EQ1) requires the elimination of paired violations
of equality by removing a chore from the bundle of less happy agents.

Definition 22 ([82]). An allocation A ∈ A is said to be equitable up to one chore if, for ∀i, j ∈ N
such that Ai 6= ∅, there exists a chore c ∈ Ai, such that di(Ai\{c}) 6 dj(Aj).

Freeman et al. (2020) [82] proved that, for instances with identical disutilities, an
allocation satisfies EF1 if and only if it satisfies EQ1, and, for any chore instance with
additive and integral disutilities, an allocation of EQ1 and PO always exists and can be
computed in O(ploy(m, n, |dmin|)) time, where dmin = mini,jdi,j. They showed that no chore
allocation is simultaneously EQ1, EF1, and PO. In addition, they adjusted the definition
of EQ1 (duplicate a chore from an agent’s bundle to the bundle of its jealous agent to
eliminate the envy relationship between the two agents), obtained DEQ1 (an allocation
A ∈ A satisfies DEQ1 if, for ∀i, j ∈ N such that Ai 6= ∅, there exists a chore c ∈ Ai,
such that di(Ai) 6 dj(Aj ∪ {c})), and verified the existence of DEQ1 allocation. Sun
et al. (2023) [84] verified that the prices of EQ1 with respect to utilitarian and egalitarian
diswelfare are both ∞. They proved that, when focusing on utilitarian diswelfare, the
problems E(UW×EQ1) (which represents the problem of deciding whether there exists an
EQ1 allocation that maximizes utilitarian diswelfare among all allocations) can be answered
in time O(mV2n+1), and that the decision problem E(UW×EQ1) is P for two agents and
is NP-complete for even three agents. The problem C(UW/EQ1) (which represents the
problem of computing an EQ1 allocation that also maximizes utilitarian diswelfare among
all EQ1 allocations) is NP-hard for even two agents is shown. When focusing on egalitarian
diswelfare, the problem E(EW×EQ1) (which represents the problem of deciding whether
there exists an EQ1 allocation that maximizes egalitarian diswelfare among all allocations)
is NP-hard for even three agents and can be answered in time O(mn+2Vn) was proven. The
following provides an allocation that satisfies EQ1 but not EQ.

Example 3. Consider the following example, which is the same as the example in Section 5.2: there
are six indivisible chores and three agents with additive disutility.

c1 c2 c3 c4 c5 c6
a1 1 2 2 3 1 3
a2 1 2 3 1 6 4
a3 3 1 1 2 2 3

Assume that the allocation order of the algorithm is to allocate the chores to three
agents in the order of increasing number of chores, so agent 1 obtains chores 1 and 4, agent
2 obtains chores 2 and 5, and agent 3 obtains chores 3 and 6. This allocation scheme is
called allocation A. It is verified that the allocation is EQ1, not EQ. Because the disutility of
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agent 2 is different from the other two agents, it does not meet the EQ. We can only make
the allocation meet the conditions of EQ1 by removing chore 5 from agent 2’s bundle.

6.3. Equitable up to Any Chore

In the context of EQ, chores can be similar to the definition of goods (Freeman et al.
(2019) [83]). Equitability up to any chore (EQX) requires the elimination of paired violations
of equality by removing any chore from the bundle of less happy agents.

Definition 23 ([82]). An allocation A ∈ A is said to be equitable up to any chore if, for ∀i, j ∈ N
such that Ai 6= ∅ and for every chore c ∈ Ai, such that di(Ai\{c}) 6 dj(Aj).

Freeman et al. (2020) [82] proved that, for instances with identical valuations, an
allocation satisfies EFX if and only if it satisfies EQX, and EQX allocation of chores always
exists and can be calculated in polynomial time. They showed that, even for strictly negative
and normalized disutilities, determining whether a given fair allocation instance admits
an allocation that is EQX and PO is strongly NP-hard, and determining whether a given
fair allocation instance admits an allocation that is simultaneously EQX+PO+EF/EF1/EFX
is strongly NP-hard. In addition, they adjusted the definition of EQX (duplicate any
chore from an agent’s bundle to the bundle of its jealous agent to eliminate the envy
relationship between the two agents), obtained DEQX (an allocation A ∈ A satisfies DEQX
if, for ∀i, j ∈ N such that Ai 6= ∅ and for every chore c ∈ Ai, such that di(c) > 0, we
have di(Ai) 6 dj(Aj ∪ {c})), and verified the existence of DEQX+PO allocation. Sun
et al. (2023) [84] verified that the prices of EQX with respect to utilitarian and egalitarian
diswelfare are both ∞. They proved that, when focusing on utilitarian diswelfare, the
problems E(UW×EQX) can be answered in time O(mV2n+1), and the decision problem
E(UW×EQX) is NP-complete even for two agents. The problem C(UW/EQX) is NP-hard
even with two agents. When focusing on egalitarian diswelfare, the problem E(EW×EQX)
is NP-hard even for two agents and can be answered in time O(mn+2Vn).

To quantify efficiency loss, the concept of the price of fairness is applied. The fair
prices related to EQ are shown in Table 3.

Table 3. The fair prices of equitability.

Price of Utilitarian Egalitarian

Divisible

EQ n 1
Heydrich and van Stee (2015) [26] Heydrich and van Stee (2015) [26]

EQ1 ∞ ∞
Sun et al. (2023) [84] Sun et al. (2023) [84]

EQX ∞ ∞
Sun et al. (2023) [84] Sun et al. (2023) [84]

Indivisible

EQ ∞ ∞
Höhne and Stee (2021) [41] Höhne and Stee (2021) [41]

EQ1 ∞ ∞
Sun et al. (2023) [84] Sun et al. (2023) [84]

EQX ∞ ∞
Sun et al. (2023) [84] Sun et al. (2023) [84]

7. Maximin Share Fairness and Its Variants

In this section, we mainly introduce relevant research on maximin share (MMS)
fairness and its variants in fair allocation. MMS fairness can ensure the best utility of the
agent. It is an important concept of fairness in the field of economics.
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7.1. Maximin Share Fairness

The MMS of an agent is the best utility that the agent can guarantee. If the agent has the
opportunity to divide all items into n bundles, it can only be allocated to the bundle finally,
that is, it receives the most unpopular bundle, which is proposed by Budish (2011) [85].

Definition 24 ([86]). The maximin share fairness of agent i (MMSi) is

MMSi = min
(A1,A2,··· ,An)∈Π(C)

max
j∈N

di(Aj),

where Π(C) represents the set of all allocations of C.

Definition 25 ([86]). An allocation A ∈ A is called an α-approximate maximin share fairness
(α-MMS) allocation if there are di(Ai) 6 α ·MMSi for each agent i ∈ N.

MMS mainly targets indivisible chores. Some researchers have discussed the existence
of MMS allocation. Aziz et al. (2017) [86] proved that it is NP-hard to calculate the MMS
allocation of chores. A new concept, the optimal MMS of chores, is introduced. If the
allocation represents the best possible approximation of the MMS guarantee, then the
allocation is the optimal MMS allocation. The optimal MMS allocation has two ideal
properties: it always exists, and an optimal MMS allocation is always an MMS allocation if
the latter exists. In addition, a polynomial-time greedy round-robin algorithm is designed,
which provides a two-approximate MMS guarantee for chores, and is combined with
parallel machine scheduling to design an algorithm, which gives the polynomial-time
approximation schemes (PTAS) for the optimal MMS when the number of agents is fixed.
Searns (2020) [87] proved that, for every n > 4, there exists an instance with O(n2) chores
where every optimal-MMS allocation guarantees at most 3 (4 if n is odd) agents their
MMS value. Barman et al. (2023) [52] proved that, for binary supermodular cost functions,
MMS allocations always exist, and proved that EF1 and MMS are incompatible. Hummel
(2023) [88] proved that MMS allocation exists for all instances with n > nc agents and no
more than n + c chores, where nc 6 b0.7838c(c!)c, ∀c ∈ N+.

Some papers also study the approximation ratio. Barman and Krishnamurthy (2020) [89]
proved that, when the agent has an additive disuility, it can effectively calculate the 4

3 -
approximate MMS allocation, which improves Aziz’s results. Sun et al. (2020) [90] discussed
the case of multidimensional task costs. They improved the famous round-robin algorithm and
proved that the approximate ratio of the MMS algorithm is 2+ m·αi(1+n)−n

n2 , where αi = 1− βi
and βi is a parameter related to the disutility weight of agent i, and the time complexity of the
algorithm is O(m log m). Feige et al. (2021) [91] proved that, for the allocation of three agents
and nine chores, the value of at least one agent will not be less than 44

43 of his MMS value, that
is, the MMS gap of the case is 1

43 . Huang and Lu (2021) [92] designed an algorithm framework
based on the famous first-fit decreasing algorithm of the packing problem and proved that
there is always an 11

9 -approximate MMS allocation for any instance. According to existing
results, an efficient polynomial-time algorithm for MMS allocation with 5

4 -approximation was
further proposed. In addition, a polynomial time O(mlogm + n) algorithm was designed
for the job scheduling problem, and the optimal scheduling scheme of 11

9 -approximate was
obtained. Under cardinality constraints, Hummel and Hetland (2022) [93] proved that there
is a 2-approximate MMS allocation in general and that there is a 3

2 -approximate MMS al-
location in single-category instances. Feige and Norkin (2022) [94] considered the problem
of approximate MMS allocation between three agents with additive disutility and proved
that there is always a 19

18 -approximate MMS allocation. Aziz et al. (2022c) [95] analyzed it
from the perspective of algorithm and mechanism design. Under the constraint of ordinal
preference, by using the round-robin algorithm, it was calculated that 4

3 -approximate MMS
allocation exists when n = 2, 7

5 -approximate MMS allocation when n = 3, and 5
3 -approximate

MMS allocation when n > 3. They also considered the situation of strategy-proof, provided a
strategy-proof O(log

(m
n
)
)-approximate continuous picking algorithm, and then improved
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the approximate ratio to O(
√

log n) through a random algorithm. Huang and Segal-Halevi
(2023) [96] developed a fully polynomial-time approximation scheme (FPTAS) using a binary
search. By using two techniques, heterogeneous first-fit decreasing and binary search, they
discovered the allocation of 15

13 -maximin-share in polynomial time O(n2mlog(Vmax)) when
n = 3 and ( 13

11 + ε)-maximin-share in polynomial time O( 1
ε n2mlog(Vmax)) when n > 2,

where Vmax is the maximum disutility of an agent to all chores.
In addition, the social diswelfare loss of MMS allocation, the algorithm to achieve

fairness and efficiency, and the MMS allocation on the graph structure have been discussed.
Sun and Li (2022) [74] found that the price of MMS with egalitarian is Θ(n) and that the
price of MMS with utilitarian is n

2 . The previously considered task cost is one-dimensional.
Kulkarni (2022) [97] designed a PTAS for finding α-MMS+PO allocation when the number
of agents is a constant, where α > 0. Xiao et al. (2023) [98] paid attention to the MMS
allocation problem on trees and cycles. Figure 5 shows an instance of seven chores on a
tree, where an agent’s MMS partition divides the tree into three bundles. They combined
the group-satisfied method and the matching technology in graph theory to prove that
there is MMS allocation on trees with depth at most three and spiders, and used the linear
programming method to find the 7

6 -MMS allocation on the cycle in polynomial time for
instances with three agents, proving that α-MMS allocation does not exist for any α < 7

6 .

Figure 5. An instance with 7 chores on the tree.

7.2. The Variant of Maximin Share Fairness

For asymmetric agents, weighted maximin share (WMMS) appears in the research.
There is a similar concept for the fair allocation of goods (Farhadi (2019) [99]).

Definition 26 ([100]). For every agent i ∈ N, the weighted maximin share value of i is defined as

WMMSi = min
(A1,A2,··· ,An)∈Π(C)

max
j∈N

di(Aj)
wi
wj

,

where wi ∈ (0, 1] is the weight of agent i to chores. The weights add up to 1, i.e., ∑i∈N wi = 1.

Note that, when each agent has the same share, then WMMS is MMS. Because there is
no precise WMMS allocation, it is natural for its relaxed form optimal weighted maximin
share (OWMMS) to emerge.

Definition 27 ([100]). For every agent i ∈ N, the optimal weighted maximin share value of i is
defined as

OWMMSi = α∗WMMSi,

where α∗ is the OWMMS ratio, that is, the minimal α ∈ [1, ∞) for which an α-WMMS allocation
always exists.

Aziz et al. (2019b) [100] were concerned about the fair allocation of asymmetric agents,
who have no right to allocate but have a relative share. If the agent’s share is higher,
it will be allocated to higher chores. In addition, two extensions of MMS–WMMS and
OWMS are introduced. It was also verified that there is an approximation ratio of at
least 4

3 for any WMMS fairness algorithm. For general settings, it designs a polynomial
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time-constant approximation algorithm to obtain a (4 + ε)-approximate OWMS allocation.
For the case of two agents, the WMMS allocation obtained by using the divide-and-choose
style algorithm is 3

2 -approximate, and, when the disutility function for agents is binary, the
WMMS allocation always exists and can be found in polynomial time.

PMMS is similar to the maximin share and differs from MMS because each agent
divides its combined bundle with any other agent into two bundles, and the agent chooses
the bundle with the highest cost inside.

Definition 28 ([46]). An allocation A ∈ A is pairwise maximin share (PMMS), if for ∀i, j ∈ N,

di(Ai) 6 min
B1,B2∈Π2(Ai∪Aj)

max{di(B1), di(B2)},

where Πk(C) is the set of all k-partitions of C.

Sun et al. (2021a) [46] introduced the promotion form of MMS, PMMS. When n = 2,
the price of PMMS with utilitarian diswelfare is 2, the price of 2-MMS with utilitarian
diswelfare is 1, and the price of 3

2 -PMMS with utilitarian diswelfare is 7
6 . When n > 2, the

price of PMMS and 3
2 -PMMS is unbounded, and the price of 2-MMS is Θ(n). Sun et al.

(2021b) [101] further generalized the results of Sun et al. (2021a) [46]. For the case where the
disutility function is a submodule function, when n = 2, the price of PMMS is 3, the price
of 2-MMS is 1, and the price of 3

2 -PMMS is
[

4
3 , 8

3

)
. When n > 2, the price of PMMS and

3
2 -PMMS is unbounded, and the price of 2-MMS is

[
n+3

6 , n2

2

)
, where interval [a, b) means

that the lower bound is equal to a and the upper bound is less than b.
To quantify the social diswelfare of MMS allocation loss, the concept of the price of

MMS is applied. The fair prices with utilitarian diswelfare related to the MMS and variant
forms of MMS (Sun et al. (2021a) [46]) are shown in Table 4.

Table 4. The prices of MMS with utilitarian diswelfare.

PMMS 3
2 -PMMS 2-MMS

Additive 2 for n = 2 7/6 for n = 2 1 for n = 2
∞ for n > 3 ∞ for n > 3

[
n+3

6 , n
)

for n > 3

Submodular 3 for n = 2
[

4
3 , 8

3

)
for n = 2 1 for n = 2

∞ for n > 3 ∞ for n > 3
[

n+3
6 , n2

2

)
for n > 3

The definition of 1-out-of-k maximum share is similar to that of the MMS, except that
the MMS can only be divided into n bundles, which can be divided into k (6n) bundles.

Definition 29 ([102]). For every agent i ∈ N, the 1-out-of-k maximin share value MMSk
i (C) of i

on C is defined as
MMSk

i (C) = min
(A1,A2,··· ,Ak)∈Πk(C)

max
j∈[k]

di(Aj)

where Πk(C) is the set of all k-partitions of C, k 6 n is an integer, and [k] = 1, 2, · · · , k.

Aigner-Horev and Segal-Halevi (2022) [102] proved the existence of 1-out-of-b 2n
3 c

MMS allocation, but they needed to calculate the specific value of MMS. Therefore, this was
definitely not polynomial time. Hosseini et al. (2022) [103] considered the extension of a
new 1-out-of-d MMS. The polynomial-time algorithm of 1-out-of-b 2n

3 cMMS was proposed,
and the existence of 1-out-of-b 3n

4 cMMS allocation was proven.
For any disutility, the anyprice share (APS) is always at least the pessimistic share.

This concept of fairness was first proposed by Babaioff et al. [77] in 2021.
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Definition 30 ([77]). The anyprice share fairness of agent i (APSi) is

APSi = max
(A1,A2,··· ,An)∈Π(C)

min
j∈N

di(Aj),

where Π(C) represents the set of all allocations of C.

Feige and Huang (2022) [104] introduced the concept of chore share and the strate-
gic preliminary stage of the picking sequence, and explained its use to enhance picking
sequences with strong ex-post sharing guarantees, thus making them also have ex ante EF
guarantees. In addition, they also demonstrated that, when indivisible chores are allocated
to agents with additive disutility and arbitrary entitlements, each agent receives a bundle
of up to 1.733 times the disvalue of APS. Li et al. (2022) [76] proved that APS allocation can
be as bad as Θ(n)-approximation regarding PROPX.

The latest results for MMS, WMMS, and OWMMS are shown in Table 5.

Table 5. The latest results about MMS.

MMS

Lower Upper

Ordinal
4/3 for n = 2 15/13 for n = 3
7/5 for n = 3 (13/11) + ε for n > 2

Aziz et al. (2022c) [95] Huang and Segal-Halevi (2023) [96]

Cardinal 44/43
Feige et al. (2021) [91]

WMMS OWMMS

4 + ε for any agents 3/2 for n = 2
Aziz et al. (2019b) [100] Aziz et al. (2019b) [100]

Open problem 2. Is there any other type of disutility function to ensure the existence of MMS?

8. Others

In this section, we mainly introduce relevant research that focuses on relatively few
fairness criteria, including competitive equilibrium (CE), maximum Nash social diswelfare
(MNDW), and the Fisher market.

8.1. Competitive Equilibrium

For a century, the theory of CE was one of the most basic concepts in mathematical
economics. In this field, researchers have studied resource pricing and allocation to agents
based on the interaction between demand and supply. The economic theory of general
equilibrium originated from the ideas of Walras (1954) [105]. Allocation based on CE has
become one of the best mechanisms to solve this problem because of its significant fairness
and efficiency guarantee (Varian (1974) [106]). The existence and calculation of CE have
been widely studied in several economic models (e.g., the Arrow–Debreu model, Jain
(2007) [107], and the Fisher model [Walras (1954) [105]]).

In the instance of chore allocation, each agent i brings wij units of chore j to be
performed. Given prices p = {p1, p2, · · · , pm} ∈ Rm

>0 for chores, where pj is the payment
for performing a unit amount of chore j, agent i needs to earn ∑j∈C wij pj in order to pay to
complete her own chores. Let OBi(p) = argminAi∈Rm

>0 :<Ai ,p>><wi ,p>{∑j∈C dij Aij} be the
optimal bundle of agent i, where agent i is assigned a bundle Ai = (Ai1, Ai2, · · · , Aim)
under feasible allocation A ∈ A.

Definition 31 ([106]). The price vector p is said to be a competitive equilibrium (CE) if all
chores are completely assigned when every agent obtains one of her optimal bundles, that is,
Ai ∈ OBi(p), ∀i ∈ N, and ∑i∈N Aij = ∑i∈N wij, ∀j ∈ C.
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The CE of chores is more challenging. Contrary to the case of goods, even in the
(most general) exchange model, CE sets are convex. In the CE with equal income (CEEI)
model, CE sets with chores can be nonconvex sets containing many disconnected sets
(Bogomolnaia et al. (2017) [108]). Bogomolnaia et al. (2019) [35] compared the egalitarian
equivalent and CEEI to divide bads. They were both welfarist. Chaudhury et al. (2020) [109]
proved that it is strongly NP-hard to determine whether there is a competitive allocation
(no agent is assigned to a chore that they dislike), and finding a competitive allocation
is PPAD-hard (PPAD is polynomial parity arguments on directed graphs). Segal-Halevi
(2020b) [110] proved that goods allocation and chores allocation are equivalent for two
agents. This means that the positive and negative results of the allocation of goods between
the two agents also apply to chores. If there are three or more agents, a CE for almost all
incomes may not have any amount of chores. Boodaghians et al. (2022) [111] presented a
O(n6m3/ε2) time-exterior point algorithm for determining an (1− ε)-approximate CE in
the CEEI model. Chaudhury et al. (2022a) [49] gave the first combinatorial algorithm for
determining a (1− ε)-approximate CE in the CEEI model. In addition, they also showed
that finding a (1− 1/ploy(n))-approximate CE in the exchange model under sufficient
conditions is PPAD-hard. Chaudhury et al. (2022b) [112] analyzed the existence of CE in
the exchange model, where the agent may have infinite disutility for some chores, and
showed that it is NP-hard to determine the existence in both exchange and CEEI. Brânzei
and Sandomirskiy (2023) [66] proved that all the results of the competitive rule of chores
can be calculated in strongly polynomial time if the number of agents or the number of
chores is fixed.

8.2. Maximum Nash Social Diswelfare

Consider a classic bargaining game where two agents 1 and 2 decide what movie
to watch. Agent 1 likes movie A the most and does not like movie B. In contrast, Agent
2 likes movie B instead of movie A. When there is only one decision that can be made,
it is necessary to obtain a mutually agreed solution from both agents. Nash (1950) [113]
proposed the concept of Nash social welfare, which is the product of maximizing agent
utility. It is considered a unique solution that satisfies certain attractive properties. Nash
social welfare is a measure used to balance two objectives. The solution of maximizing Nash
welfare (MNW) among all possible allocations is called the Nash optimal (Caragiannis et al.
(2019) [114]). The problem of maximizing Nash welfare is NP-hard, even for two agents
with identical additive valuations (Lee (2017) [115]). To distinguish from goods, this paper
uses Nash social diswelfare as a representation. Formally, the definition of maximum Nash
social diswelfare (MNDW) is as follows.

Definition 32 ([44]). The Nash diswelfare of an allocation A is the product of disutilities to all
agents under A: NDW(A) = ∏i∈N di(Ai).

Bogomolnaia et al. (2017) [108] showed that the conditions of an exact CE hold if
and only if the disutility profile is a critical point for the Nash social diswelfare on the
boundary of the feasible region. Aleksandrov (2018) [24] proved that the allocation of
MNDW is an EFX and PO allocation with identical disutility similar to good and MNW.
To minimize Nash social diswelfare, its allocation is guaranteed to be PE. When dividing
bads, Bogomolnaia et al. (2019) [35] used the competitive rule to select all critical points of
their Nash social diswelfare among effective and feasible profiles of disutility. Aziz and
Rey (2019) [61] believe that Nash social diswelfare is not applicable to the fair allocation
of chores. Maximizing or minimizing Nash social diswelfare does not necessarily mean
EF1 when only considering chores. Garg et al. (2020) [116] extended the problem of
approximating maximum Nash social diswelfare to more general settings. They mainly
designed two approximation algorithms for asymmetric agents under additive disutility
and submodular disutility. Boodaghians et al. (2022) [111] used Nash social diswelfare to
depict the numerical changes when searching for KKT points (the strictly positive local-
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minima of a nonconvex formulation). Chaudhury et al. (2022) [49] proved that the Nash
diswelfare of the allocation can be improved by some multiplication factors at the end of
each iteration.

When only considering the allocation of goods, Darmann and Schauer (2015) [117]
proposed the Nash flow algorithm. When utility is binary, it calculates the allocation of
maximizing Nash social welfare in polynomial time.

Open problem 3. Can an algorithm be designed to calculate the allocation of approximate maxi-
mum Nash social diswelfare when considering only allocating chores?

8.3. The Fisher Market

The concept of CE, also known as market or Walrasian equilibrium, is an important
economic concept. It simulates the allocation of resources in a stable economic state when
supply equals demand. Walras (1954) [105] believed that the market is called the Fisher
market in the computer science literature. The Fisher market of chores is an economic
model that consists of a set of divisible chores and a set of agents, each of whom is given
a budget of virtual money (Brainard and Scarf (2005) [118]). Formally, a Fisher market is
given by adding a vector of endowments or budgets to the original fair allocation problem.
Correspondingly, a market should not only output an allocation but also output a price
vector. Varian (1974) [106] proved that a Fisher market equilibrium allocation exists and is
EF+PO. A large number of studies have studied the properties of the Fisher market and
found algorithms for calculating equilibrium and hardness results (e.g., Eisenberg and Gale
(1959) [119]).

Definition 33 ([118]). In the setup of the Fisher market, in addition to the agent set N, chores
set C, and disutility function profile D, each agent also has an initial liability li > 0, which
represents how much money the agent needs to earn in the market. The Fisher market is defined as
F =< N, C,D,L >, where L = (l1, l2, · · · , ln).

Given the Fisher market instance F, the market outcome is a pair of fractional allocation
and payment vectors < x, p >. For all agents i ∈ N and chore c ∈ C, xi,c represents which
fraction of chore c is assigned to agent i, and pc represents the price of chore c. The income
obtained by agent i from market outcome < x, p > is p(xi) = ∑c∈C xi,c pc. We can also
consider the integral bundles as a vector with 0 and 1 entries. Given the payment vector
p, the pain of agent i for every buck of chores c is di(c)/pc. We use MPBi to represent the
minimum pain per buck for agent i when paying p, i.e., MPBi = minc∈C di(c)/pc.

Bogomolnaia et al. (2017) [108] defined the competitive rules of chores, considered
the Fisher market simulation of chores, and analyzed their properties. Even in the case
of additional disutility, the competitive rules of chores are no longer single-valued. The
equilibrium allocation forms a disconnected set and can be obtained as the critical point
of Nash social diswelfare on the Pareto frontier of the feasible disutility set. Barman et al.
(2019) [120] studied the Fisher market that allows for integral equilibrium. Freeman et al.
(2020) [82] provided proof of the well-known first diswelfare theorem for Fisher markets
of chores (for a Fisher market with linear disutilities, any equilibrium outcome is fPO).
Boodaghians et al. (2022) [111] designed an FPTAS for the Fisher market. Ebadian et al.
(2022) [48] obtained an EF1+PO allocation of chores with bivalued disutilities by using
the framework of Fisher markets and CE. Chaudhury et al. (2022a) [49] proved that the
problem of finding CE in the Fisher model is in polynomial local search (PLS). Chaudhury
et al. (2022b) [112] showed that determining whether an instance of chore division in the
Fisher model admits a CE is strongly NP-hard, even for the case of equal incomes (CEEI).
This also holds for the constant-approximate CE. Brânzei and Sandomirskiy (2023) [66]
constructed a Fisher market framework for allocating chores. The difference between this
framework and that for allocating goods is that all the prices and budgets are negative. In
addition, they stated that, when either the number of agents or the number of chores is
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bounded, all the outcomes of the competitive rule are a computationally tractable problem.
Hosseini et al. (2023) [64] used two variants of the Fisher market algorithm to find the PO
allocation in polynomial time for instances where chores are limited to two types.

Definition 34 ([53]). Given a Fisher market instance F, the outcome of the Fisher market < x, p >
is Fisher market equilibrium if ∑i∈N xi,c = 1, for all chores c ∈ C, ∑c∈C xi,c · pc = li, for all agents
i ∈ N, and if xi,c > 0, then MPBi = di(c)/pc, for all agents i ∈ N and chores c ∈ C.

If li = 1, for all agents i ∈ N, then the Fisher market equilibrium is CE. Akrami et al.
(2023) [53] proved that, for additive disutility instances, any Fisher market equilibrium
is fPO.

Open problem 4. What is the relationship between Fisher market equilibrium and other concepts
of fairness?

9. Conclusions

In this paper, we conduct a comprehensive investigation into the fair allocation prob-
lem of chores. We divide the fair allocation problem of chores into the following aspects: EF,
PROP, EQ, MMS fairness, CE, MNDW, Fisher market, etc. We have summarized the results
of various algorithms under different fairness concepts from the perspectives of divisible
and indivisible chores. According to different definitions, some concepts of fairness can be
used in the allocation of divisible and indivisible chores, while others can only be used in
the allocation of indivisible chores, as shown in Figure 6, where the arrow points to fair
relaxation, for example, EF and its relaxed form. EF can be used in the allocation of divisible
and indivisible chores, while EF1 and EFX can only be used in the allocation of indivisible
chores. The purpose of our research is to provide a valuable reference for researchers and
engineers working on practical problems.

The fair allocation 
problem of chores

indivisible chores

divisible chores

PROP EQ CE MNDW

CE MNDW

EF
GEFEF1 EFX GEF1 GEFX

WEF WEF1 DEF-k weighted−EF

PROP
PROP1 PROPX weighted− PROP1

weighted− PROPX

EQ EQ1 EQX

MMS PMMS WMMS OWMMS APS

EF GEF WEF

MMS PMMS WMMS OWMMS APS

Figure 6. Classification of the concept of fairness.

Overall, this survey provides a comprehensive overview of the latest methods for
the fair allocation of chores and emphasizes the need for further research in this field. In
addition to the above research, research on the fair allocation of chores can also introduce
different constraints by combining more life examples and exploring more concepts of
fairness. In addition, we summarize three future research directions in this field: (1) For
instances with a fixed number of agents, the runtime complexity of the algorithm can be
further improved; (2) To achieve approximate maximum utilitarian diswelfare and egali-
tarian diswelfare, faster algorithms for restricted domains can be designed; (3) Combined
with the concept of fairness, research on allocation mechanisms can be considered.
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Appendix A. Symbol Description

For ease of reading, we present the symbols used in this article and their corresponding
meanings in Table A1.

Table A1. Symbol description.

Symbol Statement Symbol Statement

N The set of n agents C A continuous interval or the set of m chores
F The density function family fi The density function of agent i

S, T The subset of C D The disutility function set of each agent
di The disutility of agent i A The set of all feasible allocations
A An n partition of set C Ai The bundle assigned to agent i

u(A) The utilitarian social diswelfare of A POFu The price of fairness with utilitarian diswelfare
F The fairness property I An instance

eq(A) The egalitarian social diswelfare of A POFe The price of fairness with egalitarian diswelfare
c A continuous interval or a chore Π(AT , S) The set of all the allocations over AT and S

AT The set of chores allocated to all agents in T D A dubious multiset
AD A dubious allocation wi The weight of agent i

MMSi The maximin share value of agent i WMMSi The weighted maximin share value of agent i
OWMMSi The optimal weighted maximin share value of agent i MMSk

i (C) The 1-out-of-k maximin share value of agent i on C
Πk(C) The set of all k-partitions of C APSi The anyprice share fairness of agent i

p Prices pj The payment for doing unit amount of chore j
OBi(p) The optimal bundle of agent i NDW(A) The Nash diswelfare of an allocation A

li The initial liability of agent i < x, p > The Fisher market
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