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Abstract: This paper deals with a novel variation of the versatile stochastic duel game that incorpo-
rates an energy fuel constraint into a two-player duel game. The energy fuel not only measures the
vitality of players but also determines the power of the shooting projectile. The game requires players
to carefully balance their energy usage, while trying to outmaneuver their opponent. This unique
theoretical framework for the stochastic game model provides a valuable method for understand-
ing strategic behavior in competitive environments, particularly in decision-making scenarios with
fluctuating processes. The proposed game provides players with the challenge of optimizing their
energy fuel usage, while managing the risk of losing the game. This novel model has potential for
implementation across diverse fields, as it allows for a versatile conception of energy fuel. These
energy fuels may encompass conventional forms, such as natural gas, petroleum, and electrical power,
and even financial budgets, human capital, and temporal resources. The unique rules and constraints
of the game in this research are expected to contribute insights into the decision-making strategies
and behaviors of players in a wide range of practical applications. This research primarily focuses on
deriving compact closed-form solutions, utilizing transformation and flexible analysis techniques
adapted to varying the concept of the energy fuel level. By presenting a comprehensive description of
our novel analytical approach and its application to the proposed model, this study aims to elucidate
the fundamental principles underlying the energy fuel constraint stochastic duel game model.

Keywords: duel game; energy level constraint; stochastic model; fluctuation theory; time domain
game; backward induction; marked point process

MSC: 60C55; 60K10; 90B15; 90B50

1. Introduction

Game theory is a powerful tool for modeling and analyzing strategic decision-
making in a wide range of fields, from economics and political science to computer
science and engineering [1–6]. Modern game theory has seen significant developments
in recent years, particularly in the areas of repeated games, evolutionary game theory,
and network games. One important recent development is the use of machine learning
techniques in game theory, which has led to advances in predicting and optimizing
outcomes in complex, multi-player games [7]. Another area of active research is the
analysis of games in which players have incomplete information, which has applica-
tions in contract theory, mechanism design, and more [8]. Network games have also
become an important area of research, as they model interactions among agents in a
social or economic network, with implications for contagion and diffusion dynamics [9].
Another growing area of interest is the use of game theory in analyzing cybersecurity,
particularly in the context of defending against cyber-attacks [3,5,10]. Overall, mod-
ern game theory has seen exciting developments and applications in a wide range of
fields. As researchers continue to develop new methods and models, game theory is
likely to remain a valuable tool for understanding strategic decision-making in complex,
dynamic environments. Duel games have become the focus of study in game theory,
due to their applicability to modeling competitive situations, ranging from military
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conflicts to economic decisions [11]. Recent research has explored variations of the duel
game, such as the generalized stochastic duel game [12] and the duel game with multi-
ple asymmetric players [13,14] and penalties. Other studies have examined the impact
of different strategies on the outcome of duel games, including the use of mixed strate-
gies [15] and time-dependent strategies with two players [16] or multiple players [17,18].
Several studies have also explored the application of duel games in specific contexts, such
as decision-making in the presence of incomplete information [19], analysis of political
competitions [20], and modeling of predator–prey interactions in ecological systems [21].

The versatile stochastic duel game is a game-theoretic model that incorporates ele-
ments of the fluctuation process [16]. This hybrid model has practical applications in a
wide range of decision-making scenarios. Specifically, the model is designed to analyze
a two-person duel-type game in the time domain. This unique theoretical framework for
the stochastic game model allows the analysis of complex decision-making scenarios and
provides a valuable tool for understanding strategic behavior in competitive environments.
In OneToN stochastic duel games [13], a player who decides to shoot does so in an attempt
to kill all other players simultaneously (i.e., one-shooting-to-kill-all). This is akin to using
an automatic machine gun, as opposed to a single bullet gun. However, it is important to
note that each player is only permitted to shoot once on their turn. This robust method
was developed to identify the optimal strategies in a general antagonistic multi-person
stochastic duel game [14]. This game consists of multiple stages, each with different pairs
of players and corresponding optimal shooting moments. Despite the participation of
multiple players across multiple battlefields, each player is limited to one bullet in the
entire game. Although players may have a limited number of opportunities to shoot, they
must carefully consider their options and wait for the optimal shooting opportunity. Once
a fixed threshold is reached, players are allowed to take the best shooting opportunity at a
random time with a random impact. This highly strategic game presents a challenge for
identifying optimal strategies, which this robust method was designed to address.

This research proposes a novel version of the stochastic duel game, introducing a
shooting projectile that is subject to energy fuel constraints. Energy fuel is the cost of
sustaining player life and is slowly and randomly used up. This variant of a stochastic
duel includes an expansion of describing various game situations with limited shooting
resources. In practical applications of this new model, energy fuel (i.e., limited shooting
resources) can take various forms, including energy sources, such as gas, oil, and coal;
electrical power; and even financial assets, such as budgets, human resources, and time.
Specifically, this game model is well-suited for analyzing funding strategies involving two
competitive firms, thus rendering it a suitable framework for a two-player game. In this
context, the financial budget may be perceived as the energy fuel, which is incrementally
expended, while allocating the remaining budget for the development and launch of a new
product or service. Notably, within the scope of the mathematical game model, a product
launch parallels the concept of “shooting”. In a scenario where the opposing player (i.e.,
player B) possesses insufficient remaining budget to fund a product launch, player A is
declared the winner. Conversely, should player B maintain an adequate budget to counter
the product launch by player A, player A loses the game. Basically, player A loses the
game if their single shot totally misses the target or their shooting strength is less than the
remaining energy fuel of the target player. Intriguingly, we can determine the result before
even starting the game. Each player can find the best moment for shooting and the optimal
energy fuel level.

This paper is constructed in the following manner: Section 2 presents the innovative
stochastic duel game model, incorporating a unique variant that takes into account fuel-
constrained ammo. This means that each player possesses a shooting power based on their
individual energy level. Finally, the conclusions of this paper are provided in Section 3.
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2. Stochastic Duel Game with Fuel Constraint Ammo

An antagonistic duel game of two players (called “A” and “B”) in the time domain
is considered and both players know the full information regarding the success probabil-
ities based on the time domain [16]. Let us assigned Pa(t) as the monotone increasing
CDF (cumulative distribution function) for player A regarding hitting the opponent
player (player B) at time t. Similarly, Pb(t) is the probability of player B hitting the
opponent player (player A) at time t. Each hitting probability (CDF) may be arbitrary
chosen and this reaches 1 when the time t goes to the infinite (<∞). The strategic decision
of the shooting moment means finding the moment when a player will have the best
chance to hit the other player. There is a certain point that maximizes the chance of
succeeding in the shot, and this optimal point becomes the moment of success in the
continuous time domain. This moment t∗ is actually the same as the single bullet case
and it is defined as follows [11,13]:

t∗ = inf{t ≥ 0 : Pa(t) + Pb(t) ≥ 1}, (1)

which indicates that the probability of hitting the other player is higher than the probability
of the other player missing. According to any conventional duel games [11], it is important
to note that the individual who fires the initial shot does not necessarily possess superior
or inferior shooting skills. Instead, success in these games is contingent upon surpassing
a critical point, referred to as t∗, which is influenced by the collective abilities of both
participants from (1). Additionally, each player has an energy fuel level which randomly
drops, and the spending (or usage) of the energy fuel for each player is monotone and non-
decreasing. Let (Ω, F (Ω),P) be the probability space FA, FB, Fτ ⊆ F (Ω) independent
σ-subalgebras. Suppose

A := ∑k≥0 εsk , s0(= 0) < s1 < s2 < · · · , a.s. (2)

B := ∑j≥0 εtj , t0(= 0) < t1 < t2 < · · · , a.s. (3)

are FA-measurable and FB-measurable renewal point processes (εa is a point mass at a)
with intensities λa and λb and position and point independent marking. The energy fuel
level of each player becomes the shooting power to hit a opponent player. The energy fuel
of player A drains at times s1, s2, . . . and the magnitudes of energy drains are formalized
using process A. The energy drain of player B is described by the process B. The processes
A and B are specified by their transforms:

E
[

gA(s)
]
= eλa(s)(g−1), E

[
hB(t)

]
= eλb(t)(h−1). (4)

The game is observed at random times, in accordance with the point process

T := ∑
i≥0

ετi , τ0(> 0)), τ1, . . . , (5)

which is assumed to be delayed renewal process.

(A(t), B(t)) := A⊗B([0, τk]), k = 0, 1, . . . , (6)

forms an observation process upon A⊗B embedded over T , with respective increments

(Xk, Yk) := A⊗B([τk−1, τk]), k = 1, 2, . . . , (7)

and
X0 = A0, Y0 = B0. (8)
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The observation process can be formalized as

Aτ ⊗Bτ := ∑
k≥0

(Xk, Yk)ετk , (9)

where
Aτ = ∑

i≥0
Xiετi ,Bτ = ∑

i≥0
Yiετi , (10)

with position-dependent marking and with Xk and Yk being dependent on the notation

∆k := τk − τk−1, k = 0, 1, . . . , τ−1 = 0, (11)

and
σ(z, θ) = E

[
z(Xi−Yi)

+
e−θ∆i

]
, z > 0. (12)

By using the double expectation, we have

σ(z, θ) = σ(θ + (λa − λb)(1− z)) (13)

where
σ(θ) = E

[
e−θ∆i

]
, σ0(θ) = E

[
e−θτ0

]
. (14)

Let us consider the maximum energy levels of players Ma and Mb. The energy level of
player A after draining fuel is Ma −Aτ , with Mb −Bτ for player B from (9). The stochastic
processes for the energy level of each player are as follows:

{Ma −Aτ} ⊗ {Mb −Bτ} := (Ma, Mb)− ∑
k≥0

(Xk, Yk)ετk , (15)

and the game is over when the k-th observation epoch τk, the shooting power of player
A, which is equivalent to the remaining energy level at the moment of the shooting being
greater than the energy fuel level of player B:

Ma −Aτk ≥ Mb −Bτk . (16)

For further formalization of the game, the exit index can be defined as follows:

ν := inf{k : Ak = A0 + X1 + · · ·+ Xk ≤ Σa}, (17)

µ := inf
{

j : Bj = H0 + Y1 + · · ·+ Yj ≤ Σb
}

(18)

where
Σa = Ma −

(
Mb − Bj

)
, Σb = Mb − (Ma − Ak)

Since player A is assumed to win the game at time τν, we will target the confined
game from the point of view of player A. The passage time τν is associated exit time from
the confined game and the formula (15) will be modified as

{
Ma −Aτ

}
⊗
{

Mb −Bτ

}
:= (Ma, Mb)−

ν

∑
k≥0

(Xk, Yk)ετk , (19)

where the path of the game from F (Ω)∩ {Aν − Bν ≤ |Ma −Mb|} ∩ {T ≥ t∗}, which gives
an exact definition of the model observed until τν. The joint functional of the stochastic
duel with the fuel limited ammunition is as follows:

Φ{ν,µ} = Φ{ν(Σa),µ(Σb)}(ζ, z0, z1, θ0, θ1)

= E
[

ζνz(
Aν−1−Bµ−1)

0 z(
Aν−Bµ)

1 e−θ0τν−1 e−θ1τν 1{
ν−µ≤Mab

σ

}1{ν≥ t∗
σ }

]
,

(20)
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where {
Aν − Bµ ≤ |Ma −Mb|

}
∩ {T ≥ t∗} ≡

{
ν− µ ≤ Mab

σ

}
∩
{

ν ≥ t∗

σ

}
, (21)

Mab = |Ma −Mb|, σ = E[∆k]. (22)

The functional Φ{ν,µ} in this model shall represent the status of both players upon the
exit time τν and the pre-exit time τν−1. The pre-exit time is of particular interest because
player A wants to predict not only her time for the highest chance, but also the moment
for the next highest chance prior to this. The Theorem 1 establishes an explicit formula for
Φ{µ,ν} and we abbreviate with (23)–(27):

γ(z, θ) = σ(z, θ), γ0(z, θ) = σ0(z, θ), (23)
φA(x, θ) = E

[
xXk e−θ∆j

]
= σ(θ − λa(1− x)), (24)

φ0
A(x, θ) = E

[
xA0 e−θτ0

]
= σ0(θ − λa(1− x)), (25)

φB(y, θ) = E
[
yYj e−θ∆j

]
= σ(θ − λb(1− y)), (26)

φ0
B(y, θ) = E

[
yB0 e−θτ0

]
= σ0(θ − λb(1− y)). (27)

The linear operators are defined as follows:

D(p,q) [ f (p, q)](x, y) := (1− x)(1− y) ∑
p≥0

∑
q≥0

f (p, q)xpyq, (28)

then
f (p, q) = D

(p,q)
(x,y)

[
D(p,q) { f (p, q)}

]
, (29)

where { f (p, q)} is a sequence, with the inverse

D
(p,q)
(x,y)(•) =

{(
1

p!·q!

)
lim(x,y)→0

∂p∂q

∂xp∂yq
1

(1−x)(1−y) (•), p ≥ 0, q ≥ 0,

0, otherwise.
(30)

Theorem 1. The functional Φµν of the game on trace σ-algebra
F (Ω) ∩ {Aν − Bν ≤ |Ma −Mb|} ∩ {T ≥ t∗} satisfies the following formula:

Φ{µ,ν} = D
(Ma ,Mb)
(x,y)

 ζΓ0γ1(1− φx)(ζΓ)

⌈
t∗
σ

⌉
φ

⌊Mab
σ

⌋
y (1− ζΓ)

, (31)

where
Γ = γ(z0z1x, θ0 + θ1), (32)
Γ0 = γ0(z0z1x, θ0 + θ1), (33)
γ1 = γ(z1, θ1), (34)
φx = φA(x, 0), φy = φB(y, 0), (35)

Proof. We find the explicit formula of the joint function Φ{µ,ν} that starts from (19):
Φ{ν,µ} = Φ{ν(Σa),µ(Σb)}(ζ, z0, z1, θ0, θ1)

= ∑j≥0 ∑k≥0 ζ jE
[

z(Aν−1−Bν−1)
0 z(Aν−Bν)

1 e−θ0τν−1 e−θ1τν

1{
j−k≤

⌊Mab
σ

⌋}1{
j≥
⌈

t∗
σ

⌉}1{ν=j,µ=k}

]
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and applying the operator D to random family
{

1{ν(x)=p,µ(y)=q} : x ≥ 0
}

, we have

D(p,q)

[
1{ν(x)=k,µ(y)=j}

]
(x, y) =

(
xAk−1 − xAk

)(
yBj−1 − yBj

)
(36)

and, from previous research [1–5],

Ψ(x, y) = ∑j≥0 ∑k≥0 ζ jD(x,y)E
[

z(Aν−1−Bν−1)
0 z(Aν−Bν)

1 e−θ0τν−1 e−θ1τν (37)

1{
j−k≤

⌊Mab
σ

⌋}1{
j≥
⌈

t∗
σ

⌉}1{ν=j,µ=k}

]
= ∑j≥

⌈
t∗
σ

⌉ ∑
k≥j−

⌊Mab
σ

⌋ ζ jE
[
(z0z1)

(Aj−1−Bj−1)e−(θ0+θ1)τj−1 z(
Xj−Yj)

1 e−θ1∆j

xAj−1
(

1− xXj
)

yBk−1
(
1− yYk

)
1{ν=j,µ=k}

]
= ∑j≥

⌈
t∗
σ

⌉ L1jL2j ∑
k≥j−

⌊Mab
σ

⌋ L3jkL4jk. (38)

where
L1j = ζ jE

[
(z0z1)

(Aj−1−Bj−1)(xy)Bj−1 e−(θ0+θ1)τj−1
]
= ζ jΓ0Γj−1, (39)

L2j = E
[

z(
Xj−Yj)

1 e−θ1∆j
(

1− xXj
)]

= γ1(1− φx), (40)

L3jk = E
[
yYj+Yj+1+···+Yk−1

]
= φ

k−j
y , (41)

L4jk = E
[
1− yYk

]
= 1− φy. (42)

From (39)–(42), we have

Ψ(x, y) = ∑j≥
⌈

t∗
σ

⌉(ζ jΓ0Γj−1)(γ1(1− φx))

(
φ
−
⌊Mab

σ

⌋
y

)
. (43)

Therefore,

Ψ(x, y) =
ζΓ0γ1(1− φx)(ζΓ)

⌈
t∗
σ

⌉
φ

⌊Mab
σ

⌋
y (1− ζΓ)

. (44)

From (29) and (44), finally, we have:

Φ{µ,ν} = D
(Ma ,Mb)
(x,y)

 ζΓ0γ1(1− φx)(ζΓ)

⌈
t∗
σ

⌉
φ

⌊Mab
σ

⌋
y (1− ζΓ)

. (31)

The functional Φ{ν,µ} contains all decision making parameters regarding this standard
stopping game. The information includes the optimal number of iterations of players (i.e., ν
and µ), the best moments for shooting (τν, τµ; exit time) and step prior to the best shooting
times (τν−1, τµ−1; pre-exit time). The information for player A from the closed functional is
as follows:

E[ν] = lim
ζ→1

(
∂

∂ζ

)
Φ{ν,µ}(ζ, 1, 1, 0, 0), (45)

E[τν−1] = lim
θ→0

(
− ∂

∂θ

)
Φ{ν,µ}(1, 1, 1, θ, 0). (46)

Additionally, there are some special cases that can be considered. The first case is
where the assets of both players are the same (i.e.,Mab = 0). From (31), the formula is
changed as follows:

Φ{µ,ν} = D
(Ma ,Mb)
(x,y)

 ζΓ0γ1(1− φx)(ζΓ)

⌈
t∗
σ

⌉
1− ζΓ

, (47)
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whereMab = 0. This implication means that both players have the same energy fuel level
and the winning strategy for this game would be to take the shot as soon as passing the
threshold from (1). The other case would be where the initial energy level of player A is
smaller than that of player B (i.e., Ma < Mb). The best strategy for player A would be to
wait until player B shoots (and fails), because player A has no chance of winning, even if
he hits the target correctly.

3. Conclusions

A new successor to the antagonistic stochastic duel game was studied. This research
primarily focused on deriving compact closed-form solutions utilizing transformation and
flexible analysis techniques, which were adapted by varying the concept of the energy fuel
level. In this innovative duel game, a player can win the game only if their bullets hit the
target player and if their shooting power exceeds the remaining energy fuel level of the
target player at the moment of shooting. A joint functional of the standard stopping game
was constructed to analyze the strategic decision parameters, which indicated the best
moment for shooting in the time domain stochastic game. This study provides a thorough
account of the innovative analytic approach, shedding light on the fundamental principles
that underlie the stochastic duel game model with energy fuel constraints.
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