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Abstract: Information dissemination refers to how information spreads among users on social net-
works. With the widespread application of mobile communication and internet technologies, people
increasingly rely on information on the internet, and the mode of information dissemination is
constantly changing. Researchers have performed various studies from mathematical modeling and
cascade prediction perspectives to explore the previous problem. However, lacking a comprehensive
review of the latest information dissemination models hinders scientific development. As a result, it is
essential to review the latest models or methods. In this paper, we review information dissemination
models from the past three years and conduct a detailed analysis, such as explanatory and predictive
models. Moreover, we provide public datasets, evaluation metrics, and interface tools for researchers
focusing more on algorithm design and modeling. Finally, we discuss the model application and
future research directions. This paper aims to understand better the research progress and develop-
ment trends for beginners and guide future research endeavors. We believe this article will attract
more researchers’ interest and attention to the information dissemination field on social networks.

Keywords: information dissemination; explanatory model; predictive model; deep learning
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1. Introduction

With the widespread application of mobile communication and internet technology,
many social platforms (e.g., Weibo, WeChat, and Twitter) have emerged and become
major hubs for various types of information dissemination [1]. People keep in touch,
share news, and engage in real-time interactions, which broaden the existing channels of
information dissemination. Social networks’ mobility, openness, and convenience bring
convenience to people’s lives, work, and learning [2]. However, it also provides a fertile
environment for harmful information dissemination, such as malicious information and
rumors [3], significantly threatening societal order [4,5]. Therefore, analyzing the process of
information dissemination is of great significance for understanding the laws of information
dissemination; it is applied widely in devising effective control strategies [6–8], predicting
information dissemination trends [9], and identifying influential users [10].

Information dissemination (information propagation) refers to how information, new
ideas, or user influence spreads among users through communication links on social
networks [11]. Information dissemination models aim to capture the dynamic behavior
of information dissemination [12]. This paper divides the analysis of the information
dissemination process into macro-level and micro-level perspectives. At the macro level,
the research involves studying information dissemination by observing the changing trends
of different groups over time, which can reveal the law of information dissemination and
develop optimized control strategies to curb the spread of harmful information, including
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epidemic models [13,14], network structure-based models [15,16], and multi-information
competition models [17,18]. At the micro-level, it assesses the likelihood of potential users
retweeting information [19]. Although researchers have conducted extensive research on
modeling the information dissemination process, it remains a hot topical issue due to the
breadth and complexity of research.

Figure 1 provides a summary of the papers included in this survey. As shown in the
figure, the left picture shows that information dissemination has attracted attention recently,
and the analytical methods used vary over time. Researchers are gradually starting to use
deep learning to study information cascades and popularity prediction tasks from a new
micro perspective. The right picture shows that the research works have been published
in internationally renowned conferences/journals, such as Information Sciences, Expert
Systems with Applications, Chaos, Solitons & Fractals, SIGKDD, IJIS, AAAI, AI, and WWW.
We notice that over 48% of the papers come from other journals, further proving that
this is an interdisciplinary topic covering artificial intelligence, physics, statistics, and
more. In addition to traditional models, we supplement the information dissemination
modeling framework by introducing data-driven methods at the micro-level. The research
of information dissemination is still an ongoing process, and researchers are attempting to
solve it using different technical tools, such as mathematical models, statistical models, and
representation learning, as shown in Figure 2.
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This paper aims to provide a comprehensive review of information dissemination
models. We have achieved abundant research literature in this field, but lacking a unified
categorization for existing work is challenging. Li et al. [12] and Zhou et al. [33] introduce a
review of information dissemination models and information cascades prediction methods
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of information dissemination in 2021, respectively. Nevertheless, they do not include the
most critical research work beyond 2021. Raponi et al. [34], who focus only on Epidemic
models, summarize models from the perspective of user states. Similarly, Sun et al. [35]
mainly summarize the three aspects of dissemination mechanism, propagation model,
and optimized control strategy, but the research lacks network structure-based models
and data-driven models. We find that researchers have conducted long-term research on
information dissemination; there are few reviews of the latest methods, or the research only
focuses on a particular technical line, hindering the in-depth exploration of information
dissemination. In addition, some key concepts and methods are still ambiguous.

In view of the above problem, this paper summarizes and analyses the latest in-
formation dissemination models or methods over the past three years from macro-level
and micro-level perspectives. This paper covers the major models and techniques by
collecting and organizing no less than 100 articles, offering comprehensive insights from
multiple perspectives, and facilitating the in-depth exploration of information dissemina-
tion. Furthermore, this paper introduces publicly available datasets, evaluation metrics,
and interface tools. Additionally, we discuss the model application and future research
directions for beginners.

The main contributions of this paper can be summarized as follows:
(1) A comprehensive review of the latest developments in information dissemination.

This paper summarizes the state-of-the-art models or methods by extensively surveying
the current state and analyzing over 100 papers. It is particularly valuable for beginners to
grasp and familiarize themselves with the latest progress quickly.

(2) Classification of models from macro-level and micro-level perspectives. This paper
proposes two main categories: explanatory and predictive models, which cover major
information dissemination models and methods. We introduce and analyze each type
of representative approach in detail for researchers to better understand the differences
between various techniques.

(3) Summarization of publicly available datasets, evaluation metrics, and interface
tools. This paper allows researchers to only focus on modeling and algorithm design. Fur-
thermore, we discuss future research directions and model applications to help beginners
understand the research directions and trends, inspiring them to produce more valuable
research outcomes.

The rest section of this paper is organized as follows. In Section 2, we introduce
the information dissemination models, including a formal definition and information
dissemination models; Section 3 summarizes publicly available datasets, evaluation metrics,
and interface tools; We further provide future research directions in Section 4; Section 5
discusses the application of information dissemination models. Finally, we present the
conclusion in Section 6.

2. Information Dissemination Model

The information dissemination models aim to capture the dynamic behavior of infor-
mation dissemination on social networks [12], which benefits us in understanding the law
and the interaction of influencing factors on information dissemination with mathematical
or computable models. In this section, this paper summarizes and analyzes the information
dissemination models or methods from the past three years. Based on the macro-level and
micro-level perspectives, Section 2 mainly covers the definition, explanatory models, and
predictive models. Figure 3 shows the taxonomy of the information dissemination models.
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We categorize methods from two different aspects, as shown in Figure 3. First, we
define the information dissemination process according to the information dissemination
mode. Second, we can classify the models or methods into explanatory and predictive
models from the macro-level and micro-level perspectives; for example, analyzing the
influence of factors on information dissemination. Finally, methodologically, we classify the
explanatory models into epidemic, improved, network structure, and competitive models
and also classify predictive models into traditional and deep learning models.

2.1. Definition

Information dissemination refers to a dynamic transmission and reception process; we
take it as sharing resources process between the spreader and the receiver [36]. In this paper,
we introduce the definition of information dissemination using a six-tuple representation,
as shown in Equation (1):

IDP = (C, M, U, S, T, A) (1)

where IDP represents the information dissemination process, C represents the information
content, such as advertising products, valuable information, and harmful information. M
represents the social platforms, such as Twitter, Weibo, and WeChat; U represents users; S
represents the social networks, such as small-world networks, random networks, scale-free
networks, and real social networks; T represents the time of information dissemination
with timestamps {t1, t2, . . . . . ., tn}. A represents actions, such as retweeting, commenting,
liking, and saving.

2.2. The Explanatory Model

The explanatory models (the macro-level) can analyze the information dissemination
process and predict the population’s trends over time using mathematical models [37].
The dynamics model has the advantages of high applicability, fast analysis, high selec-
tivity, and sensitivity, widely applying to the spread of infectious diseases [38,39], com-
puter viruses [40,41], malware [42,43], marketing advertising, and allocation of medical
resources [44]. In this section, this paper primarily focuses on the epidemic, network-based
structure, and competitive models. Finally, we compare and analyze the explanatory model.

Figure 4 shows the process of explanatory information dissemination. Red, yellow,
blue, and cyan users represent information disseminators, the information-exposed, the
information-ignorant, and the information-immune, respectively; we use explanatory
models to model and analyze different types of population sizes that change over time.
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2.2.1. Epidemic Model

Owing to the significant similarity in the internal mechanisms of epidemic propagation
and information dissemination [45,46]. Epidemic models are applied widely in information
dissemination research. The epidemic model, also named the “compartmental” model [47],
refers to individuals who are assigned to different subcategories (states) and transformed
according to deterministic rules in information dissemination [34]. The epidemic models
rely on the following assumptions: the conditions of nodes within each subcategory are mu-
tually independent, and the population is well-mixed and undifferentiated. In this section,
we will primarily present classical epidemic models and improved epidemic models.

1. Classical Epidemic Model

In this section, we will primarily introduce the classic epidemic models, including the
Susceptible-Infected (SI) [48], Susceptible-Infected-Susceptible (SIS) [49], and Susceptible-
Infected-Recovered (SIR) [13,14,20,50,51]. The SI model is fundamental, and the subsequent
models are all improved. The models divide the population into two compartments: S
(susceptible) represents individuals unaware of the information, and I (infected) repre-
sents individuals spreading the information. Individuals may become susceptible again
because of forgetting mechanisms or other factors, forming the SIS model. In the SIR
model, R (recovered) is an individual who may become immune by exposure to debunking
information released by authorities or media. Figure 5 shows the schematic diagram of
the classic dissemination models. In the early stages, epidemic models are used to study
the spread of smallpox [52], pioneering the era of infectious disease models. Based on
those pioneering works, the DK model [21] and MK model [22] are proposed and applied
in information dissemination. Sudbury et al. [20] are the first to use the SIR model to
investigate information dissemination.
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Where α represents the probability of a spreader to an information-ignorant; β rep-
resents the probability of an information-ignorant becoming a spreader; γ represents the
possibility of a spreader becoming immune.

This paper takes the SIR model as an example. It divides the population into three
sub-types to simplify the complexity of analysis, remaining constant over time. Information-
ignorant individuals (susceptible) who are unaware of the information and at risk of being
infected by the spreader; information spreader (infected) engage in information dissemi-
nation, such as liking, saving, and sharing information on social networks; information-
immune individuals (recovered) lose interest or no longer propagate the information. The
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assumptions are as follows: when an information-ignorant encounters a spreader, who
will become a spreader with probability α; when the spreader encounters accurate infor-
mation or refutation information released by the government or authoritative media, the
spreader becomes information-immune individuals with possibility β. Equation (2) shows
the dynamic equations of the SIR model.

dS(t)
dt = −αS(t)I(t)

dI(t)
dt = αS(t)I(t)− βI(t)

dR(t)
dt = βI(t)

S(t) + I(t) + R(t) = 1

(2)

where α denotes the infection rate when information-ignorance individuals come into
contact with the spreader, β represents the immunity rate. S(t), I(t), and R(t), respectively,
indicate the density or proportion of the population in the susceptible, infected, and im-
mune status at the time t. Algorithm 1 shows the basic algorithmic steps of the SIR model.

Algorithm 1: Basic Idea of the SIR

Input: S(0): Proportion of information-ignorance individuals, I(0): Proportion of spreader,
R(0): Proportion of information-immune individuals, T: the cutoff time of information
dissemination, α: the transmission rate of information, β: the immunity rate, N: the total
population size (constant), m: the proportion of initial spreader.
Out: S(T), I(T), R(T): Proportions of individuals in different compartments at the time T.
1 S(0) = N, I(0) = m, I(0) = m, R(0) = 0, t = 0
2 While t < T do
3 S(t + 1) = −αS(t)I(t);
4 I(t + 1) = αS(t)I(t)− βR(t);
5 R(t) = βR(t);
6 t = t + 1;
7 End

The information infection rate exhibits a nonlinear relationship over time. Ke et al. [13]
discuss the influence of control factors from the government and media on information
dissemination by using the SIR model with non-smooth control and nonlinear contact
functions. Experimental shows that enforcing silence and enhancing the ability of online
information supervision can contain the spread of rumors. The openness of social platforms
breaks the limitations of language and geography, Xia et al. [14], who investigate the impact
of introducing new spatial distances, education, and mandatory silence mechanisms on
curbing rumor propagation by optimization control theory and sensitivity analysis, propose
a reaction-diffusion model with nonlinear functions in a multilingual environment, showing
that the theoretical analysis is correct. Zhu et al. [48] develop an SI model with nonlinear
dissemination rates and non-smooth optimization control functions. The research discusses
the stability of equilibrium points and provides conditions for saddle-node bifurcation,
Turing bifurcation, and Hopf bifurcation by Lyapunov functions. Zhu et al. [49] verify that
the proposed immunity control strategy can effectively suppress information dissemination
by analyzing the stability of SIS models with saturation functions. Ma et al. [50] prove the
stability of equilibrium points and give the existence conditions of Hopf bifurcation using
a non-smooth SIR model with two stages, investigating the incentive effect of secondary
dissemination on information dissemination. Hu et al. [51] propose a cross-diffusion
model with Allee effects and derive the system’s dynamic equations using a “multi-scale
analysis” approach. The research also provides the conditions for the existence of Turing
bifurcation. Considering time delays and two optimization control strategies, Li et al. [53]
use the SIR model to introduce the impact of propaganda and post-deletion operations
on information dissemination. The experiments demonstrate that the proposed models
can reduce the number of rumor spreaders, control costs, and effectively suppress rumor
propagation. Tu et al. [54] utilize ordinary differential equations to model information
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dissemination without underlying topology, which considers friendship, relationships, and
the interactions among users, predicting the temporal and spatial patterns of information
dissemination on social networks; the result shows no significant discrepancies compared
with the actual data. Hu et al. [55] analyze the impact of time delays and Crowley’s
incidence rate on information dissemination; they use the least squares method to fit model
parameters. The experiment shows high consistency with real examples.

Discussion: The SIR, SI, and SIS models are the earliest and most basic models for
information dissemination. Inspired by physics, Researchers consider the information
dissemination process analysis as system stability analysis, which can effectively and
flexibly restore the information dissemination process. At the same time, the computational
complexity is relatively tiny when modeling the dynamic process. As a starting point for
information dissemination research, these models are easy to understand and implement,
reducing the complexity of modeling information dissemination. In simulation experiments,
the effects of different factors on the information dissemination process can be quickly
and conveniently evaluated with sensitivity analysis, thereby effectively and dynamically
capturing the essential characteristics and dynamic changes in information dissemination
and providing support for formulating reasonable optimization control strategies. However,
these models belong to the well-mixed and compartment models, which homogenize the
user features and transformation rules, thus ignoring the differences between individuals.
Due to the limited types of compartments, only a few factors can be considered to affect
information dissemination, limiting the model’s applicability. The correlation between the
model’s parameters is considered independently, subjecting to subjectivity, which may not
be consistent with the actual situation. In addition, the complexity of the model largely
depends on assumptions.

2. Improved Model

Based on the classical models, researchers introduce various user roles and hierarchical
patterns to analyze the influences of individual, social, and natural factors on information
dissemination; they propose many improved models to capture better the dynamics of
information dissemination on social networks, which is in line with reality.

In Single Layer Model. Considering wise man and negative social reinforcement,
Huo et al. [6] propose the ISWR model and find that positive social reinforcement facilitates
information dissemination. By introducing a group that knows the information but does
not spread it, Zhu et al. [56] develop a rumor propagation model by enforcing silence, which
analyzes equilibrium points’ stability with backward bifurcation theory, linearization theory,
and Hurwitz theory. The experiment demonstrates that enforced silence effectively inhibits
information dissemination. Similarly, Pan et al. [57] use the SIDRW model considering
media and refuters to analyze the influence of media reporting and debunking on rumor
propagation, showing that positive media publicity can mitigate the harm caused by rumors
but cannot eliminate it. Additionally, as the initial value of rumor spreaders increases,
the duration of rumor propagation decreases. Chen et al. [58] find that the threshold
increases with the improvement of scientific knowledge. Simultaneously, positive social
reinforcement lowers the threshold and amplifies the impact. Mutlu et al. [59] propose a
novel cognitive-driven model incorporating users’ cognitive depth, who first utilize the
compartmental model to predict the size of information cascades, achieving a lower fitting
error rate. Yu et al. [60] obtain the parameters of the IDSRI by fitting the real datasets using
the least squares method, analyzing the impact of discussants on information dissemination
using the IDSRI model.

Yu et al. [61] employ the 2I2SR to model information dissemination in a multilingual
environment. Wang et al. [62] analyze the stability and existence of Hopf bifurcations of
the IS2R2 with nonlinear inhibitory mechanism functions and forward-backward scan-
ning algorithms. Meanwhile, they discuss the impact of a multilingual environment and
time-delay factors on cross-information dissemination. Yu et al. [63] use 2I2SR to ana-
lyze the effects of time delay and no time delay on rumor propagation in a multilingual
environment and provide critical conditions for the existence of Hopf bifurcations and opti-
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mization control strategies. Since the openness of the social platforms, Wang et al. [64] use
the IO−UAR model, which considers the time delay of official information and the phe-
nomenon of “following the crowd”, to explain the impact of user mobility on information
dissemination caused; demonstrating the strong applicability of the model. Jiang et al. [65]
propose a two-stage SPNR model to analyze the dynamic mechanisms on Weibo regarding
incidental events. Considering dual refutation mechanisms, Guo et al. [66] explore the
SICMR model to study the influence of media reporting and initial values of counteracting
individuals at the peak. Wang et al. [67] investigate the impact of scientific knowledge level
theories and control strategies on rumor propagation using the G− SCNDR model.

In the Multi-Layer Model. In recent years, researchers have gained attention from
multi-layer models, such as the media website layer [68], the friendship layer, the infor-
mation layer, the epidemic layer, and the resource layer, which are specific interactions
and constraints on multi-layer networks. For instance, when individuals become aware
of epidemic information, they may take preventive measures to avoid infection, such as
isolation, influencing the disease spread in the epidemic layer. Conversely, the spread of the
disease can also impact information dissemination. Figure 6 shows a schematic diagram of
the multi-layer model.
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Cheng et al. [68] use the XY − ISR model to gate the impact of time delay, opti-
mal control strategies, and infected media on information dissemination. Meanwhile,
Dong et al. [69] develop the XYZ − ISR model considering event pulses to explore the
effects of multi-channel and time delay in rumor propagation, validating the applicability
and effectiveness of the model on a real dataset from Weibo. Xu et al. [70] propose a double-
layer coupled SIS model considering the differences of individual influence, which utilize
Markov and Mean Field Theory to analyze the interaction between awareness and epi-
demic. Experiments show that higher acceptance of information sharing among individuals
facilitates epidemic propagation. Huang et al. [71] use a UA1A2− SEIS model to simulate
the mutual competition between epidemics and information, finding that knowledge can
eliminate rumors propagation and control epidemics spreading, and taking self-protective
measures can reduce the risk of infection. Huo et al. [72] investigate the influence of indi-
vidual emotional factors on information and epidemics propagation using a UAU − SIS
model. Guo et al. [73] establish the dynamic equation to study the impact between infor-
mation diffusion and epidemic spreading on a two-layer time-varying network, which
considers the partial mapping relationship; the proposed model thresholds are found to be
closely related to the correspondence ratio of the multi-layer. Wang et al. [74] construct a
double-layer coupled model to analyze the impact of three social behavior strategies on a
hyper-graph network.

Based on the two-layer model, Huo et al. [75] investigate the interactions among
information, resources, and epidemics; the experimental reveals authoritative informa-
tion inhibits epidemics dissemination. In contrast, information dissemination promotes
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the spread of epidemics, and resource utilization can inhibit epidemics’ propagation.
Huo et al. [76] propose a UAU − DKD − SIS model, which utilizes the Heaviside step
function and the microscopic Markov to investigate the evolutionary relationship between
negative information, immune behavior, and epidemic spreading, indicating that strength-
ening the clarification of mass media and improving self-recognition ability contribute to
controlling the epidemics spreading.

Discussion: Based on classic epidemic models, researchers introduce more compart-
ments and factors in complex scenarios, such as lurker, doubter, and forgetting mechanism,
which analyze the information transmission process more accurately. Especially in the
two-layer model, the researcher can analyze the dynamic changes between each layer
and the interactions between different layers in depth, which makes the model closer to
the actual situation. However, introducing the compartment and realistic factors increase
the number of the model parameters, which will increase the complexity of the model,
put higher requirements on the model analysis work, and require a solid foundation in
mathematical theory.

2.2.2. Network Structure Model

Complex network dynamics are based on network theory, integrating physics, sociol-
ogy, computer science, and other disciplines. The information dissemination process relies
on the underlying structure of social networks [77] in reality. Researchers combine the
dynamics of information dissemination with the topology of social networks and propose
various models, including random networks [23], small-world networks [24], as well as
real social platforms (e.g., Twitter, Weibo, and Digg). In this section, this paper introduces
homogeneous networks and heterogeneous networks, where homogeneous networks refer
to the networks where each node (individual) has the same degree, corresponding to the
average degree of the social network. Heterogeneous networks take the heterogeneity of
nodes into account.

1. In Homogeneous Networks

Cheng et al. [1] present an improved ISRM model introducing media roles and
analyze the effects of time delay, media coverage, science education, and impulsive control
strategies. The experiment verifies that impulsive immunization is more effective than
continuous immunization on homogeneous networks.

Taking the SIR model as an example, this paper provides the dynamical equation on
homogeneous networks, which categorizes individuals into three states: S (susceptible
individuals) represents the individuals who are unaware of the propagated information,
I (infected individuals) represent the individuals actively spreading information, and R
(immune individuals) represents the individuals that no longer spread information due
to certain factors, such as debunking information, etc. Equation (3) shows the dynamical
equation of the SIR model.

dS(t)
dt = −α < k > S(t)I(t)

dI(t)
d(t) = α < k > S(t)I(t)− β < k > I(t)[I(t) + R(t)]
dR(t)

dt = β < k > I(t)[I(t) + R(t)]
S(t) + I(t) + R(t) = 1

(3)

where S(t), I(t), and R(t) represent the density or proportion of susceptible, infectious,
and immune individuals, respectively; < k > represents the average degree of nodes on
social network; α represents the infection rate; β represents the immunization rate.

2. In Heterogeneous Networks

Due to the complexity of social relationships, homogeneous networks cannot accu-
rately reflect the reality of network topology. Therefore, researchers further delve into the
dynamic behavior of information dissemination on heterogeneous networks.
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Lattice networks (LA): A two-dimensional space where nodes are arranged in a square
grid of side length

√
N, N denotes the total number of nodes.

Small World Network (WS): Initially, a circular grid is formed with N nodes, where
each node will connect to nodes on each side [25]. Then, generating a new edge by
connecting node v (v = 0, 1, 2, . . . . . ., N − 1) with its rightmost adjacent nodes with a
probability w.

Scale-free networks (BA): obtaining the BA network by evolving a network consisting
of N nodes, and it grows continuously by adding new nodes. Each new node establishes
links by preferentially attaching to existing nodes based on their degree ki. Specifically,
a new node connects to node v with a probability qi = ki

∑j kj
proportional to its degree.

Furthermore, the degree of the nodes follows the power-law distribution. P(n) is the density
of nodes with degree n, as shown in Equation (4).

P(n) = n−λ (4)

where n denotes the degree of nodes; λ denotes the hyper-parameter, which ranges from
(2, 3).

Taking the SIR model as an example, as shown in Equation (5). The model classifies
the population into three states: S (information-ignorant) represents individuals who are
unaware of the information; I (information-spreaders) represents individuals who actively
spread the information; Because of certain factors such as debunking news or forgetting, R
(Information-Immune) represents individuals who lose interest in the information propaga-
tion. Sk(t), Ik(t), Rk(t) represent the density of information-ignorant individuals, spreaders,
and immune with the node degree k at the time t, respectively. The underlying assumption
is that the population size remains constant over time.

dS(t)
dt = −αkθ(t)Sk(t)

dI(t)
dt = αkθ(t)Sk(t)− βI(t)

dR(t)
dt = βI(t)

S(t) + I(t) + R(t) = 1

(5)

where θ(t) denotes the probability that the information-ignorant is connected to the spreader
at time t, as shown in Equation (6).

θ(t) =
N

∑
k=1

p(k|k′)Ik(t) =
1

< k >

N

∑
k=1

kp(k)Ik(t) (6)

where k and k′ denote the degree of nodes, α represents the information forwarding rate,
p(k|k′) = kp(k)

<k> indicates the probability that a node with node degree k′ will randomly

contact the spreader with the degree k, and < k >=
N
∑

k=1
kp(k) denotes the average degree of

the network, p(k) denotes the probability of degree k, β represents the immunization rate.
Considering the “uncertainty” psychological, Yi et al. [15] use the SUIRS model to

investigate the influence of individual repeated participation and subjective judgment
behavior. The experiment shows that the occurrence of information dissemination depends
on the threshold. Kumar et al. [16] analyze information dissemination in three types of
groups with the SEI model, and simulation on real datasets reveals significant differences
between the exposed and infected individuals. Ai et al. [78] explain the impact of anxi-
ety on improved networks. Yin et al. [79] use an SFI model to analyze the influence of
cross-platform environments and network topology, demonstrating that increasing the
node degree facilitates rapid information outbreaks. In the multilingual and heterogeneous
network environment, Li et al. [80] utilize the IS1S2R1R2 model considering the educa-
tional mechanism to analyze the impact of multilingual environments and heterogeneous
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networks on rumor propagation; the research finds that the proposed model and control
strategies effectively suppress the spread of harmful information.

There is a time delay phenomenon in information dissemination. Zhu et al. [81]
analyze the behavior of susceptible and infected individuals by the optimized control
dynamic model. Mei et al. [82] propose a Hyper-ILSR model with a saturation incidence
rate, which uses hypergraph theory to study the higher-order effects. Chen et al. [83]
propose the SEIR model to investigate the impact of saturation incidence rate and time
delay. Cui et al. [84] capture the heterogeneity of individual intimacy on ER and SF
networks. They use an adoption threshold model with a tent-like probability function
to analyze the influence of individual fashion-passion trend (IFPT) characteristics. The
simulation results are consistent with the theoretical analysis. Tong et al. [85] analyze the
random perturbations in the propagation process, which consider user heterogeneity and
dynamic network environments, demonstrating the feasibility of the model. Gong et al. [86]
propose a UHIR model which combines the super-network theory and SEIR model to
study user and information attributes’ influence; the proposed model establishes new
research directions for hyper-networks.

In addition, researchers have compared and analyzed the dynamic of information dis-
semination simultaneously in heterogeneous and homogeneous networks. Yuan et al. [87]
propose a 2SIR model with a nonlinear inhibition mechanism and time delay considering
bilingual environments and multiple optimization control strategies. They analyze the
stability of equilibrium points with Lyapunov functions and linearized equations and verify
the proposed model’s correctness.

3. Influence Model

The influence model refers to the influence of an individual’s activation behavior
affected by the states or behaviors of its neighbors [54], including the linear threshold
models [88] and the independent cascade models, explaining the dissemination from the
perspectives of probability and threshold, respectively, applying widely in various fields,
such as influence node detection [89,90], link prediction [11], and behavioral propaga-
tion [91].

The Linear Threshold Model: It is first proposed by Granovetter [26], and a mathemat-
ical and receiver-centered model to describe binary decision-making events [54,88]. Each
agent has two states: activate and inactivate. Each individual has a threshold w ∈ [0, 1],
which relies on age, education, background, etc. The basic idea of the linear threshold
model is as follows: selecting a subset of nodes randomly as the seed set S ∈ V, which are
in the active state on the social network G(V, E, W), where V represents the nodes set, E
represents the edges set, and W represents the edge weights. At each time step, each node
i ∈ S has a threshold value Ti. Where e(i, j) ∈ E, j ∈ N(i) represents the neighbors of a
node i, and the sum of neighbors’ weights of a node must be less than or equal to 1, as
shown in Equation (7).

∑j∈N(i) Wij ≤ 1 (7)

where Wij ∈ W. In the beginning, there is a set of activated nodes and a threshold value,
and after time t, if node i is activated, then the total activation value of the node’s neighbors
N(i) needs to satisfy the following condition, as shown in Equation (8).

∑
j∈N(i)

Wij ≥ Ti (8)

Finally, the information dissemination process will end when the number of individuals
reaches a stable state. Table 1 shows meaning of the symbol.
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Table 1. Meaning of the Symbol.

Symbol Meaning Symbol Meaning

G(V, E, W) the social network V the nodes set
E the edges set W the edge weights
j ∈ N(i) the neighbors of a node i e(i, j) ∈ E the edge between node i and node j
S the seed set Ti the threshold value

i the node Wij
the edge weights between node i
and node j

Tian et al. [91] introduce a multi-layer network model with edge weight; the research
utilizes two threshold models with trapezoidal and triangular probability functions to
study the effect of behavioral preferences on behavioral propagation. The correctness of
the theoretical analysis is verified.

The Independent Cascade Model: Inspired by the theory of interacting particle sys-
tems [54], the literature [92] proposes first the independent cascade model to study the
marketing problem. It is a probabilistic model [10] focusing on the sender and is widely
applied in information dissemination [93] and identification of rumor sources [94]. The
node has two states: activated and inactivated.

The algorithm description is as follows: First, initializing the active node set V and the
inactive node set U; second, the latest activated node v tries to activate its neighboring node
u with the probability p(u, v) at the moment t, and if more than one activated nodes have
the same inactive neighboring nodes, then the set of activated nodes will independently
go to activate the common inactive nodes in an arbitrary order. Regardless of whether
it succeeds in activating the inactive nodes, which has only one chance Supposing the
neighboring node u is activated successfully. Subsequently, the node u turns to the active
state at the time t + 1 and will continue to try to activate its inactive neighboring nodes;
otherwise, the state of node u does not change at the time t + 1. Finally, the above process is
repeated continuously in an iterative manner. Like the threshold model’s ending condition,
the dissemination process will end when no influential active nodes exist.

pv(t) = 1− ∏
u∈N(v)

(1− p(u, v)) (9)

where v ∈ V and u ∈ U, Table 2 shows meaning of the symbol.

Table 2. Meaning of the Symbol.

Symbol Meaning Symbol Meaning

V the active node set U the inactive state set
p(u, v) the probability of t the time
u, v the user N(v) the neighbor set of user v

pv(t)
the probability that the user v is
activated at the time t

Qiu et al. [95] propose the BHICM model considering a dynamic relationship strategy
between the propagation probability and the number of hops, which effectively avoids
dealing with the neighbors of the seed nodes; the proposed method achieves promising
results. Considering user and topic attributes, Chen et al. [96] introduce a hot topic diffusion
approach based on the independent cascade (IC) model and trending search lists to predict
the diffusion trend of a hot topic; the proposed model shows a significant reduction in
the error rate compared to the other four models. Sharma et al. [97] find differences
between fake and real content regarding dissemination dynamics and user behavior and
propose a mixture of independent cascade models to facilitate network interventions for
fake news mitigation.
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Discussion: The dynamics model based on the network considers the heterogeneity
and interaction between users and more accurately simulates the dynamic changes in
information dissemination, effectively predicting the path and speed of information diffu-
sion. Currently, Researchers mainly analyze the dynamic process on scale-free networks,
small-world networks, and real social networks. The independent cascade and threshold
models can effectively consider the temporal and spatial and explain how individuals make
decisions and related mechanisms from a micro level. However, scale-free and small-world
networks cannot reflect the real social network. Meanwhile, collecting real social network
datasets is relatively difficult due to security and privacy. In addition, compared to the
epidemic models, the complexity is higher, and the solving process requires greater com-
putational complexity. The independent cascade and threshold models only consider the
interaction among users and ignore the impact of information content attributes on the
information dissemination process. Furthermore, the independent cascading model only
has one chance to affect neighboring nodes, which is not in line with the actual situation.

2.2.3. Competitive Model

Competitive information dissemination refers to multiple types of information dis-
semination on social networks. It investigates the effects of interactions among different
information (e.g., rumors and ant-rumor) on information dissemination, thus revealing
the laws and nature of disseminating pluralistic information. Researchers pay increasing
attention to pluralistic competitive information dissemination in recent years.

Ding et al. [17] develop an individual-level mathematical model with a forgetting
mechanism from the competition perspective, which analyzes the impact of the forgetting
and refutation mechanisms on rumor propagation. Zhang et al. [18] study the effects of
individual decision and reputation factors on information dissemination with and without
the principle of indirect reciprocity; the research finds that user interaction rules can
effectively reduce the influence of malicious users. In addition, Wang et al. [98] use the SIC
model to capture the short-term competition mechanism between two messages, which
analyzes the effects of network topology and initial conditions on the survival period of
the messages. Li et al. [99] explore the game relationship of the rumor and the ant-rumor
model based on sparse representation and tensor completion. The research improves user
behavior prediction accuracy and reflects the game relationship between rumor and ant-
rumor. In addition, Liu et al. [100] combine the classical SIS model and the Markov method
to analyze the effect of the homogenization trend. The experiments show that a greater
homogenization tendency is conducive to forming “echo chambers.” Jiang et al. [101]
introduce a RSD model with an optimal control strategy to divide the rumor-spreading
process into two phases, focusing on the interactions between rumor and ant-rumor.

Subsequently, Yilmaz et al. [102] propose a reinforcement learning model based on
the gradient of multi-intelligent depth-deterministic strategies, which combines game
theory and agent-based methods to investigate the dynamic process of multi-dimensional
information dissemination, achieving promising results. Considering the ability of self-
identify, self-influence, and the influence of the heat event, Chen et al. [103] introduce
a heat-influenced evolutionary game-theoretic model to effectively study the impact of
competitiveness relationship between rumor and ant-rumor. Moreover, Yin et al. [104]
investigate the effect of factors on rumor spreading with the SO− S/EIR and C− S/EIDR
model, considering the difference in communicators’ confidence, inter-user interactions,
cognitive, and knowledge level factors. Mou et al. [105] use evolutionary game theory
to study the coexistence and antagonistic relationship between rumors and ant-rumors,
reflecting the cooperation and competition relationships among multiple information.

Discussion: Competitive models can effectively reflect the interactions among mul-
tiple information, such as rumor and ant-rumor, which can help to reveal the complex
interactions in information dissemination and provide us with an in-depth understanding.
However, competitive models increase the complexity of analysis and greater computa-
tional resources, which are based on some assumptions of rational behavior. However,
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people’s behaviors are more complex and diverse in real situations. At the same time, the
solution process of the model requires more complex computational methods, which are not
applicable in large-scale networks. Table 3 shows the categorization of explanatory models.

Table 3. Categorization of explanatory models.

Class Subclass Models Advantages Disadvantages

Epidemic
Model

Classic Epidemic
Model

SI [48], SIS [49],
SIR [13,14,20,50,51]

Basic models. Simplifying the
information dissemination process,
Minimal computational. Quickly
verifying the impact of different
parameters on information
dissemination. Strong
generalizations.

Well-mixed model, ignoring
individual differences and
randomness. The model’s
parameters are subject to
human subjectivity. Providing
a degree of simplification of
reality, ignoring complex
factors and interactions. There
are more parameters and
assumptions. In a multi-layer
model, theoretical analysis
is complicated.

Improved
Epidemic
Model

SIDRW [57], CD-SEIZ [59],
ISWR [6], IDSRI [60],
2I2SR [61], IS2R2 [62],
IO-UAR [64], SPNR [65],
SICMR [66],
G-SCNDR [67]
XY-ISR [68], XYZ-ISR [69],
SIS-SIS [70],
UA1A2-SEIS [71],
UAU-SIS [72],
UAU-SIS [73]

Introducing various roles. In the
multi-layer model, describing
effectively the dynamic process
within the respective layer and
reflecting the interaction of
information dissemination
between different layers, which is
more in line with the
actual situation.

Network
Structure Model

Homogeneous
Network ISRM [1]

The nodes have the same
connection patterns and laws,
simplifying the analysis process
and effectively reflecting the
impact of network structure on
information dissemination.

Ignoring the heterogeneity
and complexity between
nodes. Therefore, there are
fewer studies on
homogeneous networks.

Heterogeneous
Network

SUIRS [15], SEI [16],
Net-E-SFI [79],
S1S2R1R2 [80],
Hyper-ILSR [82],
SEIR [83], IFCD [85],
UHIR [86]

In line with reality, highlighting
the influence of network topology
on information dissemination.
Effectively reflects differences
among nodes.

Usually difficult to obtain real
datasets, increasing the
complexity of analysis.
Computationally intensive.

Influence Model
Linear Threshold
Model [91], Independent
Cascade Model [95]

Differing in the activation function.
Capturing the dynamics and
complexity of information
dissemination and effectively
considering temporal and spatial
information. It is easy to explain
microscopically how individuals
make decisions.

Ignoring the mutual influence
and interaction. Difficult to
handle time delay and
information attributes. Have a
chance to affect neighboring
nodes. Introducing the
propagation threshold or
weight of nodes increases the
model’s complexity and
makes analysis and calculation
more difficult.

Competitive Model

EGT [18], SIC [98], RSD
[101], SDIR [103],
SO-S/EIR and
C-S/EIDR [104]

Modeling the interactions between
multiple types of information and
the effects of these interactions on
the information dissemination
process reveals the trend
of pluralism.

Competitive model
construction and theoretical
analysis are more complex and
computationally cost.

2.3. The Predictive Model

Predictive propagation models (micro-level) refer to the methods which predict the
probability of the following information disseminator and popularity in the information
dissemination process on social networks. This section primarily describes these models
from the traditional method and deep learning. Figure 7 shows a schematic process of
information dissemination. For example, according to the observed historical information
dissemination graph from time t1 to t7, we predict the following user who will forward
information at time t8. Finally, we compare and analyze the predictive models.
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Figure 7. Schematic Process of Information Dissemination Prediction.

2.3.1. Traditional Method

Machine learning is a significant branch of artificial intelligence in handling large-
scale data. Its essence is feature-based learning, enabling automation and intelligent
decision-making, predicting future trends, and identifying patterns. It involves designing
appropriate algorithmic models based on the specific task, utilizing datasets as inputs
to these models or algorithms, and iteratively refining and optimizing the algorithms to
enhance model performance. Figure 8 shows that the traditional method consists of data
collection and pre-processing, feature engineering, model selection and training, model
evaluation and optimization, and information dissemination analysis, as shown in Figure 8.
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Osho et al. [7] employ the random forest to select relevant features and then utilize
Bayesian logistic regression to learn and predict user interactions on social networks.
Foroozani et al. [9] propose a mathematical model with the nonlinear parabolic Fisher
equation with Neumann boundary conditions based on anomalous diffusion characteristics,
which aligns more with the actual situation. Zhu et al. [106] analyze user interactions on
the Weibo platform by extracting user, topic, and social features as the primary features for
predicting the path. The experiments show that decision tree methods perform best on the
Weibo dataset; however, the back-propagation neural network performs best on the Twitter
dataset. Singh et al. [107] employ a random walk to study the similarity measurement
between users and content for predicting information dissemination. The proposed method
outperforms the existing method based on structure and content. Ruchjana et al. [108]
utilize a time-series Markov to predict the tweet-retweet behavior of social media users,
which mainly relies on the previous user’s retweet behavior. The feasibility of the proposed
method is validated. Equation (10) shows the discrete-state Markov process.

P{X(t + s) = j|X(s) = i, X(α) = x(α), 0 ≤ α ≤ s}
= P{X(t + s) = j|X(s) = i}∀s, t ≥ 0, i, j ∈ S

(10)

where X(t) represents the probability of the social media user disseminating information
at the time t, {X(t), t ≥ 0} represents the form of the temporal Markov chain, S represents
the discrete state space, s represents time, and x(α) represents the state at the time α.
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Ramezani et al. [109] propose a probabilistic generative model that maps the interrela-
tionships between chain edges and cascade processes with a coupling matrix decomposition
to infer the underlying social network structure and information dissemination. Consid-
ering the temporal, Xu et al. [110] incorporate the time feature into the proximity matrix
and utilize hierarchical clustering methods to classify multi-scale information, which im-
proves the model’s performance. Liu et al. [111] use Markov to analyze the information
dissemination process, which considers an adaptive network’s information state and net-
work topology.

In addition to the above mainstream methods, researchers try to study information
dissemination from other technical routes, including Poisson and Hawkes processes, Forest
Fire, self-exciting processes, and Energy models.

Wang et al. [112] utilize an improved energy model to analyze the impact of linkage
rates in cross-platform settings quantitatively. Experiments validate the effectiveness of
the proposed approach. Han et al. [27] put in a physical model which utilizes thermal
energy to measure the impact of rumors on the network, finding several important and
exciting results.

By incorporating a hierarchical attention mechanism, Yu et al. [113] present a transformed-
enhanced Hawkes process into the Hawkes self-exciting point process. Results demonstrate
significant improvements over the state-of-the-art methods.

Based on epidemic models, Kong et al. [114] first combine epidemic models and self-
exciting processes with mathematical components to further the popularity prediction, and
the performance of the proposed model is further improved.

Drawing an analogy between information dissemination and wildfires in forests,
Indu et al. [28] analyze the key factors contributing to the rapid spread of forest fires used
as the main features. They employ a designed nature-inspired algorithm to examine the
impact of rumor-affected nodes, and the experimental results show the validity of the
proposed method and the selected features. Kumar et al. [115] try to study information
propagation with a modified forest-fire model, which introduces a novel Burnt state as
non-spreaders, achieving a desirable result.

Discussion: Traditional methods belong to probabilistic statistical models, which
construct models with prior knowledge and are used to assess the probability of potential
users disseminating information. Compared with deep learning, the modeling process
of traditional methods possesses stronger interpretability, which helps to understand the
inherent laws of information dissemination, such as the Hawkes process and Markov.
Moreover, traditional approaches require fewer computational resources, which are easy to
meet. According to different fields, selecting and designing effective features can improve
the model’s generalization. Traditional methods usually achieve better performance on
small datasets, effectively compensating for the problems caused by lacking large-scale
datasets. However, traditional methods cannot effectively capture deeper interrelationships
within or between information cascades. Feature selection relies on domain knowledge,
which is time-consuming and does not necessarily represent data information completely.
The performance is limited when dealing with complex patterns, large-scale data, and
high-dimensional features. In the complex feature space, traditional methods have the risk
of over-fitting or under-fitting. The accuracy of Hawkes process prediction is low, which
relies on strong assumptions.

2.3.2. Deep Learning

In recent years, data and computing resources have further improved, leading to the
thriving growth of data-driven methods, which have gained considerable attention from
researchers. They have been applied in many fields, such as information cascade predic-
tion [3], natural language processing, image processing [116], and drug discovery [117].
This section primarily focuses on applying deep learning in information dissemination.
DeepCas [29] is the first graph representation learning-based method for modeling the
information dissemination process. Figure 9 shows a general framework of information
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dissemination based on deep learning. We can observe that deep learning methods (LSTM,
GRU, RNN, Attention, GAT et al.) are used to effectively learn abstract features from
social graphs, communication graphs, and information for information cascade prediction.
Table 4 shows the meaning of the symbols used in the section.
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Table 4. Meaning of the Symbol.

Symbol Meaning Symbol Meaning

u,v user V,E node sets and edge sets
G(V, E) information dissemination graph p(ui,N+1) the probability of the following forwarding user
ci i-th information cascade Ci the information cascades set

M the total number of information cascades
(

ui,j, ti.j

) the user ui,j forward a message at the time t in
the i-the information cascade

N the maximum number of forwards ui,N+1 the following forwarding user
Θ the parameter set λ2 the L2 regularization coefficient
yi the predicted cascade increment ŷ the actual value

ŷt
ij

the predicted score of the video vi with
the community Sj at the time t LBPR

the prediction of an observed interaction to be
greater than an unobserved one(

i, j+, j−, t
)

an example in the pairwise training data j+ one sharing of video vi is observed in the
community s+j

j− an unobserved one Li
CE

the cross-entropy function of the predicted and
actual communities

yN+1 ∈ R|S| one-hot encoding λ1 the hyper-parameters
L loss function Ω the models

(1) Information dissemination graph is a graph structure G(V, E), where euv = 1
represents the user u follows the user v. Where u, v ∈ V.

(2) The information cascade is denoted as ci = {(ui,1, ti,1), (ui,2, ti,2), . . . . . ., (ui,N , ti,N)},
all the information dissemination sequences constitute the information cascades set
Ci =

{
ci

1, ci
2, . . . . . ., ci

M−1, ci
M
}

.
(3) The model Ω is trained by the observed historical cascades set Ci =

{
ci

1, ci
2, . . . . . ., ci

M
}

for predicting the probability p(ui,N+1) of the following forwarding user, as shown in
Equation (11).
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p(ui,N+1) = Ω :
{

Ci ⇒ ui,N+1

}
(11)

Zhou et al. [2] apply user representation knowledge to all layers of the hierarchical
framework and investigate the impact of multi-scale modeling with the user representation
learning framework. Zhao et al. [10] employ a multi-layer nonlinear auto-encoder collab-
orative embedding framework to learn node and cascade collaborative features without
the underlying diffusion mechanism and network topology to predict nodes and order.
Wang et al. [19] utilize dynamic encoders to infer user interests from historical data and
employ a dual attention mechanism to capture the likelihood from both the information cas-
cade and the original user, ranking the probabilities of the potential user. Wang et al. [118]
use representation learning and attention modules to aggregate rich historical information and
diverse latent factors, effectively avoiding mapping all users into a single vector and neglecting
important user attributes, and achieving a promising result. Molaei et al. [119] combine a
meta-path and representation learning approach to predict information dissemination.

Similarly, Ducci et al. [120] present a tree-structured long short-term memory (LSTM)
network to learn rich features from information cascades. Considering social factors and
personality traits, Yan et al. [121] propose a new multi-task framework, which designs a
universal GNN gating component to simulate the impact of personality traits, achieving
improved predictive performance. Wang et al. [122] introduce an end-to-end framework
that utilizes graph convolution networks, dynamic routing methods, and LSTM to aggre-
gate node feature representations and network structure for information cascade prediction,
achieving promising results. Wang et al. [123] propose a topic-aware attention network
model to study specific topics’ diffusion patterns and dependencies using deep learning
and attention mechanisms. Jin et al. [124] learn dynamic user representations and use a
dual-channel hypergraph to capture the relationships of information cross-diffusion, re-
spectively, which investigates the influence of external factors and users’ dynamic interests,
validating the effectiveness and practicality of the proposed framework. Taking the user
influence and community redundancy features into account, Zhong et al. [125] utilize a
neural network framework with two-layer attention to predict the incremental size of the
information cascade, and the model takes the superiority and effectiveness. Equation (12)
shows the loss function.

L =
1
M

M

∑
i=1

(ŷi − yi)
2 + λ2 ∑

θ∈P
||θ||2 (12)

Liu et al. [126] propose a prediction model based on temporal-spatial attention and
graph convolution networks, which effectively integrates time, user influence, and behavior.
Considering network structure, content semantics, and temporal, Jin et al. [127] develop
community influence graphs and multi-modal information from videos to predict the
trajectories of community-level information dissemination. Equations (13) and (14) show
the loss functions.

LBPR = ∑
(i,j+ ,j− ,t)

− ln(sigmoid(ŷij+ − ŷij−)) (13)

Li
CE = CrossEntropy(P(SN+1|vi, Pi), yN+1) (14)

Equation (15) shows the overall optimization objective.

L = LBPR + λ1 ∑
i∈V

Li
CE + λ2|||Θ|2 (15)

ŷt
ij = MLP(ṽt

i �MLP(s̃t
j)) (16)

Since information dissemination is similar to the process of image restoration,
Xiao et al. [128] use a diffusion network pixelation algorithm to transform the user
relationship network of topic dissemination into an image pixel matrix, which embeds
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the user relationship network into a low-dimensional space and build an information
dissemination mutual influence transfer matrix, the study uses representation learning
and game theory to predicts users’ behaviors, efficiently reflecting the competitive relation-
ship between rumor and ant-rumor. Furthermore, researchers combine deep learning and
dynamics to model information dissemination. Wang et al. [129] introduce a CCasGNN
model integrating the individual profile, structural features, and sequence features, effec-
tively addressing the limitation of spectral or spatial methods. Fatemi et al. [130] utilize
GNN to identify influential nodes as initial nodes in the Susceptible-Infected-Recovered
model to study information dissemination processes, validating the method’s effectiveness.
Zang et al. [131] capture the nonlinear dynamics and dependencies between systems in a
data-driven manner, transforming the discrete-time into continuous-time prediction with
GNN and differential equation-based temporal dynamics. Experimental show the excel-
lent performance and parameter efficiency of the approach. Murphy et al. [132] and La
et al. [133] learn effective local mechanisms and comprehensive dynamics from sequen-
tial data with deep learning and simulate dynamics on complex networks. Kushwaha
et al. [134] propose a customized weighted word embedding method combined with a long
short-term memory (LSTM) to predict the likelihood of information diffusion, significantly
improving overall accuracy. Yang et al. [30] proposed a novel full scale diffusion prediction
model based on reinforcement learning (RL), which combines reinforcement learning and
deep learning to predict information diffusion from microscopic and macroscopic.

To address the missing of labeled data, Xu et al. [31] propose a comparative self-
supervised approach to learn the knowledge of graphs for downstream prediction tasks,
which can effectively capture data changes and the dynamic characteristics of the cascades,
showing the model outperforms supervised and semi-supervised methods. Consider-
ing global dependencies between users and cascades, Sun et al. [135] develop Memory-
enhanced Sequential Hypergraph Attention Networks for information diffusion, improving
the model’s performance. Wang et al. [136] propose Cascade-Enhanced Graph convolution
Networks and design a cascade-specific aggregator that merges user, time, and cascade
context, effectively exploiting collaborative patterns from other cascades to enhance the
prediction of future infections.

Furthermore, the prediction of information cascade size is also an important research
task. By obtaining rich features, Chen et al. [137] employ graph neural networks to learn
latent representations from a multi-scale perspective to predict the information cascade
size. Zhou et al. [138] employ hierarchical variation models to explore uncertainty at the
sub-graph and cascade levels, which use variation inference to learn the posterior prob-
ability of cascade distribution, thereby improving the accuracy. Wu et al. [139] propose
a novel framework based on user preference for popularity prediction, which considers
preference topic generation, preference shift modeling, and social influence activation.
Zhou et al. [140] present a general decoupling prediction solution from a long-tailed distri-
bution to predict the size of information cascades, and the long-tailed cascade prediction
problem is mitigated.

Discussion: Deep learning is a representation learning method that obtains highly
abstract features (such as content features, time features, structural features, and user
behavior features) by learning from raw information cascade datasets without human
intervention. These features can be used to predict user behavior and popularity in in-
formation dissemination. Deep learning frameworks can handle multi-modal data and
complex network structures, such as text, images, and audio, thus capturing the intrinsic
interactions between multiple modes of information dissemination. In addition, researchers
use the network structure of deep learning to simulate the information dissemination pro-
cess. Compared with explanatory models, the modeling process of deep learning does not
require prerequisite assumptions. However, predictive models’ performance depends on
the data’s size and quality. Deep learning is an end-to-end model named “black box,” in
which the training and learning process is difficult to interpret. Insufficient data volume
or excessive model complexity can easily lead to over-fitting, which reduces the model’s
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generalization. The model training process requires a lot of computational resources and
time; it is an unavoidable problem. Additionally, the performance of the model is also
affected by the hyper-parameter settings, which is a challenging task, as shown in Table 5.

Table 5. Classification of the predictive models.

Class Methods Advantages Disadvantages

Traditional
Method

Fisher Equation [9], Hawkes process
[113], Decision Trees [106], BP neural
network [106], Random walk [107],
Markov [108], Bayesian [7,106],
Matrix Factorization [109], Clustering
[110], Energy Mode [27,112,116],
Forest-Fire Model [28,115]

Belonging to probabilistic
statistical models. Good
interpretability to the patterns
and causal relationships
behind the information
dissemination data. Less
computational resources,
which are easy to meet.

The model’s performance depends on
the quality and quantity of training
data. Lacking generalization.
Over-fitting risks. Manual
feature selection.

Deep Learning

DCE [10], Attention Mechanism
[118,125], HDD [28], GNN
[121,129,131,132], GCN [19], MUCas
[137], HyperINF [124], STAHGCNs
[126], INPAC [127], LSTM [120,134],
RNN [118], Diffusion2pixel [128]

Automatically learning highly
abstract feature representation
from the raw datasets.
Belongs to the end-to-end
model. Effectively avoiding
complex feature extraction
engineering, capturing
sequence dependencies in
cascades, and saving
many assumptions.

An amount of computation and
storage costs, time-consuming, and
many high-quality datasets.
Belonging to the “black box” model,
which cannot be explained. The
model’s performance relies on
datasets and hyper-parameters,
which are difficult to choose. Social
networks are generally implicit and
cannot accurately obtain.

3. Datasets, Evaluation Metrics, and Tools

After introducing models or methods, in this section, we present publicly available
datasets, evaluation metrics, and interface tools for researchers, which are related to the
research for information cascade prediction.

3.1. Datasets

In this section, this paper introduces publicly available datasets for researchers fo-
cusing more on algorithm design and model construction. Compared with Zhou [33], we
summarize much broader datasets involving academic citations and social networks, such
as Stanford Network Analysis Platform and Aminer, Douban. Table 6 shows a review of
frequently used datasets. We can find that these datasets, which come from the mainstream
platforms, have been widely used by researchers to validate the model’s performance, so
the validity, reliability, and quality are recognized.

Table 6. A Review of Frequently Used Datasets.

Datasets References Description

Stanford Network
Analysis Platform Leskovec [141], Zhou [2]

A collection of more than 50 large network datasets from
tens of thousands of nodes and edges to tens of millions of
nodes and edges

Aminer Tang [142], Xu [117], Cheng [29] 14,134 persons, 10,716 papers, and 1434 conferences

Twitter Hodas [143], Zhao [10], Cheng [29],
Wang [118]

66,059 Urls, 2,859,764 tweets, 736,930 users, and
36,743,448 links, the average Length is 32.6

Digg Hogg [144], Zhou [2], Zhao [10] 3553 news stories, 139,409 users, totaling 3,018,197 votes

Douban E. Zhong [145], Wang [118] 10,602 information cascades, 23,123 nodes, and 348,280 links,
the average Length is 27.14

Memetracker J. Leskovec [146], Zhou [2], Wang [118] 12,661 information cascades, 4709 nodes, the average
Length is 16.24

Weibo Cao [32], Sun [3], Zhao [10] 119,313 messages and 6,738,040 users. on 1 June 2016
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Stanford Network Analysis Platform (SNAP) [141]: It is a general-purpose network
library for analysis and graph mining library. A collection of more than 50 large network
datasets from tens of thousands of nodes and edges to tens of millions of nodes and edges
include social networks, web graphs, road networks, internet networks, citation networks,
collaboration networks, and communication networks.

Aminer Dataset [142]: The datasets released public by ArnetMiner mainly focus on
scientific paper citation networks, which can be widely applied in cascade prediction
research [35]. The citation data comes from DBLP, ACM, MAG (Microsoft Academic
Graph), and other sources; each paper contains the abstract, authors, year, title, etc.

Twitter Dataset [143]: The datasets contain the links, the participated users, and
the time from Twitter in October 2010, which is publicly available on the website (https:
//www.isi.edu/~lerman/downloads/twitter/twitter2010.html, (accessed on 26 July 2023)),
and viewing each url among users as the information cascade.

Digg Dataset [144]: The datasets come from Digg.com, which collects news stories on
the Digg homepage during a month in 2009. Digg users rate these news stories through
votes, retweets, or comments.

Douban Dataset [145]: The datasets come from Douban, which provides a web service
where users can share content about books. In this dataset, books are shared as information
items, activating a user’s status when reading a book.

Memetracker Dataset [146]: The datasets containing blogs and online news articles
are collected from 1 August 2008, to 30 April 2009. viewing each website or blog as a user.
Specifically, the datasets are applied in social network analysis, information dissemination,
and recommender systems.

Weibo Dataset [32]: The publicly available datasets (https://github.com/CaoQi92/
DeepHawkes/tree/master, (accessed on 26 July 2023)) contain micro-blogs posted on 1
June 2016. The datasets include only those messages with more than ten retweets and the
retweets records of these messages within 24 h. In addition to user IDs, the datasets also
provide the retweeting path. It shows the retweeted news links from the original publisher
to other users.

3.2. Evaluation Metrics

This section presents public evaluation metrics for information cascading prediction.
We can apply evaluation metrics to measure the model performance. Next, this paper
provides an overview of commonly used evaluation metrics.

(1) R-Squared [3]: It is a commonly used statistical metric for assessing the fit degree
of a regression model with observed data. It ranges from 0 to 1, where a value closer to 1
indicates a better-fitting degree of the model [15]. However, Since it is essentially calculated
based on the fit degree of the linear model, it may not be accurate enough to assess the
explanatory power of nonlinear models. It applies to linear models and is not applicable to
nonlinear models, as shown in Equation (17).

R-squared =
SSR
SST

= 1− SSE
SST

(17)

where SST is the sum of the squares of the differences between the original data and the
mean, SSR is the sum of the squares of the differences between the predicted data and
the mean, and SSE is the sum of the squares of the errors between the fitted data and the
corresponding original data points. Additionally, STT = SSE + SSR.

(2) MSLE (Mean Square Logarithmic Error) [3]: It is a widely used evaluation metric
for regression models to amplify the differences between smaller predicted values and
actual values, directing the model’s focus toward the errors in these smaller values. It
is more sensitive to the logarithmic scale of the data distribution and suitable for cases
with an exponential growth trend. However, it is not applicable to negative or zero values,
which may be too focused on more minor errors, as shown in Equation (18).

https://www.isi.edu/~lerman/downloads/twitter/twitter2010.html
https://www.isi.edu/~lerman/downloads/twitter/twitter2010.html
https://github.com/CaoQi92/DeepHawkes/tree/master
https://github.com/CaoQi92/DeepHawkes/tree/master
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MSLE =
1
N

N

∑
i=1

(log2
_
y − log2 yi)

2
(18)

where ŷ represents the actual value, ŷi represents the predicted value, and N represents the
total number of samples.

(3) MAE (Mean Absolute Error) [3] is a commonly used evaluation metric for regres-
sion models that measures the average absolute difference between the predicted values
and the actual values. It is easy to interpret, insensitive to outliers, and suitable for re-
gression problems. However, it does not consider the square of the error, which may not
capture the distribution of the error, as shown in Equation (19).

MAE =
∑N

i=1 | log2
_
y − log2 yi|

N
(19)

where ŷ represents the actual value, ŷi represents the predicted value, and N represents the
total number of samples.

(4) MSE (Mean Square Error) [125]: It is used to evaluate the average of the squared
differences between predicted values and actual values in regression analysis which is a
way to measure the performance of the models. It penalizes significant errors more severely.
However, the square of the MSE error may amplify the effect of outliers, as shown in
Equation (20).

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (20)

where yi indicates the actual value, ŷ represents the predicted value, and N represents the
total number of samples.

(5) RMSPE (Root Mean Square Percentage Error) [125] is utilized to evaluate the
performance of the models, which is particularly useful for dealing with data that has
different scales or units. However, It may not be well suited to actual values that are small
in absolute terms and susceptible to zero values. It is suitable for regression problems, as
shown in Equation (21).

RMSPE =

√√√√ 1
N

N

∑
i=1

(
ŷi − yi

yi
)

2
(21)

where yi indicates the actual value, ŷi represents the predicted value, and N denotes the
total number of samples.

(6) Hits@k [126]: It is an indicator used to assess the performance of search or recom-
mendation systems, which measures the probability of successfully identifying relevant
results within the top k results. We consider successfully hitting if the top k results contain
the actual label. A higher value for this metric indicates better performance. It is simple
and intuitive for categorization problems, which can measure the percentage of correct
predictions made by the model. It is suitable for ranking potential users. However, it does
not consider the magnitude of the error and may not reflect the detailed performance of
the model. as shown by Equation (22).

hits@k =
1
|S|

|S|

∑
i=1

f (ranki ≤ n) (22)

where S represents a set of triplets, |S| represents the number of triplets, ranki represents
the predicted ranking of the i-th triplet, and f (·) is the indicator function.

(7) Map@k [126] is a metric used to measure the average precision within the retrieval
results of the top k. k represents the ranking or the number of retrieval results. For each
query, the accuracy of the relevant documents is accumulated and averaged. The value
ranges from 0 to 1; the higher values indicate the higher average precision within the top k
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results. It is suitable for classification tasks, which integrate the ranking and relevance of
retrieval results. However, the calculation is complex.

3.3. Interface Tools

AnyLogic [65] is a visualization tool used to create dynamic models, which perform
modeling and simulation of discrete, system dynamics, multi-agent, and hybrid systems.
It is an innovative simulation software based on the latest methodologies for complex
system design, which introduces the UML language in the model simulation. It is the only
software supporting hybrid state machines, enabling compelling descriptions of discrete
and continuous behaviors.

EoN [147] is a Python toolkit that utilizes the Scipy library to implement approximately
20 partial differential equation models. It can simulate SIS and SIR models in information
dissemination processes on social networks.

Data collection tools [35]: It provides the interface tools of five domestic and interna-
tional mainstream social platforms to obtain datasets, which are convenient for researchers.

4. Future Research Directions

Although modeling the information dissemination process has been researched from
multiple perspectives and levels in recent years, many achievements have been made.
However, mathematical models are limited by many assumptions; in view of data-driven
modeling, the model’s performance has a gap with users’ expectations. Therefore, the infor-
mation dissemination process analysis is still a direction that needs to be deeply cultivated
and attracts more researchers. In this section, we will briefly introduce future research.

(1) Cross-platform and dynamic information dissemination. The current research
focuses on information dissemination on a single social platform. People can access infor-
mation through various media platforms, including social media, news websites, blogs,
television, and radio, which increases the scope of information diffusion and accelerates
the flow of information. At the same time, due to media platforms’ different operation
and management mechanisms, audience behavior and interactive behavior vary greatly.
Understanding how information spreads on different platforms can help us develop strate-
gies to combat them. Moreover, previous researchers have focused more on analyzing the
information propagation process on a given static network. Due to the behaviors of new
user registration and user logout on social platforms, the graph of information dissem-
ination changes dynamically over time, which can spread information quickly, causing
severe consequences. Therefore, it is crucial to promptly detect the first signs of information
outbreaks in a short time, which is more relevant to practical needs.

(2) Collecting large-scale multi-modal datasets. To improve the accuracy of informa-
tion cascade prediction, researchers are constantly striving to create more sophisticated
algorithms. However, there is still a problem: the lack of effective benchmark datasets
that cover multiple modal data and have a specific scale for information dissemination
verification. Although existing information dissemination datasets simplify data attributes
by preserving nodes, time, and relationships, they overlook the impact of data modality and
attributes. Therefore, there is an urgent need to construct a large-scale generalized datasets
containing multiple modalities (e.g., audio, video, image, and text). The datasets will
provide researchers with a more comprehensive and realistic information dissemination
environment, which will help to reveal the interactions between different modalities and
how they collectively affect the patterns and effects of information dissemination. Through
this initiative, researchers will be able to more accurately analyze, predict and intervene in
the dynamics of information dissemination in multi-modal environments, promoting the
in-depth development of the field of information dissemination.

(3) Combining Dynamical Theory and Deep Learning. In recent years, the dynamical
theory has been widely applied in various fields such as physics, disease propagation,
and information dissemination, enabling the effective prediction of system behavior and
evolutionary trends with reliability and accuracy. At the same time, deep learning leverages
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its powerful representation-learning capabilities to learn and extract meaningful features
from raw data automatically. Since information dissemination is a dynamic process in-
volving temporal variations and interaction among users on social networks, dynamical
models can capture information dissemination patterns over time, while deep learning
can extract valuable information from these variations. Dynamical models may not be
able to capture the complex patterns in information dissemination, while deep learning
models are better able to deal with nonlinear relationships and high-dimensional data;
by combining the strengths of these two techniques, we can increase the complexity and
adaptability of the model better to reflect the information dissemination process. Besides,
deeper deep learning network structures can be utilized to simulate complex information
dissemination processes. Consequently, combining deep learning with dynamical theory
to analyze information dissemination processes is a promising direction.

5. Model Application

Information dissemination is a common phenomenon with theoretical and practical
significance, which can help us understand the law of information dissemination and
provide a basis for formulating strategies for information governance.

(1) Information Recommendation. We often observe the phenomenon of information
dissemination in the recommendation field, existing in advertising and marketing strategy.
Advertising marketers can better build brand image and more powerful delivery of the
product or service’s core message by effectively promoting product advertising. The audi-
ence in-depth can understand the advantages of the product or service and then be more
targeted to make purchasing decisions. At the same time, effective marketing strategies
can be formulated. Therefore, studying information diffusion models is crucial for making
informed decisions before advertising. In addition, it has a wide range of applications, such
as computer virus propagation, opinion propagation, disease propagation, and malware
propagation [42,43,45]. Therefore, it reveals insights and applications in a variety of fields,
thus guiding more research and practice.

(2) Network Reconstruction. In network science research, reconstructing network
structures from historical data has become important [148]. Information dissemination
relies on complex underlying social networks. Due to the security and privacy issues of the
platform, it is generally difficult to obtain a complete social network structure. However,
we can use known partial information, models, and parameters to reconstruct the network’s
connectivity structure. In addition, we can design more robust network structures to resist
malicious attacks, e.g., hackers may develop a malicious virus to hinder the transmission of
network flow by analyzing the network structure, leading to communication line failures
and congestion.

(3) Popularity Prediction. It has extremely important practical significance in various
fields. It can determine whether the information will experience an “avalanche” effect and
when it will gradually disappear, which can not only greatly help us make measures in
advance and provide a basis but also help us better understand the trend of information
dissemination. Furthermore, it can also observe and analyze the information dissemination
process from a macro perspective. For example, before malicious information reaches its
peak, It can not only present necessary intervention and governance measures to miti-
gate the effects of malicious information but also guide us in developing more accurate
communication strategies, thereby transmitting information to a broader target audience.

6. Conclusions

In this paper, we provide a more comprehensive summary of the research hot spot
of information dissemination models. First, we present the definition of the information
dissemination process. Then, we introduce methods used in information dissemination
and analyze the advantages and disadvantages in detail. Moreover, we present publicly
available datasets, evaluation metrics, and interface tools. Subsequently, we develop a
detailed outlook on future research directions and discuss the model application. However,
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from the above research, we can find significant differences in information dissemination
mechanisms among different social platforms; current researchers mainly focus on single
social platforms, such as Weibo and Twitter. Studying cross-platform is beneficial for
identifying the patterns and evolutionary trends of information dissemination on different
platforms; it is a promising research direction. Simultaneously, it is difficult for mathemati-
cal models and traditional methods to form a universal analysis framework and apply it to
practical engineering applications. Due to the advantages of end-to-end and highly abstract
features for deep learning, current research methods are gradually shifting to deep learning.
This review aims to help readers quickly sort out the technical paths and development
trends of information dissemination and inspire subsequent research.
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