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Abstract: The Squirrel Search Algorithm (SSA) is widely used due to its simple structure and efficient
search ability. However, SSA exhibits relatively slow convergence speed and imbalanced exploration and
exploitation. To address these limitations, this paper proposes a fuzzy squirrel search algorithm based on
a wide-area search mechanism named FSSSA. The fuzzy inference system and sine cosine mutation are
employed to enhance the convergence speed. The wide-area search mechanism is introduced to achieve
a better balance between exploration and exploitation, as well as improve the convergence accuracy.
To evaluate the effectiveness of the proposed strategies, FSSSA is compared with SSA on 24 diverse
benchmark functions, using four evaluation indexes: convergence speed, convergence accuracy, balance
and diversity, and non-parametric test. The experimental results demonstrate that FSSSA outperforms
SSA in all four indexes. Furthermore, a comparison with eight metaheuristic algorithms is conducted
to illustrate the optimization performance of FSSSA. The results indicate that FSSSA exhibits excellent
convergence speed and overall performance. Additionally, FSSSA is applied to four engineering
problems, and experimental verification confirms that it maintains superior performance in realistic
optimization problems, thus demonstrating its practicality.

Keywords: squirrel search algorithm; metaheuristic algorithm; fuzzy inference system; wide-area
search mechanism; sine cosine mutation

MSC: 68R12

1. Introduction

Optimization problems have existed widely in scientific and engineering fields. Over
time, scholars have developed many methods to deal with optimization problems. These
methods include the Gradient Descent Optimizer [1,2], Line Search Algorithm [3,4], and
Trust Region Algorithm [5,6], among others. However, as problems become increasingly
complex, traditional methods face challenges when confronted with optimization problems
that involve intricate constraints and complicated calculation processes. To meet such
requirements, researchers have introduced metaheuristic algorithms with a simple structure,
strong global search capability, robustness, and independence from gradient information.
Metaheuristic algorithms have indeed emerged as potent tools for addressing complex
optimization problems across diverse fields. These algorithms exhibit superiority over
traditional optimization methods, from their efficacy in dealing with intricate constraints,
non-linear relationships, and high-dimensional search spaces [7].

In recent times, a large number of metaheuristic algorithms (MA) have been proposed,
encompassing both classic metaheuristic algorithms and their improved variants. The clas-
sic MA can be classified into seven categories, namely Biology-based (BioA), Math-based
(MaA), Physic-based (PhyA), Evolutionary-based (EvoA), Human-social-based (HuSoA),
Plant-based (PlA), and Music-based (MuA) algorithms [8]. The classification of MAs are
shown in Table 1.
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Table 1. Classification of metaheuristic algorithm.

Classification Algorithm

BioA Particle Swarm Optimization (PSO) [9], Grey Wolf Optimizer (GWO) [10], FOX-inspired optimization
algorithm (FOX) [11]

MaA Sine Cosine Algorithm (SCA) [12], Circle-Inspired Optimization Algorithm (CIOA) [13]
PhyA Simulated Annealing Algorithm (SA) [14], Gravitational Search Algorithm (GSA) [15]
EvoA Genetic Algorithm (GA) [16], Differential Evolution (DE) [17]

HuSoA Teaching-learning-based Optimization (TLBO) [18], Team Competition and Cooperation Optimization
Algorithm (TCCO) [19]

PlA Invasive Weed Optimization (IWO) [20], Photosynthetic Algorithm (PA) [21]
MuA Melody Search (MS) [22], Harmony Search (HS) [23]

BioA algorithms draw inspiration from animal group activities in nature. Examples
of BioA algorithms include PSO [9], GWO [10] and FOX [11]. MaA algorithms are based
on principles and laws in mathematics, such as SCA [12] and CIOA [13]. PhyA algorithms
are inspired by physical phenomena in nature, such as the SA [14] and GSA [15]. EvoA
algorithms are inspired by the search Algorithms of biological evolutionary mechanisms such
as natural selection and genetics; some classical EvoA algorithms include GA [16] and DE [17].
HuSoA algorithms are generally derived from human social phenomena and activities; some
classical HuSoA algorithms include, TLBO [18] and TCCO [19]. PlA algorithms are based on
intelligent behavior in plants, including IWO [20] and PA [21]. MuA algorithms are inspired
by music-related concepts and principles, such as MS [22] and HS [23].

Currently, in the research of metaheuristic algorithms, addressing the issue of local
optima while exploring the problem space remains an important research area. A more
effective direction in metaheuristic algorithm research is to enhance the internal structure
of existing algorithms to tackle various complex optimization problems [24]. In recent
years, researchers have proposed various improved variants based on MA to solve complex
optimization problems.

Shaukat proposed a modified genetic algorithm (MGA) for optimizing the multi-
objective core overloading pattern. In comparison to the classical GA, MGA effectively
preserves chromosomes with the best fitness, resulting in a more efficient search for the
optimal fuel loading pattern [25]. Lodewijks conducted a comparison of the optimization
performance of three state-of-the-art Particle Swarm Optimization (PSO) algorithms for
solving the optimization problem of an Airport Baggage Handling Transportation System
(BHTS) [26]. The experimental results showed that all three variants of PSO were capable
of finding effective and efficient solutions. Among them, the Self-Regulation PSO (SRPSO)
algorithm, which exhibited the lowest CPU running time, was selected and adopted.
Romeh proposed the Hybrid Vulture Cooperative Multi-Robot Exploration (HVCME)
algorithm and applied it to optimize the construction of limited maps in multi-robot
exploration [27]. Compared to four other similar algorithms, HVCME demonstrated more
effective optimization of limited map construction in unknown indoor environments.

In addition to these algorithms, the Squirrel Search Algorithm [28] has emerged as a
BioA algorithm. Inspired by the foraging strategy of squirrels, they utilize parachute-like
membranes to slide between trees in search of food. The SSA employs a combination of
random search and local search mechanisms, enabling it to effectively search the solution
space and converge towards optimal or near-optimal solutions. SSA has demonstrated
strong competitiveness when compared to well-known MAs such as PSO, Artificial Bee
Colony (ABC), and others. Since its proposal, SSA has been applied to various complex
optimization problems such as Production Scheduling [29–31], Image Analysis [32,33], and
Biomedicine [34,35]. The versatility and effectiveness of SSA make it a valuable tool for
solving optimization problems in diverse domains.

Simultaneously, similar to any other metaheuristic algorithm, may not be suitable for
every optimization problem. Researchers might choose to improve SSA to address specific
problem characteristics or requirements. SSA also faced challenges such as imbalanced
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exploration and exploitation, falling into local optimum, and low convergence accuracy. To
address these issues, numerous scholars have studied to improve the performance of SSA.
These efforts can be divided into three main categories based on improvement strategies.

Firstly, the adaptive parameter mechanism refers to improving one or more constants
in the algorithm to make it adaptive in the position updating process. Zheng added the
adaptive strategy of predator existence probability and the optimal selection strategy to
enhance the exploitation capabilities of SSA [36]. Wen used the roulette strategy to update
the squirrels’ position on normal trees, which could increase the population diversity and
avoid falling into the local optimum [37]. Second, the search strategy update mechanism
refers to improving one or more position update strategies in the algorithm. Wang used
the jump search method to improve the winter search strategy and the progressive search
method to improve the Levy Flight stage, which make SSA could maintain the population
diversity in these two stages [38]. Karaboga used the cloud model to replace the random
function of uniform distribution to update the new position of squirrels, which improved
the convergence accuracy of SSA [39]. Third, combining with different algorithms refers to
the SSA update strategy combining with other algorithms. Sakthivel combined the Pareto
dominance principle with SSA to keep the distribution diversity of Pareto optimal solutions
in the algorithm’s evolution process [40]. Liu used the crossover operator and mutation
operator to enhance the squirrel position update stage, which increased the population
diversity of SSA and improved the convergence of SSA [41].

The purpose of this paper is to develop a fuzzy squirrel search algorithm based on a
wide-area search mechanism (FSSSA). There are three improvement strategies in FSSSA:

1. To accelerate the convergence speed, the adaptive weight w optimized by the fuzzy
inference system (FIS) is added to change the step size in three position update strategies.

2. The sine cosine mutation strategy (SCM) enhanced the exploration ability and avoided
falling into the local optimum by improving the sliding constant Gc in the position
update stage.

3. The wide-area search mechanism (WAS) is used to improve the location update stage
of some elite individuals (the first type of location update stage). It can balance the
exploration and exploitation and improve the convergence accuracy of the algorithm.

The main contributions of this paper can be summarized as follows:

1. On the basis of SSA, this paper proposes an improved squirrel search algorithm (FSSSA).
2. In the FSSSA, the exploration ability is enhanced by using the FIS and the SCM

strategy. The exploitation ability is enhanced by using the WAS strategy.
3. The FSSSA is tested on 24 benchmark functions and four engineering problems.

Compared with the other algorithms, FSSSA has a preferable performance.

The rest of this paper is structured as follows. The second section introduces the
principle of the basic SSA. The third section introduces three strategies to improve the SSA
and calculates the space complexity of the FSSSA. The fourth and fifth sections introduces
the validity of FSSSA by benchmark functions and four engineering optimization problems.
The sixth part summarizes the research content of this paper and puts forward the prospect.

2. Squirrel Search Algorithm

SSA seeks global optima by sliding between different kinds of trees to find food
sources and avoid predators. There are equal numbers of squirrels and trees n in SSA.
There are three types of trees in SSA, which are normal trees, oak trees, and pecan trees.
The pecan tree is designated as the best solution in the optimization process, while the
oak trees represent the next three best solutions. The normal tree represents the remaining
normal solutions. Each squirrel independently searches for food and explores existing food
through a dynamic foraging strategy during the search process.
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2.1. Random Initialization and Fitness Evaluation

Assuming n squirrels engage in sliding search in a d dimensional space. The SSA
performs random initialization according to Equation (1).

FSi,j = FSL + U(0, 1)× (FSU − FSL)(i = 1, 2, . . . , n)(j = 1, 2, . . . , d) (1)

where FSi,j represents the ith position of the squirrel in the jth dimension. The FSL and
FSU are lower and upper bounds in the search space and U(0, 1) is a uniformly distributed
random number in the range [0, 1].

The SSA calculates the fitness value corresponding to each squirrel position as Equation (2).

f
(

FSi,j
)
=
(

f1
(

FS1,j
)
, f2
(

FS2,j
)
, · · ·, fn

(
FSn,j

))
(i = 1, 2, . . . , n)(j = 1, 2, . . . , d) (2)

When solving optimization problems for minimizing values, the fitness values are
arranged from the smallest to the largest. Conversely, when addressing optimization
problems for maximizing values, the arrangement is from largest to smallest. The individual
with the top-ranked fitness value signifies the squirrel on the pecan tree. Those ranked 2nd
to 4th in fitness represent squirrels on oak trees. The remaining fitness values correspond
to squirrels on regular trees.

2.2. Update Position

During each iteration, the squirrels had three movement strategies: 1. Squirrels on
the oak trees (FSt

h, the three best solutions) flew to the pecan tree (FSt
a, the best solution)

to store energy for winter. 2. Squirrels on the normal trees (FSt
n, normal solutions) fly to

oak trees to meet their daily energy needs. 3. Some squirrels on the normal trees still head
for the pecan tree to store their energy needs for winter. The specific position is updated
according to Equations (3)–(5).

Case1 FSt
a——FSt

h

FSt+1
a =

{
FSt

a + dg × Gc ×
(

FSt
h − FSt

a
)
, R1 ≥ Pdp

Random location otherwise
(3)

Case2 FSt
n——FSt

a

FSt+1
n =

{
FSt

n + dg × Gc ×
(

FSt
a − FSt

n
)
, R1 ≥ Pdp

Random location otherwise
(4)

Case3 FSt
n——FSt

h

FSt+1
n =

{
FSt

n + dg × Gc ×
(

FSt
h − FSt

n
)
, R1 ≥ Pdp

Random location otherwise
(5)

where t represents the current iteration, the R1 stands for a random number in the range
of [0, 1] and the Gc is a gliding constant. Pdp represents the probability of the existence
of predators. The dg is the random sliding distance constant. When R1 ≥ Pdp, with no
predators in the forest, squirrels glide to find food squirrels have free foraging activities.
When R1 < Pdp, squirrels will randomly update their position.

2.3. Seasonal Detection Condition

Squirrels’ foraging behavior changes when winter comes. In SSA, checking seasonal
variation conditions prevents the algorithm from falling into the local optimum. According
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to Equations (6) and (7), the seasonal constant (St
c) and seasonal detection condition (Smin)

are calculated to determine whether entering winter.

St
c =

√√√√ d

∑
k=1

(
FSt

a,k − FSh,k

)2
(6)

where d represents the dimension of the problem. FSt
a,k and FSt

h,k, respectively, denote the
squirrel on the pecan tree (best solution) and the squirrels on oak trees (three next best solutions).

Smin =
10e−6

(365)t/(tm/2.5)
(7)

where tm represents the maximum number of iterations.

2.4. Levy Flight

When Sc < Smin, the positions of those flying squirrels without food sources (squirrels
on normal trees) are updated by Equation (8).

FSnew
nt = FSL + levy(n)× (FSU − FSL) (8)

Levy Flight allows squirrels to find new locations close to their current sweet spot by
Equation (9).

levy = 0.01× ra × σ

|rb|
1
β

(9)

where, ra and rb are two normally distributed random numbers in the range of [0, 1].
The β is an exponent parameter of the Levy distribution, employed to characterize the
distribution’s shape. A smaller value of β encourages the algorithm to engage in larger
jumps, thereby increasing the likelihood of discovering novel solutions within the search
space. Conversely, a larger β value concentrates the step distribution closer to smaller
values. The permissible range of “a” lies within [0, 2], and in the context of SSA, it is set to
1.5. The σ is a parameter within the Levy flight model, governing the magnitude of step
lengths. It emulates the leap distance of a Levy flight, computed according to Equation (10).

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

1/β

(10)

where Γ(x) = (x− 1)!.
To provide a clearer representation of the search process in SSA, the pseudocode for

Algorithm 1 of SSA is presented below.
It is noteworthy that the stopping criterion used in SSA [28] is the maximum number

of iterations. However, from Pseudocode 1 for Algorithm 1, it is evident that during each
iteration, SSA performs function evaluations multiple times. This setup might give SSA
an advantage over algorithms that perform only one function evaluation per iteration [42].
Therefore, when conducting experimental comparisons involving SSA, it is recommended to
avoid conducting comparative experiments with other algorithms based on the same number
of iterations. This is to ensure the accuracy of evaluating SSA’s optimization performance.
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Algorithm 1 Pseudocode for SSA

Begin:
Input the optimization problem information.
Set control parameters population (n), scaling factor (s f ), and predators (Pdp).
Generate random locations for n flying squirrels using Equation (1)
Evaluate the fitness of each flying squirrel’s location.
Sort flying squirrel locations by fitness value.
The best value is defined as the squirrel on the pecan tree, the three of the next best values are the
squirrels on the oak trees, and the rest values are the squirrels on the normal trees.
While (the stopping criterion is not satisfied) do

For t = 1 to n
Update flying squirrel locations which are on oak trees and moving towards pecan

trees using Equation (3)
Update flying squirrel locations which are on normal trees and moving towards oak

trees using Equation (4)
Evaluate the fitness of each flying squirrel’s location.
Update flying squirrel locations which are on normal trees and moving towards pecan

trees using Equation (5)
Evaluate the fitness of each flying squirrel location.

End
Calculate seasonal constant (St

c) using Equation (6)
Update the minimum value of seasonal constant (Smin) using Equation (7)
If (Seasonal monitoring condition is satisfied)

Randomly relocate flying squirrels on normal trees using Equation (8)
Evaluate the fitness of each flying squirrel’s location

end
Reorder the squirrels. The best value is defined as the squirrel on the pecan tree, the three

of the next best values are the squirrels on the oak trees, and the rest values are the squirrels on
the normal trees.

End
The location of the squirrel on the pecan tree is the final optimal solution
End

3. The Proposed Algorithm (FSSSA)

While SSA does possess strong global search capabilities, the fixed search range and
direction in each iteration can result in slow convergence. Additionally, the random search
strategy employed by the elite individuals in SSA for exploring the global range can lead
to weaker exploitation ability and lower convergence accuracy. Moreover, when dealing
with high-dimensional complex optimization problems, SSA may encounter challenges
related to falling into local optima. The exploration-exploitation balance becomes crucial in
such scenarios to avoid being trapped in suboptimal solutions.

Aiming at the above limitations, this section proposes three strategies, the FIS, the
SCM, and the WAS. By employing the FIS, the output of inertia weights w can be obtained
to adjust the step size variation during iterations, thereby accelerating the convergence
speed of the algorithm. By utilizing the SCM, the sliding constant Gnew

c can be adjusted to
enable the search range and search direction to vary with iterations, thereby enhancing the
exploratory capability of the algorithm. Through the use of WAS, the search mechanism of
elite individuals can be improved, thereby enhancing their exploitative capability in the
vicinity of the optimal solution.

3.1. Introduced Fuzzy Inference System

This paper used FIS to output inertia weights w. It was added into three position
updating stages and made the search step size change randomly with the number of
iterations to improve the convergence speed of the algorithm.

Under the framework of an adaptive network, the FIS [43] can combine fuzzy inference
and control the input of the system. The FIS is divided into five parts: Fuzzification Interface,
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Fuzzy Database, Fuzzy Rule Base, Fuzzy Reasoning, and Defuzzification Interface. The FIS
is shown in Figure 1.

Figure 1. Fuzzy Inference System (FIS).

FIS has been used in many fields. Kumar [44] used the FIS to provide localization
results for transnational faults of circuits. Yu [45] used the FIS to optimize the neural
network. Therefore, the studies proved that the FIS has a preferable performance and can
be used to optimize the metaheuristic algorithms.

Liu used FIS to optimize the PSO according to the model error to make its parameters
dynamically self-adaptive [46]. Amador–Angulo used Type-2 FIS to optimize the bee
colony optimization and make its parameters dynamically self-adaptive [47]. Many people
applied FIS to improve the algorithm and achieved remarkable results.

The FIS designed in this paper, named FSSSA-Type-1, belongs to the category of Type-1
FIS. When dealing with optimization problems, metaheuristic algorithms often encounter
uncertainties, such as the form of the objective function and the complexity of the constraint
conditions. Type-1 FIS can effectively handle these uncertainties by utilizing fuzzy sets and
fuzzy rules for modeling and inference. This approach enhances the adaptability of the
algorithm to complex and ambiguous problems. The fuzzy rules defined in this system
utilize triangular membership functions. The system diagram of the FSSSA is illustrated in
Figure 2. The design of the fuzzy rules output surface as shown in Figure 3.

Figure 2. The system block diagram of the FIS.
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Figure 3. The design of the fuzzy rules output surface.

The inputs of the system are iteration progress (S) and iteration stall time (Ts). Where
iteration progress S = t/tm is the ratio of the current iteration to the number of maximum
iterations. t is the current iteration progress and tm is the maximum number of iterations. The Ts
represents the time or number of iterations elapsed when the algorithm is unable to significantly
improve the quality of the solution. Its calculation method is depicted in Equation (11).

Tst+1 =

{
min(Tst − 1, 0) de < f

(
FSt

a
)

max(Tst + 1, 9) de > f
(

FSt
a
) (11)

where f
(

FSt
a
)

represents the best historical fitness of the t iteration. de represents the
optimal historical fitness of the t + 1 iteration. The single output of the system is inertia
weight w.

By observing the output surface in Figure 3, a clear understanding of the distribution
of fuzzy outputs obtained by the FSSSA-Type-1 can be achieved. In this process, the inertia
weight (w) gradually increases with the increase in iteration stall time, thereby enhancing the
algorithm exploration capability in the later stages of iteration. Consequently, this enhances
the likelihood of escaping the local optimum and further improves the algorithm performance.

The membership functions of the input and output are shown in Figure 4.

Figure 4. Schematic diagram of membership function: (a) iteration progress; (b) iteration stall time;
(c) inertia weight.

The position update strategy of SSA is adjusted by inertia weight w, which increases
the exploitation ability and accelerates the convergence speed of the algorithm.
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3.2. Introduced Sine Cosine Mutation

In SSA, the search individual only follows the fixed direction. It will lead to slow
convergence speed and may fall into the local optimum. The sine and cosine variables in
the Sine Cosine Algorithm (SCA) [12] change randomly with iteration. The sine and cosine
variables were introduced to improve the gliding constant Gc , so that the search range and
direction were changed with iteration.

The investigation stage of the SCA is shown in Equation (12).

Xt+1
i =

{
Xt

i + r1 × sin(π × r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 < 0.5
Xt

i + r1 × cos(π × r2)×
∣∣r3Pt

i − Xt
i

∣∣, r4 > 0.5
(12)

where Xt
i is the position of the current solution in the i dimension at the t iteration and Pt

i
is the position of the best point (best solution) in the i dimension. The roles of r1, r2, r3, and
r4 define the moving direction of the next position, the distance moved to the next position,
random weights, and random decision parameters. r1 = α− α×t

tm
and α is a predetermined

constant, where in SCA, its value is set to 3. The r2 and r3 are random numbers of [0, 2].
The r4 is a random number of [0, 1].

According to Equation (12), the direction and the distance of SCA are random. The
random combinatorial property of the SCA was used to improve the Gc in Equations (3)–(5).
The improved Gnew

c is no longer a fixed value; it dynamically adapts and changes with each
iteration. This method is mathematically formulated as follows.

Gnew
c =


(

2− 2×t
tm

)
× sin(2× π × r2), r4 < 0.5(

2− 2×t
tm

)
× cos(2× π × r2), r4 > 0.5

(13)

where r2 and r4 are random numbers of [0, 1]. r2 randomly changes the search step of SSA.
The SSA search direction and range changed accordingly by improving the sliding

constant, which increases the convergence speed of SSA and enhances the ability to jump
out of the local optimum.

3.3. Introduced Wide-Area Search Mechanism

In SSA, elite individuals randomly jump within the global search range, and the
exploitation ability of the algorithm is weak, resulting in low convergence accuracy. This
section used the WAS to improve the search strategy of elite individuals.

Many metaheuristic algorithms also add a WAS to improve the algorithm’s exploita-
tion ability. Simulated Annealing (SA) [14] added the WAS in the status update phase. It
reduced the probability of accepting the new value and increased the exploitation ability.
Improved Evolution Algorithm (IEA) [48] used the WAS to improve the evolution operator
of Differential Evolution (DE). It increased the population diversity of DE.

The WAS is added to the location update strategy of producers in the Sparrow search
algorithm [49] by Equation (14).

Xt+1
i,j =

{
Xt

i,j × exp( −i
α×tm

), i f R2 < ST
Xt

i,j + Q× L, i f R2 > ST
(14)

where Xt+1
i,j represents the value of the ith position of the sparrow in the jth dimension

during the tth iteration. The tm denotes the maximum number of iterations. Both α and R2
are random numbers within the range [0, 1]. The ST represents the safety threshold and.
The Q is a random number generated according to a normal distribution. The L is a 1× d
matrix (where d signifies the problem’s dimension), with each element being 1.

When R2 < ST, it indicates the absence of predators in the vicinity. In this case,
producers (sparrows) narrow their search range with each iteration in a randomized
manner, restricting their movement to the neighborhood of the current optimal solution.
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Inspired by the Sparrow search algorithm, the position of some elite individuals
(FSt

a——FSt
h) is updated as Equation (15).

FSt+1
a =

{
Gnew

c ×
(

FSt
h − FSt

a
)
× exp( −i

α×tm
) R1 ≥ Pdp

Random location otherwise
(15)

where both α and R1 are random numbers within the range [0, 1]. The Gnew
c is an improved

sliding variable according to the Formula (13). The Pdp represents the probability of the
presence of predators. When R1 ≥ Pdp, it signifies the absence of predators in the forest,
prompting squirrels on oak trees to engage in wide-area search mechanisms to locate pecan
tree. When R1 < Pdp, it indicates the presence of predators in the forest, and squirrels
update their positions randomly to evade the predators.

By incorporating non-deterministic elements based on the acquired information and
results during the search process, the efficiency and performance of the search conducted
by elite individuals are improved. This approach enables more refined searches within the
neighborhood of the optimal value, utilizing the updated positions of elite individuals. It
aims to thoroughly explore the entire neighborhood as much as possible, thereby enhancing
the exploitation capability and convergence accuracy of SSA.

3.4. SSA with Mixed Strategy

Firstly, the adaptive weight w optimized by the FIS is added to change the step size in
three position update strategies. It can improve the exploitation and accelerate the convergence
speed of the SSA. Secondly, the SCM is introduced to enhance the sliding constant (Gc) in
the position update stage. The search direction and step are adjusted during iteration, which
enhances the exploration ability and avoids falling into the local optimum. Finally, the WAS
mechanism is introduced to improve the elite individuals. Make the elite individuals jump
around the optimal value of the neighborhood. It can balance the exploration and exploitation
and improve the convergence accuracy of the algorithm.

The three-position update strategies of the improved SSA are shown in Equations (16)–(18).
Case1 FSt

a——FSt
h

FSt+1
a =

{
Gnew

c ×
(

FSt
h − FSt

a
)
× exp( −i

α×tm
) R1 ≥ Pdp

Random location otherwise
(16)

Case2 FSt
n——FSt

a

FSt+1
n =

{
w× FSt

n + dg × Gnew
c ×

(
FSt

a − FSt
n
)

R1 ≥ Pdp
Random location otherwise

(17)

Case3 FSt
n——FSt

h

FSt+1
n =

{
w× FSt

n + dg × Gnew
c ×

(
FSt

h − FSt
n
)

R1 ≥ Pdp
Random location otherwise

(18)

To show the optimization idea of FSSSA more clearly, the pseudocode Algorithm 2 of
FSSSA is shown, and the flow chart of FSSSA is shown in Figure 5.
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Algorithm 2 Pseudocode for FSSSA

Begin:
Input the optimization problem information.
Set control parameters population (n), scaling factor (s f ), and predators (Pdp).
Generate random locations for n flying squirrels using Equation (1)
Evaluate the fitness of each flying squirrel’s location.
Sort flying squirrel locations by fitness value.
The best value is defined as the squirrel on the pecan tree, the three of the next best values are the
squirrels on the oak trees, and the rest values are the squirrels on the normal trees.
while (the stopping criterion is not satisfied) do

Calculate iterative stall time (Ts) using Equation (11)
Calculate inertia weight (w) from the fuzzy inference system
Calculate gliding constant (Gnew

c ) using Equation (13)
For t = 1 to n

Update flying squirrel locations which are on oak trees and moving towards pecan
trees using Equation (16)

Update flying squirrel locations which are on normal trees and moving towards
oak trees using Equation (17)

Evaluate the fitness of each flying squirrel’s location and reorder the squirrels.
Update flying squirrel locations which are on normal trees and moving towards

pecan trees using Equation (18)
Evaluate the fitness of each flying squirrel location and reorder the squirrels.

end
Calculate seasonal constant (St

c) using Equation (6)
Update the minimum value of seasonal constant (Smin) using Equation (7)
If (Seasonal monitoring condition is satisfied)

Randomly relocate flying squirrels on normal trees using Equation (8)
Evaluate the fitness of each flying squirrel’s location.

end
Reorder the squirrels. The best value is defined as the squirrel on the pecan tree, the three

of the next best values are the squirrels on the oak trees, and the rest values are the squirrels on
the normal trees.

end
The location of the squirrel on the pecan tree is the final optimal solution
End

3.5. Computational Complexity

The complexity of SSA is composed of population initialization, fitness evaluation, and
three strategies for updating location. Remarkably, the complexity of the proposed FSSSA
adds the inertia weight designed in FIS, the improved adaptive parameters of SCM, and the
improved elite individual location update strategy of WAS. The coefficients involved are the
algorithm population N and the number of iterations of the algorithm T. The complexity of
population initialization is O(N), the complexity of fitness evaluation is O(N). The complexity
of the FIS strategy is O(N× T), the complexity of the SCM strategy is O(T), and the complexity
of the WAS strategy and the other two location update strategies is O(N× T). Therefore, the
complexity of the FSSSA is O(FSSSA) = 2×O(N)+O(N× T)+O(T)+O(N× T) = O(N× T).
The FSSSA maintains the same computational load as the classical SSA and other classical MAs,
such as PSO, DE, and A.
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Figure 5. Flow chart of FSSSA.

4. Experimental Studies on Function Optimization Problems

In this section, the effectiveness of FSSSA will be demonstrated clearly and intuitively
through classical benchmark optimization problems. Firstly, the parameter tuning of FSSSA
will be introduced, analyzing the impact of parameter selection on FSSSA. Secondly, a com-
parative analysis will be conducted between SSA and the proposed FSSSA on 24 benchmark
functions. This analysis will include convergence curves, convergence accuracy, balance,
and diversity, aiming to provide a comprehensive evaluation of the optimization capabili-
ties of FSSSA. By assessing these aspects, the effectiveness of the improvement strategy can
be validated. The Wilcoxon rank-sum test will be employed to evaluate the significance
difference between SSA and FSSSA. Lastly, experimental comparisons will be conducted
between FSSSA and other metaheuristic algorithms, including MA and improved variants
algorithms, to further evaluate the optimization performance and applicability of FSSSA.

4.1. Benchmark Functions and Parameter Setting

All experiments in this paper are carried out under the environment of IIl(IXeon(R)
CPU AMD Ryzen 5 5600H with Radeon Graphics 3.30 GHz, 16 GB RAM, and MATLAB
(2020b). To reduce the randomness of the experiment, each experimental result is indepen-
dently repeated 30 times to take the average.

4.1.1. Parameter Setting

The algorithm parameters used in the experimental test are the White Shark Optimizer
(WSO) algorithm [50], Runge Kutta Optimization (RUN) algorithm [51], Weighted Mean
of Vectors (INFO) algorithm [52], PSO [9], Group Teaching Optimization Algorithm with
Information Sharing (ISGTOA) [53], Seagull Optimization Algorithm (SOA) [54], Grey Wolf
optimizer (GWO) [10] and Ensemble Sinusoidal Differential Covariance Matrix Adaptation
with Euclidean Neighborhood (LSHADE-cnEpSin, one of the winners of CEC 2017 compe-
tition) [55]. The algorithm parameters above are consistent with those in the original paper
of the algorithm. Specific settings are shown in Table 2.
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Table 2. Algorithm parameter setting.

Algorithm Pop Parameters

SSA 50 Pdp = 0.1; R1, R2, R3 ∈ [0, 1]; ρ= 1.204; V = 5.25; S = 0.0154; CL = 0.7; CD = 0.6;
hg = 8; s f = 18; GC = 1.9

SSSA 50 Pdp = 0.1; R1, R2, R3 ∈ [0, 1]; ρ= 1.204; V = 5.25; S = 0.0154; CL = 0.7; CD = 0.6;
hg = 8; s f = 18

FSSA 50 Pdp = 0.1; R1, R2, R3 ∈ [0, 1]; ρ= 1.204; V = 5.25; S = 0.0154; CL = 0.7; CD = 0.6;
hg = 8; s f = 18; GC = 1.9

FSSSA 50 Pdp = 0.1; R1, R2, R3 ∈ [0, 1]; ρ= 1.204; V = 5.25; S = 0.0154; CL = 0.7; CD = 0.6;
hg = 8; s f = 18

WSO 50 pmin = 0.5; pmax = 1.5; τ = 4.11; fmin = 0.07; fmax = 0.75; a0 = 6.25; a1 = 100; a2 = 0.0005
RUN 50 r1 = 1/− 1; ϕ ∈ [0, 1]; β ∈ [0, 1]; c = 5× rand; v = 2× rand; g ∈ [0, 2]; r2 = 1/− 1/0
INFO 50 a1 6= a2 6= a3 ∈ [1, 50]; r ∈ [0.1, 0.5]; µ = 0.05× randn; ϕ ∈ [0, 1]
PSO 50 c1 = c2 = 1.141

ISGTOA 50 λ ∈ [0, 1]; a = b = c = d = rand
SOA 50 r1 = r2 = rand; k ∈ [0, 2π]; fc = 2; b = 1
GWO 50 r1 = r2 = rand; a = 2− 2t/tmax; A = 2a× r1 − a; C = 2× r2

LSHADE-cnEpSin - c1 = c2 = 1.141

4.1.2. Benchmark Functions

This paper conducts experiments on 24 classic benchmark test functions [56,57]. Accord-
ing to the character of functions, they can be described as unimodal, multimodal, separable,
and non-separable functions. The function set in this paper is shown in Table 3, including
11 unimodal and 13 multimodal functions, 12 separable and 12 non-separable functions,
among which F12 and F17-F19 are four shifted functions. The shifted function refers to the
operation of shifting the graph of a function in space, wherein the function’s image is hori-
zontally or vertically shifted along the coordinate axes. In these functions, the best position is
moved or rotated to other locations primarily to avoid situations where certain algorithms
would copy one parameter to another parameter to generate neighboring solutions.

Table 3. Benchmark functions.

No Functions Function
Name Range Dim Character Fmin

F1 f (x) =
n
∑

i=1
x2

i
Sphere [−100, 100] 30/50 US 0

F2 f (x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| Schwefel 2.22 [−10, 10] 30/50 UN 0

F3 f (x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
Schwefel 1.2 [−100, 100] 30/50 UN 0

F4 f (x) = max
i
{|xi|, 1 ≤ i ≤ n} Schwefel 2.21 [−100, 100] 30/50 UN 0

F5 f (x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] Rastrigin [−5.12, 5.12] 30/50 MS 0

F6 f (x) =
n
∑

i=1
|xi + 0.5|i+1 Step [−500, 500] 30/50 US 0

F7 f (x) =
n
∑

i=1
ix4

i
Quartic [−1.28, 1.28] 30/50 US 0

F8 f (x) =
n
∑

i=1
ix4

i + random[0, 1] Quartic WN [−1.28, 1.28] 30/50 US 0
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Table 3. Cont.

No Functions Function
Name Range Dim Character Fmin

F9 f (x) = 0.1


sin2(3πx1) +

dim
∑

i=1
(xi − 1)2[

1 + sin2(3πxi+1 + 1)
]

+(xdim − 1)2[1 + sin2(2πxdim)
]


+
dim
∑

i=1
Ufun(xi, 5, 100, 4)

Penalized2 [−50, 50] 30/50 MN 0

F10 f (x) =
n
∑

i=1

(
106)(i−1)/(n−1)x2

i
Elliptic [−100, 100] 30/50 UN 0

F11 f (x) =
n
∑

i=1

(
x2

i − 10(cos 2πxi) + 10
) Rastrigin [−5.12, 5.12] 30/50 MS 0

F12 f (x) =
n
∑

i=1
z2

i ,
→
z =

→
x −→o Shifted sphere [−100, 100] 30/50 US 0

F13 f (x) = −20 exp

(
−0.2

√
1

dim d
dim
∑

i=1
x2

i

)
−

exp
(

1
dim

dim
∑

i=1
cos(2πxi)

)
+ 20 + e

Ackley [−32, 32] 30/50 MN 0

F14 f (x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 Griewank [−600, 600] 30/50 MN 0

F15 f (x) =
n
∑

i=1
ix2

i
SumSquares [−10, 10] 30/50 US 0

F16 f (x) =
n
∑

i=1
|xi|(i+1) SumPower [−10, 10] 30/50 MS 0

F17 f (x) =
n
∑

i=1

(
z2

i − 10 cos(2πzi) + 10
)
,

→
z =

→
x −→o

Shifted rastrigin [−5.12, 5.12] 30/50 MS 0

F18 f (x) =
n
∑

i=1

1
4000 z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1,

→
z =

→
x −→o

Shifted
griewank [−600, 600] 30/50 MN 0

F19 f (x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
z2

i

)
−

exp
(

1
n

n
∑

i=1
cos(2πzi)

)
+ e,

→
z =

→
x −→o

Shifted ackley [−32, 32] 30/50 MN 0

F20 f (x) =
n
∑

i=1
x6

i

(
2 + sin 1

xi

)
Csendes [−1, 1] 30/50 MS 0

F21 f (x) =
n−1
∑

i=1

(
0.5 +

sin2
√

100x2
i +x2

i+1−0.5

1+0.001(x2
i −2xi xi+1+x2

i+1)
2

)
Pathological [−100, 100] 30/50 MN 0

F22 f (x) =
n
∑

i=1

[
y2

i − 10 cos(2πyi) + 10
]
,

yi =

{
xi, |xi| < 1

2
round(2xi)

2 , |xi| ≥ 1
2

Non-Continuo-
usrastrigin [−5.12, 5.12] 30/50 MS 0

F23 f (x) =
(

n
∑

i=1
|xi|
)

exp
(
−

n
∑

i=1
sin
(

x2
i
)) Xin-She Yang

Second [−2π, 2π] 30/50 MN 0

F24 f (x) =
n−1
∑

i=1

(
x2

i
)(x2

i+1+1)
+
(

x2
i+1

)(x2
i +1) Brown [−1, 4] 30/50 UM 0

The character of functions is detailed in the Character column of Table 1. U, M, S, and
N are used to indicate unimodal, multimodal, separable, and non-separable functions [58].

It should be noted that when the dimension increases, the search space and the
corresponding difficulty will be increased. It is more challenging to solve high-dimensional
problems than low-dimensional ones [59]. Therefore, dimensions 30 and 50 are used for
experimental tests in this paper.
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4.2. FSSSA Parameter Tuning

The performance of the algorithm is influenced by various factors, including pop-
ulation size, number of iterations, and parameters. In the FSSSA, the scaling factor s f
plays a crucial role in balancing the exploration and exploitation phases [28]. Therefore,
selecting an appropriate s f value is vital for achieving optimal performance with FSSSA.
Based on relevant literature and previous experiments, a value s f in the range of 16 to
37 can achieve the desired accuracy level without compromising algorithm stability. In
order to provide a clearer understanding of the impact of s f on FSSSA’s performance across
benchmark functions, manual adjustments were made using functions F8 and F9 to observe
experimental results more effectively.

Table 4 records the average and standard deviation of parameter settings as
s f = {10, 15, 18, 20, 30, 40} over 30 runs with 20,000 function evaluations (FEs), as well as
the convergence curve shown in Figure 6 and the box plot illustrated in Figure 7.

Table 4. The effect of sf on the performance of FSSSA on benchmark functions.

Function Item sf = 10 sf = 15 sf = 18 sf = 20 sf=30 sf = 40

F8
mean 1.00 × 10−4 7.81 × 10−5 2.25 × 10−5 8.36 × 10−5 1.00 × 10−4 2.34 × 10−5

std 9.18 × 10−5 7.84 × 10−5 1.99 × 10−5 6.57 × 10−5 9.18 × 10−5 1.74 × 10−5

F9
mean 8.98 × 10−1 7.66 × 10−1 6.19 × 10−1 7.43 × 10−1 8.98 × 10−1 8.71 × 10−1

std 2.91 × 10−1 2.13 × 10−1 1.43 × 10−1 2.21 × 10−1 2.91 × 10−1 2.31 × 10−1

Figure 6. Convergence curves with different scaling factor (sf ) Settings.

Figure 7. Box diagram with different scaling factor (sf ) Settings.
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By examining Figure 6 and Table 4, it becomes evident that when s f = 18, FSSSA
achieves the lowest average and standard deviation on F8 and F9. This indicates that with
s f = 18, FSSSA exhibits the best optimization performance and the highest stability across
the benchmark functions.

From the nature of the box plot [60], it can be seen in F9 that the s f = 18 has the
smallest quartile range of box plot, the s f = 15 and the s f = 20 have wide interquartile
ranges of box plot. Consequently, the optimal solution is more stable when s f = 18. In F8,
while s f = 10, s f = 18, s f = 30, and s f = 40 have a similar quartile range of box plots, the
median of s f = 18 is smaller than the others. It proves that the optimal solution of s f = 18
has the most advantages.

In this paper, the value of the scaling factor s f selected is 18, which improves the
accuracy and stability of the FSSSA.

The specific settings for the other parameters of FSSSA have been detailed in Table 2.
Most of these parameters are fixed and have minimal impact on the algorithm’s perfor-
mance across benchmark functions. Although this study did not employ a parameter
tuning mechanism, such as CRS-Tuning [61], F-Race [62], or REVAC [63], a systematic
process of experimental adjustment combined with a deep understanding of algorithm
characteristics, as well as drawing from previous literature on SSA research and empirical
outcomes, led to the identification of a well-considered parameter configuration. This
approach aimed to attain optimal algorithm performance for specific problems, ensuring
the rigor and replicability of the experiments conducted in this study.

4.3. Compared with SSA

In this section, convergence accuracy under the same iteration, evaluation times under
the same accuracy, balance and diversity analysis, and the nonparametric statistical tests
experiments are used to verify the effectiveness of the FSSSA. Table 5 shows that four types
of SSA are formed by combining policies. FIS is represented as the fuzzy inference system
strategy, SCM is represented as the sine cosine mutation strategy, WAS is represented as the
wide-area search mechanism strategy. A 0 means that the strategy is not used, and 1 means
that the strategy is used.

Table 5. The combined form of the three strategies.

FIS SCM WAS

SSA 0 0 0
FSSA 1 1 0
SSSA 0 0 1
FSSSA 1 1 1

4.3.1. Convergence Accuracy under Fixed Number of Iterations

This section evaluates the convergence accuracy of SSA and improved SSA under fixed
20,000 FEs on the benchmark function in Table 3. The parameter Settings of the algorithm
are shown in Table 2. The benchmark function selects 30 dimensions. The experimental
results are the mean value and standard deviation after 30 independent runs. The ordinate
is the logarithm base 10 of fitness value, and the best results of each test function are shown
in bold in the table.

Figure 8 shows the convergence curves of SSA, FSSA, SSSA, and FSSSA in partial
functions. Table 6 records the mean value, standard deviation, and optimal value of each
algorithm run 30 times.
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Figure 8. Convergence curve with 20,000 (30 dimensions).

Table 6. Convergence accuracy for 20,000 EFs (30 dimensions).

Function Item SSA FSSA SSSA FSSSA

F1
mean 3.63 × 10−5 4.20 × 10−26 1.17 × 10−158 6.17 × 10−316

std 1.86 × 10−4 1.08 × 10−25 6.43 × 10−158 0
rank 4 3 2 1

F2
mean 3.55 × 10−3 4.21 × 10−13 3.68 × 10−154 7.81 × 10−216

std 1.04 × 10−2 4.54 × 10−13 2.02 × 10−153 0
rank 4 3 2 1



Mathematics 2023, 11, 3722 18 of 42

Table 6. Cont.

Function Item SSA FSSA SSSA FSSSA

F3
mean 2.63 × 10−1 2.00 × 10−24 0 0

std 1.41 × 101 5.92 × 10−24 0 0
rank 4 3 1 1

F4
mean 2.14 × 10−4 4.17 × 10−14 2.71 × 10−114 3.42 × 10−166

std 2.98 × 10−4 5.41 × 10−14 1.48 × 10−113 0
rank 4 3 2 1

F5
mean 4.13 × 10−4 0 0 0

std 5.53 × 10−4 0 0 0
rank 4 1 1 1

F6
mean 0 0 0 0

std 0 0 0 0
rank 1 1 1 1

F7
mean 1.58 × 10−17 1.97 × 10−50 0 0

std 5.49 × 10−17 4.76 × 10−50 0 0
rank 4 3 1 1

F8
mean 3.63 × 10−4 5.61 × 10−5 2.34 × 10−4 4.87 × 10−5

std 2.62 × 10−4 6.17 × 10−6 2.23 × 10−4 5.33 × 10−7

rank 4 2 3 1

F9
mean 1.77 4.93 × 10−1 1.67 3.74 × 10−1

std 4.01 × 10−1 1.62 × 10−1 4.01 × 10−1 8.21 × 10−2

rank 4 2 3 1

F10
mean 7.81 × 101 6.33 × 10−22 9.76 × 10−211 0

std 2.19 × 102 1.14 × 10−21 0 0
rank 4 3 2 1

F11
mean 1.42 × 10−3 0 0 0

std 4.02 × 10−3 0 0 0
rank 4 1 1 1

F12
mean 1.99 × 10−4 4.19 × 10−26 1.09 × 10−278 0

std 9.20 × 10−4 8.85 × 10−26 0 0
rank 4 3 2 1

F13
mean 2.49 × 10−2 8.61 × 10−14 0 0

std 3.23 × 10−2 1.33 × 10−13 0 0
rank 4 3 1 1

F14
mean 1.17 × 10−3 0 0 0

std 6.03 × 10−3 0 0 0
rank 4 1 1 1

F15
mean 2.66 × 10−5 1.13 × 10−24 5.97 × 10−203 4.84 × 10−308

std 1.18 × 10−3 3.04 × 10−24 0 0
rank 4 3 2 1

F16
mean 2.00 × 10−8 4.45 × 10−28 1.27 × 10−278 0

std 8.65 × 10−8 1.13 × 10−27 0 0
rank 4 3 2 1

F17
mean 4.39 × 10−5 0 0 0

std 7.96 × 10−5 0 0 0
rank 4 1 1 1

F18
mean 2.48 × 10−4 0 0 0

std 9.45 × 10−4 0 0 0
rank 4 1 1 1
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Table 6. Cont.

Function Item SSA FSSA SSSA FSSSA

F19
mean 3.80 × 10−2 7.17 × 10−14 8.88 × 10−183 8.88 × 10−16

std 6.00 × 10−2 9.31 × 10−14 0 0
rank 4 3 1 1

F20
mean 5.10 × 10−29 5.15 × 10−78 0 0

std 2.39 × 10−28 1.96 × 10−77 0 0
rank 4 3 1 1

F21
mean 9.71 × 10−6 0 0 0

std 1.64 × 10−5 0 0 0
rank 4 1 1 1

F22
mean 8.50 × 10−4 0 0 0

std 1.79 × 10−3 0 0 0
rank 4 1 1 1

F23
mean 3.51 × 10−12 3.14 × 10−13 0 7.06 × 10−320

std 1.86 × 10−15 3.69 × 10−13 0 0
rank 4 3 1 2

F24
mean 3.79 × 10−6 6.02 × 10−26 8.83 × 10−183 9.88 × 10−324

std 7.94 × 10−6 1.90 × 10−25 1.48 × 10−113 0
rank 4 3 2 1

AverageRank

Rank +/−/= AVR

FSSSA 1 ~ 1.041
SSA 4 23/0/1 3.875
FSSA 3 16/0/8 2.25
SSSA 2 10/1/13 1.375

In Table 6, the symbols “+”, “−”, and “=“, respectively, indicate that the average conver-
gence accuracy of FSSSA over 30 runs (mean) is better than, worse than, or equal to the average
convergence accuracy of the comparison algorithms (mean). Average Value Rank (AVR) rep-
resents the average ranking value of each algorithm in 24 functions, and “Rank” indicates the
final rank. The average ranking shows that the AVR of FSSSA is 1.041, which is the lowest
among all algorithms, indicating the best optimization performance of FSSSA. The data in
the “+/−/=“ indicates that FSSSA outperforms SSA in 23 benchmark functions, outperforms
FSSA in 16 benchmark functions, and outperforms SSSA in 10 benchmark functions.

Combining Figure 8 and Table 6, except for F6, FSSA, SSSA, and FSSSA outperform SSA
in the remaining 23 benchmark functions, indicating that the three variants of SSA proposed
in this paper exhibit significant improvements. SSSA demonstrates higher convergence
accuracy than FSSA in 14 functions. Most of these functions are unimodal functions
or separable multimode functions, and the local optimums of multimode functions are
relatively more and not far away. This puts a high requirement on the exploitation of the
algorithms. The WAS strategy can effectively improve the exploitation of the SSA, so the
WAS strategy has better optimization performance when solving the above functions. The
convergence accuracy of FSSA at F8 and F9 is better than SSSA. The slope of the F8 function
is small and the distance between the local optimal values of F9 is far. These two kinds of
functions require more exploration ability of algorithms. The FSSA containing SCM and
FIS strategy is better than other algorithms in these kinds of functions. It is proved that the
SCM and the FIS strategies can improve the exploration of the algorithm.

In addition, The SSSA can find the optimal value on most functions. Therefore, the
algorithm improved by the WAS strategy has better convergence accuracy. The standard
deviation of the FSSA is minor, so the algorithm improved by FIS and SCM strategy has a more
stable optimization effect. The FSSSA notably outperforms other algorithms on the 24 functions.
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Therefore, the optimization performance of the FSSSA combined with the three strategies can
adapt to more types of functions and the optimization performance is more stable.

4.3.2. The Number of Functional Evaluations with Fixed Target Accuracy

In order to intuitively demonstrate the effectiveness of the improvement strategy, this
study tested the number of FEs required for SSA, FSSA, SSSA, and FSSSA on 24 benchmark
functions under a fixed accuracy. The fixed accuracy was set to 1.00 × 10−100, and the
dimensions of the benchmark functions were set to 50. The experimental results were
compared and analyzed based on the average, maximum, and minimum values obtained
from 30 repetitions. To facilitate comparison and observation, the experimental data were
rounded to integers. The stopping criteria for this experiment were set to reach either the
maximum FEs or achieve the target accuracy. The maximum number of FEs was set to
20,000. The experimental data are presented in Table 7.

Table 7. Experimental results with fixed convergence accuracy (50 dimensions).

Function Limitation Item SSA FSSA SSSA FSSSA

F1 1.00 × 10−100
max 20,000 20,000 17,400 10,815
min 20,000 20,000 400 200
mean 20,000 20,000 3913 3622

F2 1.00 × 10−100
max 20,000 20,000 20,000 20,000
min 20,000 20,000 200 100
mean 20,000 20,000 7370 6630

F3 1.00 × 10−100
max 20,000 20,000 20,000 13,796
min 20,000 20,000 200 100
mean 20,000 20,000 6881 4043

F4 1.00 × 10−100
max 20,000 20,000 20,000 20,000
min 20,000 20,000 900 500
mean 20,000 20,000 7774 7584

F5 1.00 × 10−100
max 20,000 20,000 2600 1814
min 20,000 1729 100 100
mean 20,000 10,788 764 496

F6 1.00 × 10−100
max 800 300 300 200
min 100 100 100 100
mean 253 167 180 127

F7 1.00 × 10−100
max 20,000 20,000 15,333 6875
min 20,000 20,000 100 100
mean 20,000 20,000 2798 2014

F8 1.00 × 10−100
max 20,000 20,000 20,000 20,000
min 20,000 20,000 20,000 20,000
mean 20,000 20,000 20,000 20,000

F9 1.00 × 10−100
max 20,000 20,000 20,000 20,000
min 20,000 20,000 20,000 20,000
mean 20,000 20,000 20,000 20,000

F10 1.00 × 10−100
max 20,000 20,000 20,000 14,501
min 20,000 20,000 100 100
mean 20,000 20,000 4787 4355

F11 1.00 × 10−100
max 20,000 16,667 2100 1713
min 20,000 1188 100 100
mean 20,000 9425 680 537

F12 1.00 × 10−100
max 20,000 20,000 20,000 14,308
min 20,000 20,000 100 100
mean 20,000 20,000 4397 4382
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Table 7. Cont.

Function Limitation Item SSA FSSA SSSA FSSSA

F13 1.00 × 10−100
max 20,000 20,000 419 3861
min 20,000 20,000 100 100
mean 20,000 20,000 309 988

F14 1.00 × 10−100
max 20,000 14,613 3800 1941
min 20,000 834 100 100
mean 20,000 7532 843 590

F15 1.00 × 10−100
max 20,000 20,000 16,800 16,159
min 20,000 20,000 100 100
mean 20,000 20,000 5858 5053

F16 1.00 × 10−100
max 20,000 20,000 20,000 11,413
min 20,000 20,000 200 100
mean 20,000 20,000 4684 4527

F17 1.00 × 10−100
max 20,000 17,836 1300 1980
min 20,000 2555 200 100
mean 20,000 10,450 850 601

F18 1.00 × 10−100
max 20,000 13,683 2900 2401
min 20,000 1545 100 100
mean 20,000 7524 800 599

F19 1.00 × 10−100
max 20,000 20,000 20,000 20,000
min 20,000 20,000 20,000 20,000
mean 20,000 20,000 20,000 20,000

F20 1.00 × 10−100
max 20,000 20,000 42,317 41,071
min 20,000 20,000 100 100
mean 20,000 20,000 1477 1115

F21 1.00 × 10−100
max 20,000 19,994 1904 519
min 20,000 1031 100 100
mean 20,000 13,669 575 270

F22 1.00 × 10−100
max 20,000 18,429 2401 3395
min 20,000 1982 100 100
mean 20,000 10,792 824 751

F23 1.00 × 10−100
max 20,000 20,000 511 3915
min 20,000 20,000 201 100
mean 20,000 20,000 296 1507

F24 1.00 × 10−100
max 20,000 20,000 15,900 14,239
min 20,000 20,000 200 200
mean 20,000 20,000 4524 4073

As shown in Table 7, SSA struggled to achieve the target accuracy within 20,000 evaluations.
FSSA achieved the target accuracy on 8 benchmark functions, while SSSA and FSSSA achieved
the target accuracy on 21 benchmark functions. Except for F13 and F23, FSSSA consistently
achieved the target accuracy with the fewest FEs. Although FSSSA performed relatively weaker
compared to SSSA on F13 and F23, overall, FSSSA demonstrated strong stability.

In conclusion, among the 24 benchmark functions under a fixed accuracy, FSSSA exhibited
the best optimization performance. Thus, FSSSA effectively improved the performance of SSA.

4.3.3. Nonparametric Statistical Tests with SSA

In this section, non-parametric statistical tests are used to examine the performance
differences among the four algorithms listed in Table 5 [64]. This study adopts the Wilcoxon
signed-rank test at a 5% significance level for statistical analysis. The p-values computed
from the Wilcoxon signed-rank test are adjusted using the Bonferroni–Holm correction [65].
The computed and adjusted p-values are presented in Table 8. In the Wilcoxon signed-rank
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test, if the Corrected p-value is less than 0.05, it indicates that the improved algorithm
shows significant differences compared to SSA. If the p-value is greater than 0.05, it means
that the improved algorithm is not significantly different from SSA.

Table 8. p-value results for SSA and improved SSA.

Comparison R+ R− p-Value Corrected p-Value <0.05?

FSSA vs. SSA 297 3 2.70 × 10−5 2.70 × 10−5 yes
SSSA vs. SSA 297 3 2.70 × 10−5 8.10 × 10−5 yes
FSSSA vs. SSA 297 3 2.70 × 10−5 5.40 × 10−5 yes

Based on the results in Table 8, it can be observed that the proposed FSSA, SSSA, and
FSSSA algorithms exhibit significant differences when compared to the original SSA algorithm.

4.3.4. Balance and Diversity Analysis

Striking a balance between exploration and exploitation is one of the key factors in
designing new algorithms or enhancing existing ones. Exploration involves traversing
the entire search space to discover promising regions, known as global search capability.
The exploitation phase involves refining the search by utilizing the promising regions
already discovered to find the optimal solution, known as local search capability. When an
appropriate equilibrium is achieved between exploration and exploitation, algorithms tend
to exhibit favorable convergence behavior [66,67].

In this study, the population diversity measurement method proposed by Hussain et al. [68]
was adopted to assess the algorithm’s balancing capability. This method assesses the algorithm’s
balancing capability by calculating the average variation of distances within the population
across different dimensions. If the average value decreases gradually during iterations, it is
considered as the exploitation phase. Conversely, if the average value increases gradually, it
is considered as the exploration phase. If the dimension diversity decreases while the average
value remains unchanged, it indicates that the algorithm has converged.

Despite its simplicity and intuitiveness, the diversity measurement method is lim-
ited to evaluating the entire population and cannot directly express the exploration or
exploitation status of individual solutions within the population [69]. In this study, this
measurement method was employed to evaluate the balancing and diversity performance
of FSSSA and SSA across 24 test functions, providing clear and substantial evidence in
support of the effectiveness of FSSSA’s improvement strategy.

However, in practical problem-solving scenarios, different problems may require
adjusting the trade-off between exploration and exploitation according to specific circum-
stances. Therefore, in practical applications, it may be necessary to employ more sophisti-
cated methods and metrics to determine when to prioritize exploration or exploitation, in
order to better optimize the algorithm’s performance and discover superior solutions [69].

The balance and diversity of FSSSA and SSA are tested on 24 test functions, as shown
in Figure 9. Figure 9a is the balance analysis diagram of FSSSA, Figure 9b is the balance
analysis diagram of SSA, and Figure 9c is the diversity analysis diagram of FSSSA and
SSA. In Figure 9a,b, the x-axis is the number of iterations, and the y-axis is the percentage.
There are two curves in Figure 9a,b, the red is the exploitation curve, and the blue is
the exploration curve, respectively representing the proportion of the exploitation and
exploration in a certain iteration. In Figure 9c, the x-axis is the number of iterations, and
the y-axis is the population diversity. The red and blue curves represent the diversity of
FSSSA and SSA.
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Figure 9. (a) the balance analysis of FSSSA; (b) The balance analysis of SSA; (c) The diversity analysis
of FSSSA and SSA.

It can be seen from the balance analysis diagram of FSSSA and SSA that, except for
F22 and F23, the exploration of the SSA is larger than the exploitation. Therefore, the
local search ability is weak, resulting in low convergence accuracy. However, in the search
process of the FSSSA, the exploitation stage is larger than the exploration stage, which
provides excellent local search ability for FSSSA. Except for F23, the proportion of the
exploration stage also increases steadily in the late iteration stage to prevent FSSSA from
falling into the local optimum.

In addition, according to the diversity analysis diagram of FSSSA and SSA, the pop-
ulation diversity of SSA is higher due to the more stages of random location update and
strong global search ability. Although the population diversity of the FSSSA is low, most of
the function iterations show an upward trend in the late stage. It ensures the population
diversity of the FSSSA in the late-stage search.
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The balance and diversity analysis of SSA and FSSSA show that the proposed FSSSA can
effectively balance the exploration and exploitation of the algorithm and performs perfectly.

4.4. FSSSA with Advanced Metaheuristic Algorithms

To further verify the optimization performance of the FSSSA, eight metaheuristic algo-
rithms are selected for experimental testing on the benchmark function in Table 3. FSSSA
compared with White Shark Optimizer, Runge Kutta Optimization algorithm, Weighted
Mean of Vectors algorithm, Equilibrium Optimizer, Group Teaching Optimization Algo-
rithm with Information Sharing, Gull Optimization Algorithm, Grey Wolf Optimizer and
Ensemble Sinusoidal Differential Covariance Matrix Adaptation with Euclidean Neighbor-
hood (LSHADE-cnEpSin, one of the winners of CEC 2017 competition). The population
number of all algorithms is set as 50, the population of the LSHADE-cnEpSin is not set
because the population of it changes with the update process. The number of FEs is 20,000.
The other parameters are set as shown in Table 2, and the dimension of the benchmark
function is 50.

4.4.1. Comparative Analysis of Convergence Accuracy

The experimental data are shown in Table 9, and the comparison of convergence
curves of 50 dimensions is shown in Figure 10.

Figure 10. Cont.
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Figure 10. Convergence curve with 20,000 FEs (50 dimensions).
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Table 9. Convergence accuracy under 20,000 EFs (50 dimensions).

Fun Item WSO RUN INFO PSO ISGTOA SOA GWO LSHADE-cnEpSin FSSSA

F1
mean 5.55 × 102 5.92 × 10−77 5.40 × 10−53 4.71 × 103 1.09 × 10−19 5.69 × 10−8 2.33 × 10−18 1.18 × 101 0

std 2.40 × 102 2.63 × 10−76 3.76 × 10−53 1.52 × 103 5.42 × 10−20 1.29 × 10−7 2.08 × 10−18 4.23 0
rank 8 2 3 9 4 6 5 7 1

F2
mean 1.09 × 101 2.38 × 10−45 3.95 × 10−26 5.97 × 101 1.73 × 10−10 6.09 × 10−7 2.27 × 10−11 5.02 1.96 × 10−137

std 2.18 1.09 × 10−44 1.41 × 10−26 3.05 × 101 7.15 × 10−11 4.51 × 10−7 9.11 × 10−12 1.44 1.07 × 10−136

rank 8 2 3 9 5 6 4 7 1

F3
mean 2.03 × 103 4.26 × 10−57 1.17 × 10−49 1.89 × 104 7.61 × 10−6 2.01 × 101 2.19 × 10−1 8.95 × 102 0

std 6.06 × 102 1.53 × 10−56 1.28 × 10−49 6.38 × 103 1.44 × 10−5 3.73 × 101 4.53 × 10−1 2.46 × 102 0
rank 8 2 3 9 4 6 5 7 1

F4
mean 1.25 × 101 1.19 × 10−35 2.55 × 10−27 2.91 × 101 6.53 × 10−9 1.75 × 101 6.51 × 10−4 6.12 0

std 1.67 2.74 × 10−35 1.58 × 10−27 3.49 2.79 × 10−9 2.31 × 101 5.97 × 10−4 1.26 0
rank 7 2 3 9 4 8 5 6 1

F5
mean 1.32 × 102 0 0 2.65 × 102 6.51 × 10−16 3.31 × 101 7.85 2.72 × 102 5.64 × 10−173

std 4.38 × 101 0 0 3.57 × 101 3.25 × 10−15 2.48 × 101 8.71 1.95 × 101 0
rank 7 1 1 8 4 6 5 9 1

F6
mean 5.79 × 104 0 0 4.50 × 105 0 3.33 × 10−2 0 1.01 × 103 0

std 1.50 × 104 0 0 2.14 × 105 0 1.83 × 10−1 0 3.37 × 102 0
rank 8 1 1 9 1 6 1 7 1

F7
mean 1.84 × 10−2 2.11 × 10−177 3.26 × 10−105 7.93 × 10−1 2.66 × 10−41 1.19 × 10−16 3.95 × 10−35 3.17 × 10−5 0

std 1.38 × 10−2 0 4.76 × 10−105 4.81 × 10−1 3.21 × 10−41 5.78 × 10−16 6.97 × 10−35 2.39 × 10−5 0
rank 8 2 3 9 4 6 5 7 1

F8
mean 2.49 × 10−1 4.34 × 10−4 1.25 × 10−3 2.53 3.12 × 10−3 7.75 × 10−3 2.77 × 10−3 2.87 × 10−2 4.49× 10−5

std 1.24 × 10−1 3.12 × 10−4 1.04 × 10−3 7.59 × 10−1 1.60 × 10−3 4.93 × 10−3 1.36 × 10−3 1.11 × 10−2 5.85× 10−5

rank 8 2 3 9 5 6 4 7 1

F9
mean 3.82 × 102 9.44 × 10−2 3.37 × 10−1 1.01 × 107 8.86 × 10−1 4.66 1.60 1.43 × 101 7.77 × 10−1

std 7.69 × 102 7.28 × 10−2 2.55 × 10−1 7.60 × 106 3.83 × 10−1 5.66 × 10−1 3.55 × 10−1 5.39 2.39 × 10−1

rank 8 1 2 9 4 6 5 7 3

F10
mean 2.50 × 106 6.13 × 10−73 2.81 × 10−48 7.92 × 107 1.06 × 10−15 1.98 × 10−5 2.25 × 10−15 2.01 × 105 0

std 1.55 × 106 3.07 × 10−72 2.67 × 10−48 2.92 × 107 7.11 × 10−16 4.49 × 10−5 1.86 × 10−15 6.97 × 104 0
rank 8 2 3 9 4 6 5 7 1
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Table 9. Cont.

Fun Item WSO RUN INFO PSO ISGTOA SOA GWO LSHADE-cnEpSin FSSSA

F11
mean 1.44 × 102 0 0 2.54 × 102 1.02 × 10−13 3.04 × 101 7.43 2.68 × 102 0

std 5.95 × 101 0 0 5.80 × 101 4.61 × 10−13 2.15 × 101 5.01 2.26 × 101 0
rank 7 1 1 8 4 6 5 9 1

F12
mean 5.54 × 102 3.22 × 10−76 5.79 × 10−53 4.80 × 103 1.86 × 10−19 2.55 × 10−8 2.22 × 10−18 1.16 × 101 0

std 1.76 × 102 1.61 × 10−75 5.66 × 10−53 1.40 × 103 2.17 × 10−19 2.74 × 10−8 2.69 × 10−18 3.19 0
rank 8 2 3 9 4 6 5 7 1

F13
mean 6.30 0 0 1.27 × 101 1.74 × 10−8 2.00 × 101 2.91 × 10−10 1.54 0

std 6.47 × 10−1 0 0 1.11 9.46 × 10−8 7.87 × 10−4 1.46 × 10−10 2.64 × 10−1 0
rank 7 1 1 8 5 9 4 6 1

F14
mean 6.17 0 0 3.68 × 101 0 3.00 × 10−2 1.67 × 10−3 1.11 0

std 1.94 0 0 1.36 × 101 0 5.80 × 10−2 5.22 × 10−3 4.54 × 10−2 0
rank 8 1 1 9 1 6 5 7 1

F15
mean 1.10 × 102 1.49 × 10−89 1.15 × 10−51 9.21 × 102 3.18 × 10−20 4.71 × 10−9 5.57 × 10−19 2.90 0

std 4.30 × 101 4.90 × 10−89 1.39 × 10−51 3.31 × 102 2.95 × 10−20 6.36 × 10−9 5.23 × 10−19 1.26 0
rank 8 2 3 9 4 6 5 7 1

F16
mean 4.44 × 101 1.92 × 10−187 3.64 × 10−60 9.50 × 1015 1.34 × 10−40 3.90 × 10−34 1.89 × 10−68 2.07 × 102 0

std 1.16 × 102 0 8.31 × 10−60 4.56 × 1016 2.20 × 10−40 1.37 × 10−33 9.79 × 10−68 4.93 × 102 0
rank 7 2 4 9 5 6 3 8 1

F17
mean 0 0 0 5.89 × 10−7 0 0 0 0 0

std 0 0 0 1.36 × 10−6 0 0 0 0 0
rank 1 1 1 9 1 1 1 1 1

F18
mean 5.83 0 0 4.07 × 101 6.66 × 10−10 3.07 × 10−2 3.68 × 10−3 1.10 0

std 1.55 0 0 1.67 × 101 3.65 × 10−9 3.68 × 10−2 8.36 × 10−3 3.17 × 10−2 0
rank 8 1 1 9 4 6 5 7 1

F19
mean 5.99 8.88 × 10−16 8.88 × 10−16 1.26 × 101 6.55 × 10−1 2.00 × 101 2.78 × 10−10 1.48 8.88× 10−16

std 7.18 × 10−1 0 0 1.34 3.59 9.10 × 10−4 1.35 × 10−10 2.37 × 10−1 0
rank 7 1 1 8 5 9 4 6 1

F20
mean 6.63 × 10−7 5.25 × 10−280 5.15 × 10−160 4.60 × 10−5 3.93 × 10−60 1.58 × 10−34 2.28 × 10−61 6.17 × 10−15 0

std 9.73 × 10−7 0 1.21 × 10−159 5.01 × 10−5 1.05 × 10−59 8.49 × 10−34 1.18 × 10−60 1.38 × 10−14 0
rank 8 2 3 9 5 6 4 7 1
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Table 9. Cont.

Fun Item WSO RUN INFO PSO ISGTOA SOA GWO LSHADE-cnEpSin FSSSA

F21
mean 7.75 2.32 × 102 1.58 × 101 2.05 × 102 9.76 9.51 2.04 × 101 1.97 × 101 0

std 2.85 3.58 × 103 2.45 × 102 5.57 1.04 9.52 × 10−1 5.20 × 10−1 3.85 × 10−1 0
rank 4 3 2 9 6 5 8 7 1

F22
mean 2.20 × 102 0 0 2.73 × 102 1.39 × 101 5.44 × 101 1.27 × 101 2.06 × 102 0

std 6.10 × 101 0 0 3.75 × 101 3.53 × 101 4.64 × 101 6.99 2.35 × 101 0
rank 8 1 1 9 5 6 4 7 1

F23
mean 3.57 × 10−18 1.36 × 10−19 1.51 × 10−20 8.33 × 10−10 5.43 × 10−20 1.70 × 10−19 3.63 × 10−12 1.33 × 10−14 5.57 × 10−153

std 1.34 × 10−17 2.62 × 10−20 8.87 × 10−21 2.76 × 10−9 9.49 × 10−21 4.14 × 10−21 9.16 × 10−12 2.28 × 10−14 5.57 × 10−152

rank 6 4 2 9 3 5 8 7 1

F24
mean 3.76 × 101 6.81 × 10−90 7.45 × 10−53 4.36 1.06 × 10−21 2.70 × 10−11 5.13 × 10−21 1.44 × 10−1 0

std 1.66 × 101 2.92 × 10−89 6.86 × 10−53 1.47 1.01 × 10−21 7.62 × 10−11 4.71 × 10−21 4.57 × 10−2 0
rank 9 2 3 8 4 6 5 7 1

Average Rank

Algorithm Rank +/−/= AVR

FSSSA 1 ~ 1.083
WSO 8 23/0/1 7.250
RUN 2 14/1/9 1.708
INFO 3 14/1/9 2.167
PSO 9 24/0/0 8.792
ISGTOA 4 21/0/3 3.958
SOA 6 23/0/1 6.042
GWO 5 22/0/2 4.583
LSHADE-cnEpSin 7 23/0/1 6.833
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From the convergence curve in Figure 10, it can be observed that, except for F9, FSSSA
outperforms other algorithms in the remaining functions. In F9, although FSSSA exhibits
weaker optimization performance compared to RUN and ISGTOA, it demonstrates faster
convergence speed in 24 functions compared to the other 8 algorithms.

In Table 9, the symbols “+”, “−”, and “=“, respectively, indicate that the average
convergence accuracy of FSSSA over 30 runs (mean) is better than, worse than, or equal to
the average convergence accuracy of the comparison algorithms (mean). AVR represents
the average ranking value of each algorithm in 24 functions, and “Rank” indicates the
final rank. Considering the data comparison in Table 9, it can be deduced that FSSSA is
capable of finding the theoretical optimal values in 18 benchmark functions. Apart from F9,
FSSSA’s convergence accuracy is higher than other algorithms in 23 benchmark functions.
Regarding F9, RUN achieves the highest convergence accuracy, while FSSSA exhibits the
fastest convergence speed.

The data in the “+/−/=“ rows indicates that the average convergence accuracy of
FSSSA over 30 runs (mean) outperforms SOA and LSHADE-cnEpSin in 23 benchmark
functions, outperforms RUN and INFO in 14 benchmark functions, outperforms PSO in
24 benchmark functions, outperforms ISGTOA in 21 benchmark functions, and outperforms
GWO in 22 benchmark functions. FSSSA’s AVR is 1.083, ranking first among all algorithms.

In conclusion, the FSSSA notably outperforms the other eight metaheuristic algorithms.

4.4.2. Nonparametric Statistical Tests with Other Algorithms

In order to verify the effectiveness of the experiment in the previous section, the
nonparametric Wilcoxon signed-rank test and the Friedman test [64] were used to compare
the FSSSA with eight algorithms. In the Wilcoxon signed-rank test, The p-values are
adjusted using the Bonferroni–Holm correction [65]. The computed and corrected p-values
are shown in Table 10. If the Corrected p-value is less than 0.05, it indicates that FSSSA
is significantly different. If the p-value is greater than 0.05, it means that FSSSA is not
significantly different compared to the other algorithms.

Table 10. p-value results for FSSSA and other metaheuristic algorithms.

Comparison R+ R− p-Value Corrected p-Value <0.05?

FSSSA vs. WSO 291 9 2.70 × 10−5 5.4 × 10−5 yes
FSSSA vs. RUN 229 71 8.99 × 10−3 7.19 × 10−2 no
FSSSA vs. INFO 229 71 8.99 × 10−3 6.29 × 10−2 no
FSSSA vs. PSO 300 0 1.80 × 10−5 1.80 × 10−5 yes
FSSSA vs. ISGTOA 282 28 6.00 × 10−5 3.60 × 10−4 yes
FSSSA vs. SOA 291 9 2.70 × 10−5 8.10 × 10−5 yes
FSSSA vs. GWO 288 12 4.00 × 10−5 1.60 × 10−4 yes
FSSSA vs.
LSHADE-cnEpSin 291 9 2.70 × 10−5 5.40 × 10−5 yes

From Table 10, it is evident that FSSSA exhibits significant differences when compared
with the six metaheuristic algorithms. In comparison with the RUN and INFO algorithms,
the corrected p-values are greater than 0.05. Although not statistically significant, FSSSA’s
optimization performance is superior to both the RUN and INFO algorithms in 14 functions.

The Friedman test allows for multiple comparisons among several algorithms by
calculating ranks based on observed results. The experimental results are shown in Table 11.
In the Friedman test, to compare the significance differences between FSSSA and other
algorithms, we calculate the Critical Difference (CD) using the Bonferroni–Dunn test [70].
The Bonferroni–Dunn test is more suitable for comparing a particular algorithm with the
remaining k-1 algorithms. If the average Rank Difference (RD) between FSSSA and other
algorithms is greater than the CD, then it indicates that FSSSA statistically outperforms
those algorithms. If it is less than the CD, then it indicates that there is no statistically
significant difference between them.
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Table 11. Friedman test for nine algorithms.

FSSSA WSO RUN INFO PSO ISGTOA SOA GWO LSHADE-cnEpSin

Mean rank 1.63 7.40 2.25 2.71 8.79 4.25 6.19 4.81 6.98
Final rank 1 8 2 3 9 4 7 6 8
p-value 2.2129 × 10−32

Statistic 19.2375
Critical Difference (CD) 2.1535

Comparison Rank Difference (RD) <2.1535?

FSSSA-WSO 5.77 yes
FSSSA-RUN 0.62 no
FSSSA-INFO 1.08 no
FSSSA-PSO 7.16 yes
FSSSA-ISGTOA 2.62 yes
FSSSA-SOA 4.56 yes
FSSSA-GWO 3.18 yes
FSSSA-LSHADE-cnEpSin 5.35 yes

From Table 11, it is evident that FSSSA shows significant differences compared to
8 algorithms, and there is no significant difference when compared to RUN and INFO.
However, FSSSA ranks first in terms of average ranks. Considering the average ranks and
values of each algorithm, the overall analysis indicates that FSSSA’s optimization capability
surpasses the other 8 algorithms.

It can be observed that in the comparative experiments with SSA, FSSSA demonstrates
excellent performance in terms of convergence speed, convergence accuracy, balance, di-
versity, and non-parametric statistical tests, thereby confirming the effectiveness of the
improvement strategies. In the comparative experiments with eight other metaheuristic
algorithms, FSSSA achieves the first rank in terms of convergence speed, convergence accu-
racy, and non-parametric statistical tests, thus demonstrating the outstanding optimization
performance of FSSSA.

5. Application to Engineering Optimization Problems

Engineering problems are common challenges and demands in practical applications,
often characterized by diversity and complexity, spanning across various fields and contexts.
Selecting engineering problems as test cases allows for a better assessment of the algorithm’s
practicality and adaptability, providing valuable solutions for real-world applications. At
the same time, engineering problems are also widely used to verify the performance
of optimization algorithms [12,28]. Therefore, this study chose four engineering design
problems [71], namely Speed Reducer (SR), Cantilever Beam (CB), Optimal Design of the
I-shaped Beam (ODIB), and Piston Lever (PL). These problems originate from different
application domains, and each problem has distinct design requirements and optimization
objectives. Specific optimization problems are covered in each section.

The FSSSA algorithm was compared with the classic SSA and Biogeography-based
Optimization (BBO) [72]. To ensure the fairness of the experiment, the population number
was set to 50, the FEs were set to 20,000, and the other parameters were consistent with the
original paper. Each algorithm was independently run 30 times and recorded separately
after taking its average value to reduce the randomness of the experiment.

5.1. Speed Reducer (SR)

The SR is an essential part of the gearbox in the mechanical system, as shown in
Figure 11 [71], and is widely used [73]. This optimization problem has 11 constraints and
7 variables. The mathematical expression to describe this problem is shown in Equation (19).
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Figure 11. Schematic diagram of speed reducer [71].

Minimize:
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2.9 ≤ x6 ≤ 3.9,

5 ≤ x7 ≤ 5.5.

(19)

where x1 (b in Figure 11) represents the width of the surface, x2 (m in Figure 11) represents
the tooth mold, x3 (z in Figure 11) represents the number of teeth in the pinion, x4 (l1 in
Figure 11) represents the length of the first shaft between bearings, x5 (l2 in Figure 11)
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represents the length of the second shaft between bearings, x6 (d1 in Figure 11) represents
the diameter of the second axis, and x7 (d2 in Figure 11) represents the diameter of the
second axis.

The experimental results are shown in Table 12, and the convergence curve is shown
in Figure 15a. The results show that the FSSSA algorithm is superior to other algorithms in
terms of final accuracy.

Table 12. Speed reducer experimental data.

Algorithm Best Worst Mean Std

BBO 3.26 × 103 3.73 × 103 3.49 × 103 1.31 × 102

SSA 3.22 × 103 3.86 × 103 3.46 × 103 1.39 × 102

FSSSA 3.09 × 103 3.15 × 103 3.20 × 103 5.79 × 101

5.2. Cantilever Beam (CB)

The CB is a weight optimization problem of a cantilever beam with a square cross-
section, which is generally an example of structural engineering design. The structure
diagram is shown in Figure 12 [71], and the mathematical expression to describe this kind
of problem is shown in Equation (20).

Figure 12. Schematic diagram of cantilever beam [71].

Minimize:
f (X) = 0.0624(x1 + x2 + x3 + x4 + x5),

Subject to:

g(X) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0,

Variable range:
0.01 ≤ xi ≤ 100, i = 1, . . . , 5. (20)

where x1 to x5, respectively represents the width (or height) of five hollow square blocks
with constant thickness, which are called decision variables, their thickness t remains
unchanged (here t = 2/3).

The experimental results are shown in Table 13, and the convergence curve is shown
in Figure 15b. The results show that the FSSSA algorithm is superior to other algorithms in
terms of final accuracy.
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Table 13. Cantilever beam experimental data.

Algorithm Best Worst Mean Std

BBO 2.00 3.78 2.65 3.82 × 10−1

SSA 1.56 1.74 1.63 5.38 × 10−2

FSSSA 1.44 1.56 1.56 3.47 × 10−2

5.3. Optimal Design of the I-Shaped Beam

The ODIB is a vertical disturbance optimization problem of the I-beam. The primary
purpose is to minimize the vertical deflection of the I-beam under the constraints of cross-
sectional area and stress under preset loads. The structure diagram is shown in Figure 13 [71],
and the mathematical expression to describe this problem is shown in Equation (21).

Figure 13. Schematic diagram of optimal design of the I-shaped beam [71].

Minimize:

f (X) =
5000

x3(x2 − 2x4)
3/12 +

(
x1x3

4/6
)
+ 2bx4(x2 − x4/2)2 ,

Subject to:

g1(X) = 2x1x3 + x3(x2 − 2x4) ≤ 300,

g2(X) = 18x2×104

x3(x2−2x4)
3+2x1x3(4x2

4+3x2(x2−2x4))
+ 15x1×103

(x2−2x4)x2
3+2x3x3

1
≤ 56,

Variable range:
10 ≤ x1 ≤ 50,
10 ≤ x2 ≤ 80,
0.9 ≤ x3 ≤ 5,
0.9 ≤ x4 ≤ 5.

(21)

where, x1 represents flange width (b in Figure 13), x2 section height (h in Figure 13), x3 web
thickness (tw in Figure 13), x4 flange thickness (t f in Figure 13), f (x) is vertical disturbance of
I-beam, L and E are beam length and elastic modulus, which are 5200 and 523.104, respectively.

The experimental results are shown in Table 14, and the convergence curve is shown
in Figure 15c. The results show that the FSSSA algorithm outperforms other algorithms
regarding final accuracy.

Table 14. Optimal design of the I-shaped beam experimental data.

Algorithm Best Worst Mean Std

BBO 1.42 × 10−2 1.57 × 10−1 3.91 × 10−2 3.72 × 10−2

SSA 1.38 × 10−2 4.21 × 10−1 1.31 × 10−1 1.17 × 10−1

FSSSA 1.31 × 10−2 1.31 × 10−1 3.10 × 10−2 4.46 × 10−3
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5.4. Piston Lever (PL)

The PL is an optimization problem for positioning several piston components, with
the primary goal of minimizing fuel consumption by increasing the piston rod from 0◦ to
45◦. The structure diagram is shown in Figure 14 [71], and the mathematical expression to
describe this kind of problem is shown in Equation (22).

Figure 14. Schematic diagram of piston lever [71].

Minimize:
f (X) =

1
4

πx2
3(L2 − L1),

Subject to:
g1(X) = QL cos θ − R× F ≤ 0,

g2(X) = Q(L− x4)−Mmax ≤ 0,

g3(X) = 1.2(L2 − L1)− L1 ≤ 0,

g4(X) = x3
2 − x2 ≤ 0,

where:
R = |−x4(x4 sin θ+x1)+x1(x2−x4 cos θ)|√

(x4−x2)
2+x2

1

,

F =
πPx2

3
4 ,

L1 =
√
(x4 − x2)

2 + x2
1,

L2 =
√
(x4 sin θ + x1)

2 + (x2 − x4 cos θ)2,

θ = 45
◦
,

Q = 10, 000 lbs,

L = 240 in,

Mmax = 1.8× 106lbs in,

P = 1500 psi,

Variable range:
0.05 ≤ x1, x2, x4 ≤ 500,

0.05 ≤ x3 ≤ 120.
(22)

where x1, x2, x3, and x4, respectively, represent the positioning of four optimized piston
components, corresponding to H, B, D, and X, respectively, in Figure 14.
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The experimental results are shown in Table 15, and the convergence curve is shown
in Figure 15d. The results show that the FSSSA algorithm is superior to other algorithms in
terms of final accuracy.

Table 15. Piston lever experimental data.

Algorithm Best Worst Mean Std

BBO 4.33 × 102 4.85 × 104 7.56 × 103 1.00 × 104

SSA 4.52 × 102 1.22 × 105 2.61 × 104 3.28 × 104

FSSSA 4.90 × 101 2.67 × 103 4.59 × 102 5.72 × 102

Figure 15. Convergence curve of engineering problems: (a) Speed reducer; (b) Cantilever beam;
(c) Optimal design of the I-shaped beam; (d) Piston lever.

In summary, FSSSA performs well in the optimization of four engineering problems,
except for some stability issues observed in the CB problem. When compared to SSA and
BBO, FSSSA has shown the ability to find superior design solutions, significantly improving
system performance and efficiency while satisfying the given constraints.

Overall, the performance advantages of FSSSA make it a reliable choice for solving
engineering optimization problems. Its overall effectiveness and potential for applications
make FSSSA a valuable tool for seeking better design solutions.
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6. Conclusions

This paper proposes an improved squirrel search algorithm (FSSSA) to solve the
problems of the slow convergence speed and unbalanced search stages of the SSA. Using
the fuzzy inference system, sine cosine mutation, and the wide-area search mechanism to
enhance the performance of SSA. By comparing the improved SSA with four evaluation
index experiments on 24 benchmark functions, the effectiveness of the FSSSA is proved.
From the convergence accuracy test and evaluation times tests, FSSSA performs excellently
in the convergence speed. According to the balance and diversity analysis, FSSSA can better
balance the exploration and exploitation ability and improve the convergence accuracy. By
comparing the results in convergence accuracy and non-parametric statistical experiments,
it can be analyzed that FSSSA maintains the top rank with other algorithms. In addition,
FSSSA is applied to four kinds of engineering problems, and the experimental results show
that FSSSA is more competitive in dealing with real complex problems.

This study will be helpful to further research on SSA. To meet the requirement of the
complex problems, it can simplify the actual steps of FSSSA, and reduce the running time
and computational complexity of the algorithm. In addition, FSSSA can be used to solve
the multi-objective and feature selection.
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