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Abstract: The Median-of-Mean (MoM) estimation is an efficient statistical method for handling data
with contamination. In this paper, we propose a variance-dependent MoM estimation method using
the tail probability of a binomial distribution. The bound of this method is better than the classical
Hoeffding method under mild conditions. This method is then used to study the concentration of
variance-dependent MoM empirical processes and sub-Gaussian intrinsic moment norm. Finally, we
give the bound of the variance-dependent MoM estimator with distribution-free contaminated data.

Keywords: concentration inequality; Median-of-Mean; robust machine learning; contaminated data
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1. Introduction

Nowadays, there is a huge amount of data in information processing, and the data are
varied. With the rapid expansion of data volume, traditional centralized data processing
has gradually become unable to adapt to the current needs, which makes it possible to
distribute processing power to all computers on the network.

When dealing with large amounts of data, it is inevitable to produce contaminated
data which we generally call outliers. The outliers will result in low accuracy or high
sensitivity of data processing tasks. Naturally, inferring probability density functions
from contaminated samples is an important problem. Correspondingly, when there are no
outliers in a dataset, we call such a dataset sane.

The Median-of-Mean (MoM) method is an effective way to deal with contaminated
data, which divides the original data into several blocks, calculates the mean for each
block, and then takes the median of these means. The literature on MoM methods can be
traced back to Ref. [1]. In recent years, MoM methods have been widely used in the field
of machine learning. For example, Ref. [2] used the MoM method to design estimators
for kernel mean embedding and maximum mean discrepancy with excessive resistance
properties to outliers; Ref. [3] applied the MoM method to achieve the optimal trade-off
between accuracy and confidence under minimal assumptions in the classical statistical
learning/regression problem; Ref. [4] introduced an MoM method for robust machine
learning without deteriorating the estimation properties of a given estimator which is
also easily computable in practice; Ref. [5] introduced a robust nonparametric density
estimator combining the popular Kernel Density Estimation method and the Median-of-
Means principle.

When using MoM methods to deal with contaminated data, these data often do not
have obvious normal distribution characteristics but have more extensive sub-Gaussian
properties; thus, non-asymptotic techniques are needed. Non-asymptotic inference can
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give full play to its advantages in the case of finite samples. Especially in the field of
machine learning, non-asymptotic inference can establish strict error boundaries for the
desired learning program (see Ref. [6–8]). Sometimes when working with data, it is difficult
to know the exact distribution; this calls for a more general study such as sub-Gaussian,
sub-exponential, heavy-tailed, and bounded distributions. For example, Ref. [9] studied
the non-asymptotic concentration of the heteroskedastic Wishart-type matrices; Ref. [10]
constructed sub-Gaussian estimators of a mean vector under adversarial contamination
and heavy-tailed data by Median-of-Mean versions of the Stahel–Donoho outlyingness and
of Median Absolute Deviation functions; Ref. [11] obtained the deconvolution for some
singular density errors via a combinatorial Median-of-Mean approach and assessed the
estimator quality by establishing non-asymptotic risk bounds.

To obtain a clear picture of robust estimation from a non-asymptotic viewpoint,
variance-dependent MoM methods based on binomial tail probability are mainly studied,
including uncontaminated and contaminated cases. The paper proceeds as follows. We
first provide a variance-dependent MoM-estimator bias inequality by using bounds on
binomial tails with unbounded samples, whose bias bound is tighter than the classical
Hoeffding’s bound (see Section 2). Then, by the variance-dependent MoM inequality, we
obtain the generalization bound via entropic complexity (see Section 3.1) and the non-
asymptotic property via Sub-Gaussian intrinsic moment norm (see Section 3.2). Finally, the
variance-dependent MoM inequality with contamination data is illustrated in Section 4.

2. Variance-Dependent Median-of-Mean Estimator without Outliers

The MoM method was originally introduced on page 242 of Ref. [1]; it reinforces the
effect of the empirical mean on the heavy-tail distribution while inheriting its efficiency on
the light-tail distribution. The MoM estimator is derived as follows.

Without loss of generality, suppose that the sample data X1, X2, . . . , Xn are decom-
posed into K blocks, with each block including B observations, that is to say, n = KB.
We first compute the mean of each block, which leads to estimators µ̂1, · · · , µ̂K and each
estimator is based on B observations. Then, the MoM estimator is given by the median of
all these estimators, i.e.,

MoMK[µ] = median(µ̂1, · · · , µ̂K).

It turns out that, even with a very mild condition Var(X) = σ2 < ∞, the MoM
estimator has a nice concentration inequality under finite sample case.

Given the i.i.d. sample X1, X2, . . . , Xn with mean µ0 and finite variance σ2, using Ho-
effding’s inequality, Proposition 1 in Ref. [12] produces the following concentration inequality:

P(|MoMK[µ]− µ0| > t) ≤ exp
(
− nt2

27σ2

)

where t = σ
√
(2 + δ)/B ≥ σ

√
2
√

π−
√

2
B —see detailed description in Remark 1.

When additional conditions are applied to the distribution under consideration, stricter
boundaries can be obtained, such as our results on binomial tails (Theorem 1), which can
be better.

In fact, sometimes we need to block the data, but the minimum number of samples per
block is often a concern, because it involves efficiency and robustness issues, and, from a
statistical point of view, the effect of variance is taken into account. The following theorem
takes into account the partitioning of variance effects and yields the variance-dependent
MoM inequality.

Theorem 1. Given the i.i.d. samples X1, X2, . . . , Xn with mean µ0 and finite variance σ2, for
∀δ ≥

√
2√

π−
√

2
, there exists B ∈ N and ε > 0, such that Bε2 ≥ (2+ δ)σ2. Then, the MoM estimator

has the following concentration inequality:
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P(|MoMK[µ]− µ0| > t) ≤ exp
(
−0.0976nt2

σ2

)
(1)

where t = σ
√
(2 + δ)/B.

A powerful feature of Theorem 1 is that Xis can be unbounded in this case. In addition,
finite sample exponential concentration is not easy to obtain if only variance exists (see
Ref. [13]). And Theorem 1 provides the basis for further obtaining the inequality with
outliers. In the process of proving the theorem, we used the following lemma.

Lemma 1 (Theorem 1 of [14]). Suppose Sn ∼ Bin(n, p), a > p ∈ (0, 1), and 1 6 an 6 n− 1.
If an ∈ N, then

P(Sn > an) 6
1

1− r
1√

2πa(1− a)n
e−nD(a‖p).

where r = r(a, p) := p(1−a)
a(1−p) , and D(a‖p) := a log a

p + (1− a) log 1−a
1−p is the KL divergence

between Bernoulli distributions with parameters a and p. If an /∈ N, the bound still holds, but it can
be tightened by replacing a with a∗ := dane/n.

Now, we give a detailed proof of Theorem 1.

Proof of Theorem 1. First, observe that the event

{|MoMK[µ]− µ0| > ε} for ∀ε ≥ 0

implies that at least K/2 of µ̂`(` = 1, . . . , K) has to be outside ε distance to µ0 for ∀ε ≥ 0.
Namely,

{|MoMK[µ]− µ0| > ε} ⊂
{

K

∑
`=1

1(|µ̂` − µ0| > ε) ≥ K
2

}
for ∀ε ≥ 0.

Here, it is assumed that K is an even number. When K is an odd number, take at least
dK/2e, and the same can be said. For the convenience of writing, the following process of
proof only writes the case of at least K/2, while proving the case of dK/2e is no difference.

Define Z` = 1(|µ̂` − µ0| > ε) and let p̄ := p̃ε,B = E(Z`) = P(|µ̂` − µ0| > ε). Note the
theorem condition and the Chebyshev’s inequality (see p. 239 in Ref. [15]), which imply
that there exits B ∈ N and ε > 0 such that

p̃ := p̃ε,B = P(|µ̂` − µ0| > ε) ≤ σ2

Bε2 <
1
2

. (2)

In fact, the detailed derivation process is as follows:

P(|µ̂` − µ0| > ε) ≤ Var(µ̂`)

ε2

=
Var
(

Xl1+···+XlB
B

)
ε2

=

1
B2 Var

(
∑B

i=1 Xli

)
ε2

=
1

B2 ∑B
i=1 Var(Xli)

ε2

=
1

B2 Bσ2

ε2

=
σ2

Bε2 .
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The random variables Z` ∼ Bernoulli( p̃) are i.i.d. because of the i.i.d. samples
X1, X2, · · · , Xn. Applying Lemma 1 (with a = 1/2, n = K, and p = p̃ in Lemma 1) to the
summations gives

P(|MoMK[µ]− µ0| > ε) ≤ P
(

K

∑
`=1

Z` ≥
K
2

)
≤ 1− p̃

1− 2p̃

√
2

πK
e−KD

(
1
2

∣∣∣∣ p̃),

where D
(

1
2

∣∣∣∣ p̃) = 1
2 log

(
1

4p̃(1− p̃)

)
.

Setting B ≥ (2 + δ)σ2/ε2 > 2σ2/ε2 for ∀δ > 0 satisfies Equation (2); then,

P
(
|MoMK[µ]− µ0| > σ

√
(2 + δ)K

n

)
≤ 1− p̃

1− 2p̃

√
2

πK
e−KD

(
1
2

∣∣∣∣ p̃)

=

(
1 +

p̃
1− 2p̃

)√
2

πK
e−KD

(
1
2

∣∣∣∣ p̃)

≤ δ + 1
δ

√
2

πK

(
1 +

δ2

4 + 4δ

)− K
2

When K = 1, we set δ ≥
√

2√
π−
√

2
≈ 3.95 so that δ+1

δ

√
2

πK ≤
δ+1

δ

√
2
π ≤ 1(K = 1, · · · , n).

Then, it follows that

P
(
|MoMK[µ]− µ0| > σ

√
(2 + δ)K

n

)
≤
(

1 +
δ2

4 + 4δ

)− K
2

for 1 ≤ K ≤ n and δ ≥
√

2/(
√

π −
√

2).
Now, taking t := σ

√
(2 + δ)K/n gives

P(|MoMK[µ]− µ0| > t) ≤ exp
(
− nt2

2(2 + δ)σ2 ln
(

1 +
δ2

4 + 4δ

))

The function g(δ) = − 1
2+δ ln

(
1 + δ2

4+4δ

)
(δ ≥

√
2√

π−
√

2
) is a monotonically decreasing

function, so its maximum is g
(√

2/(
√

π −
√

2)
)
≈ −0.0976.

This then leads to the final result:

P(|MoMK[µ]− µ0| > t) ≤ exp
(
−0.0976nt2

σ2

)
.

Remark 1. The classical result by Hoeffding inequality shows that (see Proposition 1 in Ref. [12])

P
(
|MoMK[µ]− µ0| > σ

√
(2 + δ)K/n

)
≤ e
−K δ2

2(2+δ)2

Similarily, to obtain a sharp constant, one can consider t := σ
√
(2 + δ)K/n; then,

P(|MoMK[µ]− µ0| > t) ≤ exp
(
− nt2δ2

2σ2(2 + δ)3

)
and the function

g(δ) =
δ2

(2 + δ)3
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achieve the unique maximum point at δ = 4 with g(4) = 2/27. It follows that

P(|MoMK[µ]− µ0| > t) ≤ exp
(
− nt2

27σ2

)
.

Remark 2. The efficient interval of t is an interesting issue. By the construction of t =
σ
√
(2 + δ)K/n, it follows that

√
(2 + δ)/n ≤ t/σ ≤

√
2 + δ since 1 ≤ K ≤ n.

Remark 3. In Theorem 1, we substitute t = σ
√
(2 + δ)/B into inequality (1) to produce

P
(
|MoMK[µ]− µ0| > σ

√
2 + δ

B

)
≤ exp

(
−0.0976nσ2(2 + δ)

Bσ2

)

Since δ ≥
√

2√
π−
√

2
≈ 3.95 > 2, we have

P
(
|MoMK[µ]− µ0| > 2σ

√
K
n

)
≤ e−0.5807K.

This result is better than the bound e−K/8 of level-dependent sub-Gaussian estimators. Of
course, our conditions are more stringent (see Proposition 12 in Ref. [16]).

3. Applications

In this section, we use the proposed sharper concentration inequalities for MoM
estimators to perform two applications in statistical machine learning.

3.1. Concentration for Supremum of Variance-Dependent MoM Empirical Processes

Let ψ(x) ∈ BL and |ψ(x)| ≤ M0 < ∞, where BL is a ball of the Lipschitz functions
space and M0 is a constant. Let Pψ = Eψ =

∫
ψdP.

To derive the concentration inequality for the supremum of variance-dependent MoM
empirical processes, the following auxiliary Lemma 2 is necessary, whose proof is trivial
and thus omitted.

Lemma 2. |med(a)−med(b)| ≤ ‖a− b‖∞ for a, b ∈ BL where med(a) means the value of the
function a(x) at the midpoint of the domain, and the same is true for med(b).

By Lemma 2, for ∀φ ∈ BL, we have

|MoMK[φ]− Pφ| ≤ |MoMK[φ]−MoMK[ψ]|+ |P(φ− ψ)|+ |MoMK[ψ]− Pψ|
≤ ‖φ− ψ‖∞ + ‖φ− ψ‖∞ + |MoMK[ψ]− Pψ|
= 2‖φ− ψ‖∞ + |MoMK[ψ]− Pψ|

(3)

Let ψ1, · · · , ψN (ξ,BL ,‖·‖∞) be a ξ-covering of BL w.r.t. ‖ · ‖∞. It is well-known that there
exist constants CL > 0 and r ≥ 1, such that

log(N (ξ,BL, ‖ · ‖∞)) ≤ CL

(
1
ξ

)r
, ∀ξ > 0 (4)

where N (ξ,BL, ‖ · ‖∞) denotes the number of ‖ · ‖∞-balls of radius ξ > 0 needed to cover
class BL, and CL is a universal constant depending only on BL.

Put N = N (ξ,BL, ‖ · ‖∞) for simplicity. By definition of N , for ∀i ∈ {1, · · · ,N}, s.t.

‖φ− ψi‖∞ ≤ ξ
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Then, (3) becomes

|MoMK[φ]− Pφ| ≤ 2ξ̃ + |MoMK[ψi]− Pψi| (5)

Then, by Theorem 1, the union bound for {ψi}Ni=1 gives that

P
(

max
1≤i≤N

|MoMK[ψi]− Pψi| ≤ σ

√
− ln δ

0.0976N

)
≥ 1− δ. (6)

Together, (4)–(6) give

P
(

sup
φ∈BL

|MoMK[φ]− Pφ| ≤ 2ξ + σ

√
− ln δ

0.0976N

)
≥ 1− δ.

Put ξ =
√

CL
N ξ , i.e., ξ =

(
CL
N

) 1
r+2 ; then, for ∀φ ∈ BL and δ ∈ (0, 1), we have

P
(

sup
φ∈BL

|MoMK[φ]− Pφ| ≤ 2
(

CL
N

) 1
r+2

+ σ

√
− ln δ

0.0976N

)
≥ 1− δ.

3.2. Concentration for Variance-Dependent MoM Intrinsic Moment Norm

A centered random variable X is called sub-Gaussian if

EesX ≤ es2σ2
G/2 for ∀ s ∈ R,

where the quantity σG > 0 is named as the sub-Gaussian parameter. In non-asymptotic
statistics, because the collected sub-Gaussian data is often unstable, sometimes it is not
possible to directly use the empirical moment-generating function to estimate the sub-
Gaussian parameter such as variance-type parameters of sub-Gaussian distributions (see
Ref. [17]). This requires us to use the sub-Gaussian intrinsic moment norm for estimation.
The definition of intrinsic moment norm is as follows.

Definition 1 (Intrinsic moment norm, see Definition 2 in Ref. [17]). The sub-Gaussian intrin-
sic moment norm is defined as

‖X‖G := max
k≥1

[
2kk!
(2k)!

EX2k

]1/(2k)

= max
k≥1

[
1

(2k− 1)!!
EX2k

]1/(2k)
,

where n!! = ∏
[ n

2 ]−1
j=0 (n− 2j) = n(n− 2)(n− 4) · · · for n ∈ N.

As the amount of computation increases, so does the importance of the distributed
MoM approach, with the corresponding intrinsic moment norm estimator defined below.

Definition 2 (see Equation (7) in Ref. [17]). Let [K] = {1, · · · , K} and Bs be the number of
samples in the s-th block. The MOM estimator for sub-Gaussian intrinsic moment norm is given by

‖̂X‖b,G := max
1≤k≤κn

median
s∈[K]

{[
[(2k− 1)!!]−1PBs

B X2k
]1/(2k)

}
where PBs

B X = B−1 ∑i∈Bs Xi(s = 1, · · · , K).

Definition 3. For any B ∈ N and 1 ≤ k ≤ κn,

ḡk,B(σk) := 1−
[
E X2k/(2k− 1)!!

]− 1
2k max

1≤j≤κn

[
−2B−

1
2 σ

j
j /(E X2j) + E X2j/(2j− 1)!!

] 1
2j
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and g
k,B

(σk) :=
[
2B−1/2σk

k /(E X2k) + 1
]1/(2k)

− 1.

Theorem 2. Suppose, for ∀ε > 0 and ∀n ∈ N, there exits B ∈ N, such that
√

VarX2k <
ε
√

B/2 ≤ σk
k where {σk}κn

k=1 is a finite constant sequence. Then, we have

P
{
‖X‖G ≤

[
1− max

1≤k≤κn
ḡk,B(σk)

]−1
‖̂X‖b,G

}
> 1− κne−0.3904K

and

P
{
‖X‖G >

[
1 + max

1≤k≤κn
g

k,B
(σk)

]−1
‖̂X‖b,G

}
> 1− κne−0.3904K.

Remark 4. Let K = n/B; we then obtain distributed samples that satisfy Theorem 2.

Remark 5. The key coefficient −0.3904 < −0.125. In fact, the key coefficient of Theorem 3 in
Ref. [17] without outliers is −0.125, as long as η(ε) = 1 is taken. This means that our boundary is
better than the boundary in Ref. [17].

Proof of Theorem 2. From Definitions 1 and 2, we have

‖X‖G = max
1≤k≤κn

[
EX2k

(2k− 1)!!

]1/(2k)

(7)

and

‖̂X‖b,G = max
1≤k≤κn

medians∈[K]

{[
1

(2k− 1)!!
· PBs

B X2k
]1/(2k)

}
. (8)

Recall that g
k,B

(σk) and ḡk,B(σk) are the sequences s.t.

[
EX2k/(2k− 1)!!

]1/(2k)
(1− ḡk,B(σk))

= max
1≤k≤κn

[
−2B−1/2σk

k /
(

EX2k
)
+ EX2k/(2k− 1)!!

]1/(2k) (9)

and [
2B−1/2σk

k /
(

EX2k
)
+ 1
]1/(2k)

= 1 + g
k,B

(σk) (10)

for any B ∈ N and 1 ≤ k ≤ κn.
For the first inequality of Theorem 2, we have, by (7),

P
{
‖̂X‖b,G ≤

[
1− max

1≤k≤κn
ḡk,B(σk)

]
‖X‖G

}

= P

‖̂X‖b,G ≤ max
1≤k≤κn

[
EX2k

(2k− 1)!!

]1/(2k)(
1− max

1≤k≤κn
ḡk,B(σk)

)
≤ P

‖̂X‖b,G ≤ max
1≤k≤κn

[
EX2k

(2k− 1)!!

]1/(2k)

(1− ḡk,B(σk))


[By (9)] = P

‖̂X‖b,G ≤
[
−

σk
k

(2k− 1)!!
· 2

B1/2 +
EX2k

(2k− 1)!!

]1/(2k)
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≤
κn

∑
k=1

P
{

medians∈[K]

{[
1

(2k− 1)!!
· PBs

B X2k
]1/(2k)

}
≤

[
−

σk
k

(2k− 1)!!
· 2

B1/2 +
EX2k

(2k− 1)!!

]1/(2k)}

=
κn

∑
k=1

P
{

medians∈[K]

{
1

(2k− 1)!!
· PBs

B X2k
}
≤

EX2k

(2k− 1)!!
−

σk
k

(2k− 1)!!
· 2

B1/2

}

=
κn

∑
k=1

P
{

medians∈[K]

{
1

(2k− 1)!!
·
[
PBs

B X2k − EX2k
]}
≤

−
σk

k
(2k− 1)!!

· 2
B1/2

}

<
κn

∑
k=1

P
{∣∣∣medians∈[K]

{
PBs

B

[
X2k − E2k

]}∣∣∣ ≥ σk
k ·

2
B1/2

}
≤ κne−0.3904K,

where the last inequality is by Theorem 1 and the assumption in Theorem 2.
Let g

B
(σ) := max1≤k≤κn g

k,B
(σk). For the second inequality of Theorem 2, the defini-

tion of g
k,B

(σk) implies

P
{
‖X‖G ≤

‖̂X‖b,G

1 + g
B
(σ)

}

= P

‖̂X‖b,G ≥ max
1≤k≤κn

[
σk

k
(2k− 1)!!

· 2
B1/2 +

EX2k

(2k− 1)!!

]1/(2k)


≤ P
{

max
1≤k≤κn

medians∈[K]

{[
1

(2k− 1)!!
· PBs

B X2k
]1/(2k)

}
≥

[
σk

k
(2k− 1)!!

· 2
B1/2 +

EX2k

(2k− 1)!!

]1/(2k)}

≤
κn

∑
k=1

P
{

medians∈[K]

{[
1

(2k− 1)!!
· PBs

B X2k
]1/(2k)

}
≥

[
σk

k
(2k− 1)!!

· 2
B1/2 +

EX2k

(2k− 1)!!

]1/(2k)}

=
κn

∑
k=1

P
{

medians∈[K]

{
1

(2k− 1)!!
· PBs

B X2k
}
≥
[

σk
k

(2k− 1)!!
· 2

B1/2 +
EX2k

(2k− 1)!!

]}

=
κn

∑
k=1

P
{

medians∈[K]

{
PBs

B X2k
}
≥
[

2σk
k

B1/2 + EX2k

]}

=
κn

∑
k=1

P
{

medians∈[K]

{
PBs

B

[
X2k − EX2k

]}
≥

2σk
k

B1/2

}

<
κn

∑
k=1

P
{∣∣∣∣medians∈[K]

{
PBs

B

[
X2k − EX2k

]}∣∣∣∣ ≥ 2σk
k

B1/2

}
≤ κne−0.3904K,
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where the last inequality is by Theorem 1 and the assumption in Theorem 2.

4. Concentration for Variance-Dependent MoM with Distribution-Free Outliers

In the field of big data and artificial intelligence, most work involves dealing with
abnormal data. Sometimes we cannot find each outlier directly, but we can obtain a rough
idea of the total number of outliers. For example, sometimes there may be abnormal
economic activities in a certain region, but the specific company or person who is abnormal
may not be known for the time being; however, the total number of companies and the
total population in the region are still known.

Based on such information, how to accurately estimate the characteristics of all samples
containing outliers is an important problem. In this section, we introduce the concept of
variance-dependent MoM estimator with outliers as the following theorem.

Theorem 3. Suppose that
(H.1) Sample [n] = {X1, X2, . . . , Xn} contains n− nO i.i.d. inliers with finite mean µ0 and finite
variance σ2. And nO outliers, upon which no assumption is made.
(H.2) Set K = KO + KS , where KO is the number of blocks containing at least one outlier and
KS is the number of sane blocks containing no outlier. For ∀t > 0, there exists a function

η(εO) ∈ (1/2, 1), such that K ≥ max
(

2,
⌈

1
2η(εO)−1

⌉
,
⌈
(2η(εO)−1)nt2

2η(εO)σ2

⌉)
and KS ≥ η(εO)K,

where εO := nO/n.
Then, for ∀t > 0, we have

P{|MoMK[µ]− µ0| ≤ t}

≥ 1− exp
(
−
(
(2η(εO)− 1)nt2

2η(εO)σ2 − 1
)

2η(εO)− 1
2η(εO)

log
(2η(εO)− 1)

2η(εO)

)
.

Remark 6. For the number nO and KO , when one divides n samples evenly into K blocks, an
extreme case is to assume that the blocks that do not conform to one’s preferences are full of outliers,
such as KO blocks, and the blocks that conform to one’s preferences have no outliers, such as KS
blocks; then, one has εO = nO/n = KO/K.

Remark 7. For the function η(εO), we can write a concrete expression to show that such a function
exists, for example, η(εO) = (1 + 2εO)/2 ∈ (1/2, 1), where εO ∈ (0, 1/2). But there must be
more than one expression, so the non-concrete function η(εO) is more appropriate for this theorem.

In fact, there is an adaptive way to generate block number K, but we do not show the
specific calculation here; see Ref. [18] for more detail. Now, we give a detailed proof of
Theorem 3.

Proof of Theorem 3. In the sane blocks, in the number of blocks whose sample mean is
no more than t from the population mean µ0 is at least K/2, the distance between the
population MoM and the population mean µ0 is no more than t, which is mathematically
expressed as follows: for ∀ t > 0, we have

{|MoMK[µ]− µ0| ≤ t} ⊃

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
K
2


⊃

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)

.
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Further, the following formula is established:

P{|MoMK[µ]− µ0| ≤ t} ≥ P

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)

. (11)

From the condition (H.4), we have 1 ≤ KS
2η(εO)

≤ KS − 1 and

K− 1 ≥ KS ≥ η(εO)K ≥ 2η(εO) ≥ 1 +
1

KS − 1
> 1 when K ≥ 2. (12)

Applying Theorem 2 in Ref. [14], we can obtain the lower bound of Formula (11), i.e.,

P

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)


≥

1− c
KS

1− r
η(εO)

√
2

πKS (2η(εO)− 1)
e
−KSD

(
1

2η(εO )

∣∣∣∣ p̃S) (13)

where c = c(r) = 4η2(εO)
2η(εO)−1

[
1 + r(1+r)

(1−r)2

]
, r = r

(
1

2η(εO)
, p̃S

)
= p̃S (2η(εO)−1)

1− p̃S
and

D
(

1
2η(εO)

∣∣∣∣∣∣∣∣ p̃S) =
1

2η(εO)
log

1
2η(εO) p̃S

+
2η(εO)− 1

2η(εO)
log

2η(εO)− 1
2η(εO)(1− p̃S )

.

On the other hand, by Chebyshev’s inequality (see p. 239 in Ref. [15]), we have

1− 1
2η(εO)

< 1− p̃S = P(|µ̂i − µ0| > t) ≤ σ2

Bt2 =
Kσ2

nt2 ≤ 1 for ∀t > 0 (i = 1, · · · , KS ). (14)

Thus, p̃S ∈ [1− Kσ2

nt2 , 1
2η(εO)

) and r ∈
[
(nt2−Kσ2)(2η(εO)−1)

Kσ2 , 1
)

. Because of η(εO)K ≤

KS ≤ K− 1 and η(εO) ∈ (1/2, 1), the inequality (13) can be written as

P

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)

 ≥ 1− e
−KSD

(
1

2η(εO )

∣∣∣∣ p̃S) ≥ 1− e
−(K−1)D

(
1

2η(εO )

∣∣∣∣ p̃S) (15)

where

1 +
1− c

KS
1− r

η(εO)

√
2

πKS (2η(εO)− 1)
≥ e

KSD
(

1
2η(εO )

∣∣∣∣ p̃S). (16)

The inequality (16) can be valid, for example, if η(εO) is infinitely close to 1/2.
From p̃S ∈ [1− Kσ2

nt2 , 1
2η(εO)

), we have the minimum bound of D
(

1
2η(εO)

∣∣∣∣ p̃S), i.e.,

D
(

1
2η(εO)

∣∣∣∣ p̃S) >
1

2η(εO)
log

1
2η(εO)

1
2η(εO)

+
2η(εO)− 1

2η(εO)
log

2η(εO)− 1

2η(εO)(1− 1 + Kσ2

nt2 )

=
2η(εO)− 1

2η(εO)
log

(2η(εO)− 1)nt2

2η(εO)Kσ2 .

(17)

Substituting Equation (17) into Equation (15), we have

P

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)


> 1− exp

(
−(K− 1)

2η(εO)− 1
2η(εO)

log
(2η(εO)− 1)nt2

2η(εO)Kσ2

) (18)
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Further, due to Relation (14), we have (2η(εO)−1)nt2

2η(εO)σ2 < K ≤ n and Kσ2

nt2 ≤ 1; then, the
inequality (18) can be bounded as

P

 ∑
i∈[KS ]

1{|µ̂i−µ0|≤t} ≥
KS

2η(εO)


> 1− exp

(
−
(
(2η(εO)− 1)nt2

2η(εO)σ2 − 1
)

2η(εO)− 1
2η(εO)

log
(2η(εO)− 1)

2η(εO)

)

5. Conclusions

In this paper, we obtain the bounds of variance-dependen MoM estimation based
on the binomial tail probability, including the case without pollution and the case with
pollution. The nonasymptotic properties of nonpolluting MoM estimates have been shown
to be superior to the existing traditional Hoeffding results. In the next step, we will also
continue to investigate the bound of variance-dependen MoM estimation with outliers
based on sub-Gaussian distribution or Weibull distribution. Compared with traditional
exponential family distributions, it is more practical to study the inequalities of these
distributions (see Refs. [19,20]). We further plan to study application problems with a
practical background.
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