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Abstract: Federated learning has emerged as a promising technique for the Internet of Things (IoT) in
various domains, including supply chain management. It enables IoT devices to collaboratively learn
without exposing their raw data, ensuring data privacy. However, federated learning faces the threats
of local data tampering and upload process attacks. This paper proposes an innovative framework
that leverages Trusted Execution Environment (TEE) and blockchain technology to address the
data security and privacy challenges in federated learning for IoT supply chain management. Our
framework achieves the security of local data computation and the tampering resistance of data
update uploads using TEE and the blockchain. We adopt Intel Software Guard Extensions (SGXs) as
the specific implementation of TEE, which can guarantee the secure execution of local models on SGX-
enabled processors. We also use consortium blockchain technology to build a verification network
and consensus mechanism, ensuring the security and tamper resistance of the data upload and
aggregation process. Finally, each cluster can obtain the aggregated parameters from the blockchain.
To evaluate the performance of our proposed framework, we conducted several experiments with
different numbers of participants and different datasets and validated the effectiveness of our scheme.
We tested the final global model obtained from federated training on a test dataset and found that
increasing both the number of iterations and the number of participants improves its accuracy. For
instance, it reaches 94% accuracy with one participant and five iterations and 98.5% accuracy with
ten participants and thirty iterations.

Keywords: federated learning; Trusted Execution Environment (TEE); blockchain; supply chain;
Internet of Things (IoT)

MSC: 68M25

1. Introduction

The exponential growth of Internet of Things (IoT) applications in supply chain
management has introduced both opportunities and challenges. IoT devices play a crucial
role in enabling intelligent control, automated operations, optimized scheduling, quality
testing, and efficient delivery within production lines [1]. They also facilitate the intelligent
positioning, monitoring, and management of transportation vehicles, distribution centers,
and warehouses while providing real-time tracking and traceability of goods [2]. In the
supply chain, enterprises rely heavily on suppliers for diverse raw materials or services
necessary for manufacturing their products. IoT devices assist in the smart selection,
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management, and evaluation of suppliers, as well as the real-time monitoring of raw
material quality, quantity, and location [3]. Although generating substantial data, the need
to share and coordinate data among participants in real time arises to enhance efficiency and
reduce costs. However, concerns surrounding data leakage, potential misuse, and exposure
to competitors pose significant challenges concerning data privacy and trust. Moreover,
the process of data sharing in the supply chain complicates the establishment of the
consensus on data value and quality, as sharing parties may intentionally provide low-
quality or even falsified data to benefit themselves [4]. Hence, addressing the challenge
of achieving data collaboration and intelligent analysis while ensuring data security and
privacy within the supply chain is of utmost importance.

Federated learning is a distributed machine learning technique that enables multiple
participants to train models locally and share model parameters or updates with a central
server for aggregation [5]. This approach allows each participant to improve their model’s
performance by leveraging data from other participants without directly sharing their raw
data [6]. Federated learning offers advantages in terms of data privacy protection and
reduced communication overhead, making it well suited for supply-chain-management
scenarios [7–9]. Nevertheless, existing federated learning techniques still encounter security
and privacy challenges. For instance, the central server could be vulnerable to hacking
or tampering by internal personnel, resulting in the leakage or corruption of model pa-
rameters or updates [10,11]. Dishonest or malicious behavior among participants, such as
transmitting erroneous or malicious model parameters or updates, can significantly impact
the quality of the models [12]. Additionally, participants’ join or exit events may lead to an
unstable or inconsistent model training process [13]. To address these issues, robust and
reliable security and privacy-protection mechanisms need to be introduced.

Figure 1 illustrates a typical cross-border data-sharing use case within a global supply
chain, where various IoT devices’ data are stored in the cloud, accessible from different
regions or countries involved in the supply chain. However, this scenario exposes sensitive
data to potential harm from malicious users. This paper presents a novel federated learning
framework that leverages the blockchain and the Trusted Execution Environment (TEE) to
enhance the security and privacy of supply chain data. Our contributions are as follows.

Figure 1. Possible challenges of traditional centralized global supply chain scenario.
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(1) The framework introduces a consortium blockchain-based federated learning
protocol that capitalizes on the decentralized, tamper-resistant, and traceable characteristics
of blockchain technology to enable secure transmission, storage, and verification of model
parameters or updates.

(2) We utilize TEE to safeguard local participant data and computation processes from
leakage or tampering. We introduce a distributed local federated learning architecture based
on TEE to further enhance data privacy while ensuring the quality of local client models.

(3) We conduct experimental evaluations using datasets, and the results demonstrate
that our framework effectively enhances data security and privacy while achieving high
model accuracy and maintaining low communication overhead.

The rest of this paper is organized as follows. Section 2 presents the related work.
Section 3 introduces the proposed framework. Section 4 gives the security analysis.
Section 5 presents the experimental results and evaluates various performance aspects of
the proposed framework. Section 6 concludes this paper.

2. Related Work

(1) Trusted Execution Environment

Intel SGX [14] is a hardware-based security architecture technology that enables the
creation of TEEs on Intel processors for cloud platforms and server environments. A TEE
is a secure region of memory that isolates the execution of sensitive code and data from
any untrusted system components, such as the operating system or the hypervisor. SGX
extends CPU instructions to encapsulate the secure operations of legitimate software in an
enclave, which is the basic unit of protection in SGX. Unlike other TEE technologies, such
as TrustZone, SGX can run multiple secure enclaves on the same processor, each equivalent
to a TEE. SGX also provides mechanisms for the attestation and sealing of enclaves, which
allow for proving the integrity and confidentiality of the enclave’s execution and data. SGX
has been widely used to achieve privacy-preserving machine learning [15–19] by running
the machine learning algorithms inside enclaves and protecting the data and models from
unauthorized access.

(2) Federated Learning

Federated learning is a machine learning technique that enables distributed model
training on multiple local data sources without sharing the raw data [5,20,21]. This tech-
nique leverages local model parameters, which do not reveal the original data, to construct
a global model that captures the data value while preserving data privacy and security.
Federated learning realizes a novel paradigm of “data available but not visible”, which
empowers decentralized data to be utilized for more accurate model training without vio-
lating data protection. In contrast to conventional centralized machine learning approaches,
federated learning enables the collaboration of multiple parties on a shared model without
exposing their private data, augmenting privacy and security [22]. It also mitigates the
communication overhead and computational costs associated with centralized machine
learning, as only the updates to the local model are transmitted to the central server instead
of the whole dataset. Federated learning can be divided into three types: vertical federated
learning, horizontal federated learning, and federated transfer learning [23]. Vertical feder-
ated learning is applicable to scenarios where data features are highly correlated but data
samples are disjoint, and it can achieve cross-domain knowledge sharing. Horizontal feder-
ated learning is applicable for scenarios where data samples are highly correlated but data
features are disjoint, and it can achieve cross-institutional knowledge fusion. Federated
transfer learning is applicable to scenarios where data samples and data features are both
disjoint but have some correlation, and it can achieve cross-domain knowledge transfer.

FedAvg is a federated learning algorithm that was introduced in a 2016 paper by
Google researchers [24]. Federated learning exists to train deep neural networks on many
devices, such as smartphones or tablets. These devices may have different types of data,
and their users may not want to share their data with others for privacy reasons. FedAvg
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allows these devices to train a local model on their own data without sending the data to a
central server [25]. Instead, the device only sends the model parameters, which are numbers
that represent how the model learns from the data. The central server then combines the
parameters from all the devices by taking their weighted average, where the weights
depend on how many data each device has. The server then sends the averaged parameters
back to all the devices, which update their local models with the new parameters. This
cycle of local training and global averaging continues until the global model reaches a good
performance. FedAvg has some benefits over traditional learning methods that require all
the data to be sent to a central server, such as saving communication bandwidth, handling
diverse data sources, and improving model accuracy and generalization ability.

(3) Blockchain

Blockchain technology is a novel form of distributed ledger technology that employs
cryptographic techniques and consensus protocols to maintain a shared record of trans-
actions across multiple nodes, creating a sequential chain of data blocks. This technology
exhibits several distinctive features, such as decentralization, immutability, distributed
storage, anonymity, transparency, and smart contracts [26,27]. Decentralization refers to
the absence of a central authority or intermediary institution that governs or regulates the
blockchain. All participants have equal rights to join the blockchain network and contribute
to its security through consensus protocols [28]. Immutability implies that the data stored
on the blockchain are permanent and irreversible. Distributed storage indicates that the
blockchain data are not located on a centralized server but dispersed across multiple nodes.
This enhances the reliability and security of blockchain technology, making it resilient
to attacks or tampering and having high fault tolerance. Anonymity and transparency
denote that blockchain technology utilizes public keys and private keys to encrypt and
decrypt data, safeguarding the privacy and security of users, while all transaction records
are publicly available on the blockchain, and anyone can access the blockchain data [29].
Smart contracts are a type of self-executing code based on blockchain technology that can
automatically perform under predefined conditions.

Based on the various features of blockchain technology, many interesting and valuable
applications have emerged in various fields. Power Ledger is a blockchain-based energy-
trading platform that allows consumers to sell their excess solar energy to other consumers
and verify the source and quality of the renewable energy they purchase. IBM Food
Trust is a blockchain-based food-traceability platform that connects farmers, processors,
distributors, and retailers. It enables data sharing and traceability along the food supply
chain and improves food safety, quality, and efficiency. Medicalchain is a blockchain-
based platform that aims to create a decentralized electronic health record system, where
patients can securely store and share their health data with authorized medical professionals
and access remote healthcare services. Estonia, as a pioneer in the field of e-government,
has implemented digital identity, e-residency, e-voting, e-health, and e-justice based on
the blockchain, improving the security, transparency, and efficiency of public information
processes [30–33].

The consortium blockchain is a special form of blockchain that allows only authorized
nodes to join its network, which usually represents different physical organizations or enter-
prises that need to collaborate or share a task or resource [34]. Consortium blockchain typi-
cally uses specific consensus agreements to ensure that all nodes agree on the validity and
sequence of transactions while providing a high degree of control and customizability [35].
The consortium blockchain is transparent, decentralized, highly controllable, and cus-
tomizable. The consortium blockchain is suitable for applications that require sharing and
collaboration among multiple organizations, such as cross-organizational transactions and
collaborative operations.

A brief comparison of related works of literature with respect to various methodologies
is shown in Table 1. Bonawitz [36] adopted federated learning, but their research does not
incorporate the use of TEE (Trusted Execution Environment) or blockchain methodologies.
A significant limitation of this work is its inability to fully guarantee data security and
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privacy during the federated learning process. Chen et al. [37] integrates both federated
learning and TEE but does not utilize the blockchain. Its limitation lies in only being able
to guarantee data security and privacy during the data-aggregation process to a certain
degree, implying there may be vulnerabilities or scenarios where data could be at risk.
Li et al. [38] utilize federated learning and the blockchain but not TEE. This can only ensure
data security and privacy within the local model to a certain extent. This might indicate
potential challenges or vulnerabilities when scaling or in more complex scenarios.

Table 1. Comparison of related works of literature with respect to various methodologies.

Paper Federated Learning TEE Blockchain Features

[36] Yes No No Cannot fully guarantee the data security and privacy in the federated
learning process.

[37] Yes Yes No Can guarantee data security and privacy in the data aggregation process to a
certain extent.

[38] Yes No Yes Can guarantee data security and privacy in the local model to
a certain extent.

Ours Yes Yes Yes Can fully guarantee data security locally and privacy in the
data-aggregation process.

3. Proposed Framework

The summary of notations used in the methodology can be seen in Table 2.

Table 2. Description of notations.

Notations Description

Di Local data for device i
E Number of training epochs
α Learning rate

p, g Diffie–Hellman parameters
SKi Private key for Diffie–Hellman of device i
PKi Public key for Diffie–Hellman of device i
N Nonce generated by TEE
T Attestation token generated by TEE

SKTEE Private key for Diffie–Hellman of TEE
PKTEE Public key for Diffie–Hellman of TEE

w Model weights
ŷ Model prediction
y True label
∇ Gradient

Eweight Encrypted weight
D Device sets
K Number of global iterations
η FedAvg learning rate

{wi}i∈D Local model weight for each device in D
HID,i Device identity hash value for device i
w0 Initial global weight
Bt Block containing verified local model weights
at′ Aggregated update at iteration t′

∇ f (at′ ,D) Gradient of objective function
wt′ Global weight at iteration t′

3.1. System Overview

In this paper, we propose a secure and efficient federated learning framework based on
a Trusted Execution Environment (TEE) and the blockchain for industrial Internet of Things
(IoT) supply chain applications. Our framework aims to address the challenges of data
privacy, model security, and model verifiability in federated learning, which is a promising
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technique to enable collaborative learning among multiple parties without sharing raw
data. We consider an IoT supply chain scenario where N stakeholders (e.g., manufacturers,
warehouses, logistics providers, and retailers) collect data Di = {(x

j
i , yj

i)}
ni
j=1 from various

sensors installed on products, equipment, or vehicles along supply chain stages. These
data are used to train local models on each stakeholder’s device using TEE technology,
which provides hardware-level isolation and protection for local model parameters wi from
being exposed to aggregation servers or malicious attackers during the training process.
The local models are then aggregated by a central server using a federated averaging
(FedAvg) algorithm over a blockchain network, which ensures secure aggregation and
tamper-resistant storage of model parameters among distributed nodes. The server updates
global model parameters w by computing the weighted average of local model parame-
ters, where n = ∑N

i=1 ni is the total number of data points. The server sends the updated
global model parameters w back to stakeholders via the blockchain consensus mechanism,
which allows stakeholders to verify the correctness and integrity of global model updates.
The stakeholders can use the updated global model to perform product recognition and
classification tasks on their own data without revealing sensitive information to others.
The framework iterates until the convergence criterion is reached or a predefined num-
ber of communication rounds are completed. Figure 2 illustrates the overview of our
proposed framework.

Figure 2. Overview of the proposed framework.

3.2. Threat Model

This paper investigates a federated learning system that consists of a central server
and multiple clients. Each client has its own local dataset that is hidden from others.
The server starts the model training by distributing the initial parameters to the clients
and then receives and aggregates their updates after each round. The server is assumed
to be honest and will not reveal or change the data or parameters. The communication
between the clients is also assumed to be secure and will not be eavesdropped on or
tampered with. Side-channel attacks are ignored when using SGX. However, some clients
may be malicious and have motives to sabotage the federated learning system. Three
types of attack objectives for malicious clients are identified: robustness attacks, privacy
attacks, and free-riding attacks. Robustness attacks aim to impair the model’s accuracy or
availability, making it unsuitable or untrustworthy for its intended tasks. Privacy attacks
aim to infer other clients’ private data or model parameters, obtaining sensitive information
or competitive advantage. Free-riding attacks aim to exploit other clients’ contributions to
improve their own model performance without paying the corresponding cost.
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3.3. Local Model in TEE for Federated Learning

In order to address the problem of the security of the local model, we implement the
CNN model training inside the enclave. The algorithm details a local model in a TEE for
federated learning. Federated learning is a distributed machine learning technique that
allows multiple parties to collaboratively train a model without sharing their raw data.
A TEE is a secure area of a processor that protects the code and data from being tampered
with or leaked by other processes. The overview is shown in Figure 3.

Figure 3. The architecture of the local model in a trusted execution environment.

Diffie–Hellman key exchange is based on the property of modular exponentiation
that (ab)c mod p = abc mod p. Since PKi = gSKi mod p and PKTEE = gSKTEE mod p,
we have

S = PKSKTEE
i mod p

= (gSKi mod p)SKTEE mod p

= gSKiSKTEE mod p

= (gSKTEE mod p)SKi mod p

= PKSKi
TEE mod p

(1)

Gradient descent update is based on the idea of finding the minimum of a function
by moving in the opposite direction of its gradient. The gradient is the vector of partial
derivatives that points to the steepest ascent of the function. The learning rate α controls
the step size of the update. The loss function Loss measures the discrepancy between the
model prediction ŷ and the true label y. The model prediction ŷ is a function of the model
weights w and the input x. The update rule can be derived as follows:

w← w− α · ∇Loss(ŷ, y)

= w− α · ∂

∂w
Loss(ŷ, y)

= w− α · ∂

∂w
Loss(Model(w, x), y)

= w− α · ∂

∂w
L(w)

(2)
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where L(w) is a shorthand notation for Loss(Model(w, x), y).
Encryption and decryption in TEE are based on the assumption that there exists an en-

cryption function Encrypt and a decryption function Decrypt that have the
following properties:

• For any message m and key kk, Decrypt(k, Encrypt(k, m)) = m.
• For any ciphertext cc and key kk, Encrypt(k, Decrypt(k, c)) = c.
• It is computationally infeasible to recover m from Encrypt(k, m) without knowing k.

The encryption equation uses the public key of the rich execution environment (REE)
as the key to encrypt the weight: Eweight = Encrypt(PKi, w). The decryption equation uses
the shared secret key as the key to decrypt the encrypted weight: w = Decrypt(S, Eweight).

Since S = PKSKTEE
i = PKSKi

TEE, we have:

w = Decrypt(S, Eweight)

= Decrypt(PKSKTEE
i , Eweight)

= Decrypt(PKSKTEE
i , Encrypt(PKi, w))

= w

(3)

Algorithm 1 consists of four main parts:

• Input and output: The input includes the local data Di, the number of training epochs
E, the learning rate α, and the Diffie–Hellman parameters p and g. The output is the
weight w of the local model.

• Interaction between REE and TEE: The REE is the normal operating system that runs
outside the TEE. The REE and TEE communicate through a secure channel to exchange
public keys for Diffie–Hellman key exchange, which is a method to generate a shared
secret key without revealing it to an eavesdropper. The public key of the REE is
PKi = gSKi mod p, where SKi is the private key of the REE. The public key of the
TEE is PKTEE = gSKTEE mod p, where SKTEE is the private key of the TEE. The shared
secret key is S = PKSKTEE

i mod p = PKSKi
TEE mod p.

• Local attestation process in TEE: The TEE generates a nonce N and an attestation
token T, which is a digital signature that proves the identity and integrity of the TEE.
The signature uses the private key of the TEE, denoted by SKTEE, and can be verified by
anyone who knows the public key of the TEE, denoted by PKTEE. The nonce prevents
replay attacks by ensuring that the token is fresh and unique. The TEE sends N and T
to the REE, which verifies the token by checking if Verify(PKTEE, N, T) returns true.

• Local model in TEE: The TEE initializes the model weights w and trains them for
E epochs using gradient descent on the local data Di. For each sample (x, y) in Di,
the model computes the prediction ŷ = Model(w, x) and the gradient
∇ = ∇Loss(ŷ, y), where Loss is a loss function that measures the discrepancy between
ŷ and y. The model updates the weights by subtracting a fraction of the gradient:
w ← w − α · ∇, where α is the learning rate. After training, the TEE encrypts the
weight using the public key of the REE: Eweight = Encrypt(PKi, w), where Encrypt is
an encryption function. The encrypted weight is sent to the REE, which decrypts it
using the shared secret key w = Decrypt(S, Eweight), where Decrypt is a decryption
function. The decrypted weight is returned as the output of the algorithm.

The weight “w” is expected to improve with each iteration. The improvement here is
in the context of minimizing the loss function specific to the local dataset Di. Each iteration
updates the weight based on the gradient of the loss, directing it toward an optimal value
for those specific data.

The algorithm assumes that some functions are predefined, such as ModelModel,
LossLoss, SignSign, VerifyVerify, EncryptEncrypt, and Decrypt. These functions may vary
depending on the specific implementation of federated learning and TEE.
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Algorithm 1 Local Model in TEE for Federated Learning

Input:
Local data: Di
Number of training epochs: E
Learning rate: α
Diffie–Hellman parameters: p, g

Output: weight w
1: Generate private key for Diffie–Hellman: SKi
2: Compute public key for Diffie–Hellman: PKi ← gSKi mod p
3: Interaction between REE and TEE:
4: REE: Send PKi to TEE
5: TEE: Receive PKi from REE
6: Local Attestation Process in TEE:
7: TEE: Generate nonce: N
8: TEE: Compute attestation token: T = Sign(SKTEE, N)
9: TEE: Send N and T to REE

10: REE: Receive N and T from TEE
11: REE: Verify attestation token: Verify(PKTEE, N, T)
12: In TEE:
13: TEE: Generate fresh private key for Diffie–Hellman: SKTEE
14: TEE: Compute public key for Diffie–Hellman: PKTEE ← gSKTEE mod p
15: Local Model in TEE:
16: Initialize model weights: w
17: for e = 1 to E do
18: for each sample (x, y) in Di do
19: Compute model prediction: ŷ = Model(w, x)
20: Compute gradient: ∇ = ∇Loss(ŷ, y)
21: Update model weights: w← w− α · ∇
22: Interaction between REE and TEE:
23: TEE: Send encrypted weight: Eweight = Encrypt(PKi, w) to REE
24: REE: Receive encrypted weight: Eweight from TEE
25: REE: Decrypt weight using Diffie–Hellman: w = Decrypt(SKi, Eweight)
26: return: w

3.4. Federated Averaging on Blockchain

Federal learning involves data exchange among multiple parties. To ensure the secu-
rity and integrity of the data, this paper adopts the FedAvg algorithm combined with the
consortium blockchain to achieve secure data transmission. The consortium blockchain is a
distributed ledger system based on blockchain technology that can improve the security
and credibility of data-sharing and interaction among multiple parties. The FedAvg algo-
rithm uses the average of the model parameters to achieve collaborative learning among
participants. An overview of this process is shown in Figure 4. And the flow of reaching
consensus on the blockchain is shown in Figure 5.

FedAvg is a communication-efficient algorithm for distributed training with many
clients who keep their data locally for privacy. A central server communicates the global
model parameter to each client and aggregates the updated local model parameters from
clients. The core formula of FedAvg is

w(t+1) =
K

∑
k=1

nk
n

w(t+1)
k (4)

where w(t+1) is the global model parameter at round t + 1, K is the number of clients, nk is
the number of local data samples on client k, n is the total number of data samples across
all clients, and w(t+1)

k is the local model parameter updated by client k on round t + 1.
The formula is derived by having each selected client perform SGD on its local data using
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the global model parameter as the initial value and having the server take a weighted
average of the received local model parameters. FedAvg can reduce communication costs
and improve privacy compared to centralized methods that require sending raw data or
gradients to the server.

Figure 4. FedAvg on the blockchain.

Figure 5. Flow of reaching consensus on the blockchain.

Algorithm 2 consists of four main parts:

• Input and output: The algorithm takes the following input, the set of devices D,
the number of global iterations K, the FedAvg learning rate η, the local model weight
{wi}i∈D , and the device identity hash value HID,i for all devices i ∈ D. The output of
the algorithm is the global weight wK after global training.

• Hash Value Verification: To verify the identity information of each device, the algo-
rithm reads the corresponding smart contract from the blockchain. If the device’s
identity hash value HID,i matches the verified hash value, the corresponding local
model weight wi is stored in a list; otherwise, the local model weight wi is discarded.

• Blockchain Uploading: All verified local model weights are stored in a block, which
is then transmitted to the Fabric blockchain network. The algorithm waits for the
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consensus result from the Raft network. If consensus is reached, the accepted block
is received at all replicas, and the local model weights of the verified devices are
extracted for use in the aggregation step.

• Aggregation: The local model weights of all verified devices are aggregated. The aver-
age value of these verified local model weights at′ is computed and used to update
the global model weight wt′ . Here, wt′−1 represents the global model weight from
the previous iteration. The FedAvg strategy is used to update the global model
weight wt′ ← wt′−1 − η∇ f (at′ ,D), where f (·) is the objective function and D is the
global dataset.

Algorithm 2 FederatedAveraging on Blockchain

Input:
Device sets: D
Number of global iterations: K
FedAvg learning rate: η
Local model weight: {wi}i∈D and device identity hash value: HID,i for all i ∈ D

Output: global weight wK
1: procedure FEDAVG(D, K, η, {wi}i∈D , {HID,i}i∈D)
2: Initialize the global weight w0
3: for t = 1, 2, . . . , K do
4: for i ∈ D do
5: if the device ID hash value in HID,i is validated by the corresponding smart

contract then
6: Store the verified local model weight in a list: {wi}i∈D,verified.
7: else
8: Discard the local model weight wi of device i due to mismatched ID

hash value.
9: Form a block Bt containing all verified local model weights {wi}i∈D,verified.

10: Upload the block Bt to the Fabric blockchain: Bt → Upload
11: Wait for the consensus result from the Raft network: Consensus→Wait
12: if consensus achieved then
13: Receive the accepted block at all replicas, extract the local model weights of

verified devices
14: Aggregate the received updates using FedAvg: at′ ← 1

C ∑C
i=1 wi, where

{wi}C
i=1 are the verified local model weights in the accepted block.

15: Update the global weight using FedAvg: wt′ ← wt′−1− η∇ f (at′ ,D), where f (·)
is the objective function and D is the global dataset.

16: return wK

4. Security Analysis

Federated learning is a distributed collaborative learning technique that enables train-
ing a global model using local data from multiple clients without sharing the data. However,
federated learning faces various security and privacy threats, such as data poisoning by
malicious clients, model poisoning, inference attacks, free-riding attacks, and robustness
attacks. To address these threats, we propose an algorithm for training a local model in TEE.

4.1. Local Training Model in TEE

TEE is a hardware-isolation technology that ensures that the code and data running
within it are protected from external interference or leakage. The algorithm presented in this
paper leverages TEE to provide the following security assurances. The proposed algorithm
incorporates several security measures to mitigate security and privacy threats in federated
learning. These measures include secure communication using the Diffie–Hellman key
exchange protocol, local attestation, encryption and decryption mechanisms, and local
model training within the TEE.
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Secure communication between the REE and TEE is achieved through the utilization of
the Diffie–Hellman key-exchange protocol. This protocol, based on mathematical principles,
enables the two parties to negotiate a shared key over a public channel without directly
sharing the key itself. By relying on the computational hardness of the discrete logarithm
problem, the protocol ensures that computing the private key from the public parameters is
a challenging task. As a result, this approach prevents potential man-in-the-middle attacks
and replay attacks, bolstering the security of the communication channel.

To verify the identity and integrity of the TEE, a local attestation process is imple-
mented. In this process, the TEE generates a random number (nonce) and an attestation
token, which are then transmitted to the REE. Upon receiving these parameters, the REE
employs the TEE’s public key to verify the authenticity of the attestation token and its
correspondence to the received nonce. The successful verification of these parameters
establishes trust in the TEE, effectively preventing impersonation or tampering attacks. To
protect the confidentiality of the model weights, encryption and decryption mechanisms
are employed. The TEE utilizes the Diffie–Hellman public key received from the REE to
encrypt the model weights. Subsequently, the encrypted weights are securely transmitted
to the REE, which possesses the corresponding Diffie–Hellman private key required for
decryption. As only the REE holds the private key, unauthorized entities are unable to
decrypt or modify the weights, safeguarding against theft or unauthorized manipulation.
Furthermore, local model training within the TEE ensures privacy and prevents inference
attacks or GAN attacks. This process involves the initialization of model parameters using
locally generated Diffie–Hellman public and private keys. Multiple rounds of training
are then conducted on the local dataset, enabling the TEE to update the model weights
accordingly. Since only the TEE possesses knowledge of its private key and the weights,
external entities are unable to infer any sensitive information about the data or weights,
reinforcing privacy and thwarting potential attacks.

By leveraging the TEE and integrating mechanisms for secure communication, local
attestation, encryption, and local model training, the proposed algorithm establishes robust
security measures. These measures collectively mitigate various security and privacy
threats in the context of federated learning. The combination of secure communication, trust
establishment, data encryption, and local training within the TEE ensures the confidentiality,
integrity, and authenticity of the communication and data, bolstering the overall security of
the federated learning process.

4.2. Aggregate Security

Federated learning also faces various security and privacy challenges, such as mali-
cious client attacks, local weight leakage or tampering, etc. To address these challenges, this
paper optimizes the aggregation part of federated learning and proposes a scheme that com-
bines aggregation algorithms with blockchain technology, thereby improving the security
and efficiency of federated learning. The scheme proposed in this paper mainly includes
two steps: consortium chain-based verification and consortium chain-based transmission.

In the consortium chain-based verification step, each participant needs to upload their
local weights to the chain and attach their own identity digital signature after completing
the local model training. A smart contract is deployed on the consortium chain to verify
whether the local weights come from legitimate clients, i.e., whether they match the identity
digital signature. Only local weights that pass the verification can be recorded on the
blockchain and used for subsequent global model updates. Otherwise, local weights will
be rejected and discarded. This verification mechanism can effectively prevent malicious
clients from forging or tampering with local weights, thereby ensuring the quality and
accuracy of the global model. At the same time, this verification mechanism can also solve
the trust and attack problems that exist in traditional federated learning and improve the
security and reliability of federated learning. Through the consortium-chain-based verifica-
tion mechanism, we can enhance trust and collaboration among participants and prevent
data pollution and model poisoning attacks.
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In the consortium-chain-based transmission step, each participant no longer needs
to send their local weights to the aggregation server after uploading them to the chain;
instead, the aggregation server obtains all participants’ local weights from the blockchain
and performs centralized aggregation. This transmission mechanism can effectively ensure
the anti-tampering and security of local weights, prevent local weights being maliciously
modified or stolen during transmission, and ensure the traceability and immutability of
local weights. At the same time, this transmission mechanism can also reduce communica-
tion overhead and improve efficiency, solving the communication and efficiency problems
that exist in traditional federated learning and improving the performance and effect of
federated learning. Through the consortium-chain-based transmission mechanism, we can
protect participants’ data privacy and model knowledge and prevent data leakage and
model theft attacks.

4.3. Adaptability

Our framework leverages Trusted Execution Environment (TEE) and blockchain tech-
nology to address data security and privacy challenges in federated learning, especially
within the IoT supply chain management domain. However, our approach is general
and can be extended to various contexts where data security and privacy are paramount.
The core principles of our framework are ensuring data security, data integrity, and user
privacy. These principles are applicable across various domains where federated learning
and data security concerns overlap, such as healthcare, smart cities, or industrial IoT. More-
over, any collaborative machine learning or data analytics scenario where data privacy is a
concern can potentially benefit from our framework. Examples include finance, healthcare,
and e-commerce, where transactional data, patient records, and user purchase history need
to be protected. The combination of TEE and blockchain ensures not only data security
but also the traceability and accountability of computations, making it suitable for any
scenario requiring trustworthiness and auditability. Furthermore, our system is modular
and adaptable. Different components (e.g., a different blockchain or a different TEE) can be
integrated based on the specific requirements of another context, allowing for flexibility in
deployment. Therefore, our framework has a wide range of potential applications beyond
IoT supply chain management.

5. Results

In this section, we provide an overview of the implementation and evaluation of our
proposed framework.

5.1. Experimental Methodology

We present the experimental results of our proposed scheme for privacy-preserving
federated learning based on TEE and the blockchain. We first evaluated the performance of
the local model training in TEE for federated learning. Then, we conducted experiments to
compare the performance of federated learning with blockchain-based parameter updates
with different numbers of nodes and transactions. We collected a dataset from real-world
IoT devices of a supply chain, which includes production data from multiple suppliers,
sales data from retailers, and product data. The detailed configuration of the experimental
environment is presented in Table 3.

Table 3. Experiments setup.

Experiments Setup Specification

CPU Intel Xeon Processor 2695 CPU 2.40 GHz
Ram 64 GB

Operating System Ubuntu 18.04
Implementation Python 3.7.0

Libraries Pytroch 1.6.0
System Setup Hyperledger Fabric 2.0, Docker 20.10.7
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5.2. Performance Evaluation

We conducted an experiment to evaluate our framework’s performance in local clients
using federated learning from Figure 6. We compared the time costs of local training and
aggregated three models (LeNet, VGG16, and ResNet) with 200 data samples each on two
datasets (Fashion MNIST and MNIST) under two scenarios: using TEE in Intel SGX or
using REE. We varied the number of local nodes from 5 to 30 and measured the total time
required for each scenario. Figure 6 shows the results of our experiment. We observed
that ResNet had similar trends on both datasets, as shown in Figure 6a,d. The training and
aggregation time remained stable until 15 local nodes but increased when reaching 20 local
nodes or more. The increase was about 1.6 s for both scenarios. Figure 6b,c show the results
for LeNet and VGG on the MNIST dataset. We found that using TEE increased the time
cost by about 1.57 s compared to using REE when using 30 local nodes for VGG model.
However, this was only 1.7 s slower than not using SGX at all for aggregation. The other
models had similar results. The main reason for the increased time cost in TEE was the
memory limitation of Intel SGX, which affected the efficiency of federated learning.

We evaluated our framework’s accuracy by testing the final global model obtained
from federated training on a test dataset. We varied the number of participants and the
number of iterations in our experiment. We considered four scenarios with different
numbers of iterations: 5, 10, 20, and 30. We also varied the number of participants from
1 to 30. Figure 7 shows our accuracy results for each scenario. We found that increasing
the number of both iterations and participants improved the accuracy of our global model.
For example, when using only one participant and five iterations, our model achieved
an accuracy of 94%. However, when using ten participants and thirty iterations, our
model reached an accuracy of 98.5%. This indicates that more iterations and participants
allow our framework to capture more features from the training data and generate a
better classifier. The main reason for this improvement is that each participant randomly
selects samples from their local data for each iteration. When there are few participants or
iterations, some samples may not be used for training at all, which reduces the diversity
and representativeness of our global model. By increasing both factors, we can ensure
that our framework covers more samples from different distributions and learns a more
accurate model.

For the evaluation of the system throughput, we mainly measured the overall scale
of the system in recording verification and data acquisition in the blockchain. We con-
structed three experimental scenarios with different numbers of participants joining, where
the transaction number was set to 500, 1000, and 2000. Figure 8 shows the relationship
between different numbers of participants and system throughput under the condition of
completing the transaction number of the three experimental scenarios. When the number
of participants was two, the system throughput performance showed a significant upward
trend as the set’s transaction number increased, rising from about 20 TPS to about 34 TPS.
However, as the number of participants increased, the system throughput decreased. Un-
der normal circumstances, the increase in participants would have a positive effect on
system throughput. The reason for this, we believe, is that the transaction number was set
too high, resulting in too many data generated by participants, causing data-congestion
problems for the system and a performance bottleneck. We also conducted throughput
experiments for four and six participants in different stages of the FedAvg on Chain pro-
cess, such as local weight upload, verification, and aggregation, as shown in Figure 9.
Figure 9a is a graph of the relationship between transaction volume and throughput for
four participants and Figure 9b is for six participants. A common point for four and six
participants is that the throughput of local weight uploaded to the blockchain stage is lower
than that of the other two stages, and as the transaction volume increases, the throughput
performance of four participants is better than that of six participants, for the same reason
that too much data generation leads to performance bottlenecks. Only when the transaction
volume is too large will it cause a decline in the throughput performance. FedAvg on Chain
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does not have thousands of iterations, ensuring that the system can run normally with
multiple participants.

(a) (b)

(c) (d)

Figure 6. Comparison of durations of training processes between the TEE and REE for various deep
learning models and the Fashion MNIST dataset. (a) ResNet-Fashion MNIST. (b) LeNet-MNIST.
(c) VGG16-MNIST. (d) ResNet-MNIST.

Figure 7. Federated learning accuracy.
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Figure 8. Throughput.

(a) (b)

Figure 9. The comparison of throughput between 4 nodes and 6 nodes.

We also tested the transaction latency of the system, as well as the evaluation of the
system throughput. We still constructed scenarios with 500, 1000, and 2000 transactions
and conducted experiments on the average transaction latency of the system with different
numbers of participants. Figure 10 shows that as the number of participants increases,
the average transaction time delay shows a positive trend. In the case of eight participants,
the average time delay for 500 transactions can reach about 40 s. The number of partici-
pants remains unchanged, and the increase in transaction volume is also the reason for
the increase in average time delay. The reason is that as the number of participants and
transactions increase, the system blockchain will increase the overhead of the consensus
algorithm and the network communication load, resulting in a decrease in system perfor-
mance and a delay in transaction completion time. For the evaluation of time delay, we
also conducted tests for four and six participants in the same experimental scenarios as
the throughput. Figure 11a is a graph of the relationship between transaction volume and
throughput for four participants, and Figure 11b is for six participants. As shown in the
figure, whether it is four or six participants, the local weight upload stage has a higher time
delay than the verification and aggregation stages, which is opposite to the throughput
situation. The reason is also that the system reaches a performance bottleneck, resulting in
a decrease in throughput and an increase in time delay. Such results provide a reference
direction for the subsequent optimization of this system.



Mathematics 2023, 11, 3759 17 of 19

Figure 10. Average Latency.

(a) (b)

Figure 11. The comparison of latency between 4 nodes and 6 nodes.

6. Conclusions

In this paper, we propose a TEE and consortium-blockchain-based federated learning
framework for the IoT of the supply chain. The main objective of this framework is to ensure
the tamper resistance of data in federated learning, protect the data security in the whole
federated learning process, and achieve the security and effectiveness of the aggregation
results. The local model runs in the TEE. The framework uses an Intel SGX-based TEE
to ensure the secure execution of the local model and the trusted output of the local data
and then uses consortium blockchain technology to realize the secure transmission of the
local data, and finally obtains the aggregated parameter results. In this framework, each
blockchain node is equipped with a verification node, which verifies whether the data
source is consistent with the set participants and ensures the trustworthiness of data usage.
Finally, through blockchain technology, the aggregated global model parameters are added
to the blockchain and returned to all local models. We set different numbers of participants
and different datasets to test the framework. The experimental results show that the local
data-processing time of our proposed framework is almost the same as that of the original
federated learning model. In addition, our framework has high throughput performance
for normal use by multiple participants.

However, our proposed framework also has some limitations that need to be addressed
in future work. First, our system relies on TEE and blockchain technology, which may
increase the system’s complexity and cost, as well as the hardware and network require-
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ments. We plan to explore how to reduce the system overhead and resource consumption
while maintaining security and efficiency. Second, our system uses Intel SGX as a specific
implementation of TEE, but Intel SGX also has some known security vulnerabilities, such
as Foreshadow and Plundervolt, which may affect the reliability and robustness of our
system. We plan to investigate how to deploy our system on different TEE platforms and
how to prevent or detect these potential attacks.
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