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Abstract: We let v be a convex function on an interval [11, 1] C R. If ¢ € C([11,12]), ¢ > 0and g is sym-
metric with respect to 432, then v<% 212:1 lj) fliz {(s)ds < flljz v(s){(s)ds < % 2]2:1 (1) fliz {(s)ds.
The above estimates were obtained by Fejér in 1906 as a generalization of the Hermite-Hadamard
inequality (the above inequality with { = 1). This work is focused on the study of right-side Fejér-type
inequalities in one- and two-dimensional cases for new classes of differentiable functions v. In the
one-dimensional case, the obtained results hold without any symmetry condition imposed on the
weight function . In the two-dimensional case, the right side of Fejer’s inequality is extended to the
class of subharmonic functions v on a disk.

Keywords: Fejér inequality; Hermite-Hadamard inequality; convex functions; differentiable

functions; subharmonic functions

MSC: 26D15; 26 A51; 26B25

1. Introduction

Fejér’s result can be stated as follows: If v, { : 11, 12] = R, 11 < 15, where v is a convex
function and { is a nonnegative, continuous and symmetric function w.r.t. z = % 2]2:1 L.
Then,

Iy 12 Iy
[, verteas < 3 et [ e )

1

and
1 2 1% %)
= i ds < ds. 2
v<2];z]> [ esds < [ o)zt ds @

The above result was obtained by Fejér [1] in 1906 as a generalization of the Hermite—
Hadamard inequality [2,3], which is a special case of (1) and (2) with { = 1. The literature
contains various results related to inequalities of type (1) and (2) for different classes of
functions. Due to the large number of contributions in this topic, we are not able to cite all
the related references. We just refer to the monographs: Dragomir and Pearce [4], Niculescu
and Persson [5], as well as papers [6-18]. In particular, Dragomir et al. [10] considered the
class of functions v : J] C R — R (J is an interval of R) satisfying

(1) = v(®)] < x|y =1

forallz,7 € J, where ¥ > 0 is a constant. It was proven that if v satisfies the above property
and 11,1 € Jwith 11 < 1, then

%) 2

[ v(s)ds—%zv(lj) <

1 j:l

(o —11). 3)
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In [6], Abramovich and Persson established various Fejér-type inequalities for the class
of k-quasiconvex functions, that is, the class of functions ¢ : J C [0, +oo[— R such that
&(s) = s*v(s) and v is a convex function in J. For instance, when k = 1, it was proven that,
ifv,{:[11,1] = R, 0 <1 <1, where { is nonnegative, integrable, and symmetric w.r.t.
z = % ]2:1 L, and v is convex, then

ity 2 iy "
[feeeas <5 Y e) [(i0ds - [TV wR-s)6-nieds @
j=1 Ji !

Jl 1

where (s) = sv(s). We remark that if v is convex and increasing (so ¢ is convex), then (4)
is a refinement of (1).

A natural question is to ask whether it is possible to find other classes of functions for
which inequalities (1), (3) and (4) hold without the symmetry condition imposed on the
weight function {. Section 2 of this paper is devoted to the study of this question. Namely,
we first introduce the set of functions X;(J) so that, if v € X;(J), then (1) holds for all
11,1y € I with 11 < 1p. We also deduce some interesting consequences from the obtained
result. Next, another set of functions Yg(J ) is introduced for which (4) holds for all 11,1, € J
with 1y < 1. Finally, we introduce the set of functions Zg‘ (J), & > 0, for which a weighted
version of (3) is established. In all the obtained results, no symmetry condition is imposed
on the weight function (.

The Hermite-Hadamard inequality has also been studied in higher dimensions in
various domains, see, e.g., [19-25]. For instance, Dragomir [20] considered the class of
convex functions v : Dg — R, where R > 0 and

DR:{z:(zl,zz)eRzziz]ZSRz}. (5)
j=1
For this class of functions, it was shown that
/ v(x)dx < B/ v(x)dSy, (6)
Dr 2 Jopy
where
0Dr = {z:(zl,zz)eRzziz?:Rz}. (7)
j=1

In Section 2 of this paper, a weighted version of (6) is obtained for the class of subharmonic
functions AT (Q).
We finish this section by fixing some notations that are used throughout this paper:
e J: openinterval of R;
e C(J): the space of (real-valued) continuous functions on J;
e C!(J): the space of continuously differentiable functions on J;
e C2%(J]): the space of twice continuously differentiable functions on J ;
e O open subset of R?;
e C%(Q): the space of twice continuously differentiable functions on ;
*  A: the Laplacian operator in RZ;
e V: the gradient operator in R?;
e (-,): the inner product in R?;
e |- |: the Euclidean norm in R?;
e Dg,R > 0:see(5);
e 0Dg, R > 0:see (7).
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2. Fejér-Type Inequalities on an Interval

2.1. The Set of Functions X;(J)

We define the set of functions X;(J) as follows:

Definition 1. Let { € C(J). Function v € X; (), if the following conditions hold:

(i) veC(J)

(i) forall 11,17 € Jwith 11 < 1p, we have

173
(1) (0(1n) = 0(12)) > —v'(12) [~ E(5) s ®)
i

We provide below some examples of functions v and { such that v € X;(J).

Example 1. Let v € C!(J) be a convex function in J. Then, by the characterization of convex
functions (see, e.g., [5]), we have

v(1) —v() > (4 — )V (1)
for every 11,1 € J. This shows that v satisfies (8) with { = 1. Then, v € X;(J).

Example 2. Let v € C1(J) and { = v'. Forall 11,15 € J, we have

2(2)(v(n) = v(r2)) = —v'(12) (v(12) — v(11))
= —1v/'(1p) /Lz v'(s)ds

B

= -0 (1n) /Lz {(s)ds,

B

which shows that v € X, (J).

Example 3. Let { € C(J) be a nonnegative and decreasing function. If v € C*(J) is convex and
nondecreasing, then v € Xg(J ). Namely, for all 11,1y € J with 11 < 1, we have

[ e = ) —n),
which yields (since v’ > 0)

V) 726 ds > 20— )0/ 1),
that is,

~0(02) [ 4(5)ds < L(12) (1 — )0/ () ©)

1

On the other hand, due to the convexity of v, we have
v(n) —v(2) > (0 —n)v'(n),
which yields (since > 0)
C(2)(v(n) = v(12)) = Z(12) (11 — 2)0' (12). (10)

Thus, in view of (9) and (10), (8) is satisfied.
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Example 4. Let v € C'(J) and { € C(J). Assume that

()V'(s) < v'()L(s) 11)

forall 1p,s € [ withs < 1p. Then, v € Xg(J). To show this, taking 11 € J with 11 < 1p and
integrating (11) w.r.t. s €]iy, 12|, we obtain

) [Fo(s) s < v') T2 s

1 1
that is,

2()(0(0) — v(0)) < ') [ 2,

B

which shows that the pair of functions (v, () satisfies (8).

Example 5. Let v € CY(J) and { € C(J). Assume that v’ > 0 in J and g is a decreasing
function in J. Then, for all 15,s € J with s < 1p, we have

that is,
C(12)v'(s) < V' (12)¢(s)-
Hence, by Example 4, it holds that v € Xz (I).

We have the following Fejér-type inequality for the class of functions v € Xz (J).

Theorem 1. Let { € C(J). Forall v € X¢(J), it holds that
L
/2 v(s)l(s)ds < = Zv / s)ds, (11,1) € J% 1 < 1p. (12)
i

Proof. Letv € X (J) and 1,1, € Jwith iy < 1. Then, forall iy < t < 15, we have

0wl — o) = 1) [ 2.

Integrating w.r.t. t €]i1, 1], we obtain

v(q)/lZC(t)dt—/lzv(t)g(t) dt > —/12 0 /tg(s)dsdt. (13)

I 51 5} I

On the other hand, integrating by parts, we obtain

f/ v (t)/ s)dsdt — [ (1) /1tg(s) ds}:l +./l.:zv(t)§(t) at
= () [ (st [Toeyar

Hence, in view of (13), we have

v(ll)/[2 0 dt—/”u(t)g(t) dt > —v(in) /ng(s)ds—i—/lzv D () dt

i B i
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that is,

which yields (12). O

Remark 1. Let v € C!(J) be a convex function in J. Then, from Example 1, v € X1(J). Hence,
taking { = 1 in (12), we obtain the standard Hermite—Hadamard inequality.

Corollary 1. Let { € C(J). Forall v € C(J) satisfying

(v (1) < ' (2)8 (1)
forall 11,15 € Jwith 11 < 13, (12) holds.
Proof. The result follows from Example 4 and Theorem 1. [

Corollary 2. Let { € C(J). Forall v € C(J) satisfying
(i) V(x)#0, xe€l],

(ii) g is a decreasing function in J,

(12) holds.
Proof. The result follows from Example 5 and Theorem 1. [

2.2. The Set of Functions Yz (J)
We define the set of functions Y;(J) as follows:

Definition 2. Let { € C(J). Function v € Y (J) if the following conditions hold:

(i) vecC));
(i) forall 11,17 € Jwith 11 < 1p, we have

()¢ () ) () 22 [0/ (14
where §(s) = sv(s).
Some examples of functions v and { such that v € Y;(J) are given below.

Example 6. Let J =]0, +oo[, {(s) = 1. If v € C'(J) is convex, then v € Y;(J). Namely, for all
i1,y € Jwith 11 < 1, we have

0(11)8 (12) = (12)8" (1) = &' (12) = &' (1),

that is,
()¢ (12) = $(12)¢' () = v(12) — v(11) + 120" (12) — 110’ (11). (15)

On the other hand, we have

2 [* /(5186 ds = ~2(0(n) ~ v(e2).

Next, by (15), we obtain

L)€' () =~ L)8 () =2 [ *o/(9)2(s) ds = vlan) = vl0a) 020/ (12) = 10/ (0),
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which implies by the convexity of v that

(1) (1) = T(12)& (1) 2/ s)ds > (11 — )V (1) + 120" (12) — 10" (1)
=1 (V' (1) — V'(1))

> 0.

Example 7. Let J =]0,1], {(s) = (1 —s)e 5 and v(s) = e ®. Forall 11,10 € Jwith 11 < 1p,
we have

0(1)8 (12) = {()&' (1) =

(1—n)e (e —npe ™) — (1 —np)e 2(e™ —ne™)
=(1-n)1—-n)e e —(1—1)(1—1n)e 2e "
0

2

> —2/ (1—s)e >0/ (s) ds

L
121

:2/ v'(s){(s)ds

1

This shows that v € Y (J).
We have the following Fejér-type inequality for the class of functions v € Y (J).

Theorem 2. Let { € C(J). Forall v € Y;(I), it holds that

[eoneas< 3380 [t - [V -6 -n)iEds (nm)eFa<n 6

where &(s) = sv(s).

Proof. Letv € Y;(J) and 11,15 € J with iy < 15. Then, forall 1 < t < 15, we have

LOE () = L) (1) > 2 /t 2 V()2 (s) ds

Integrating w.r.t. t €]i1, 15[, we obtain

C’(tz)'/:zé(t)dt—é( / t>2/ / s)dsdt,
that is, 1 l
&) /Ifat)dt—wx E(n)) =2 / [P dsat (17)

Integrating by parts, we obtain

%) 2
2/ / dsdt—Z{/ v ds] +2/ tv
t t= 50

:_zll/L '(8)Z(s) ds+2/ s0/(s)(s) ds (18)

—2/ V(s — 11){(s) ds.

Then, (17) and (18) yield

2() [ 2l6)ds — 202) ()~ 2() 22 [ /()06 — 1)E(s) ds
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for all 11,1, € Jwith 11 < 1p. Hence, for all 11 < t < 1, it holds that

£0) [ 2(6)ds = S0 ~€00) 22 [ V(s - n)i)
Integrating w.r.t. t €]i1, 15[, we obtain
/2 &(b) /lté(s) dsdtf/llz COE) dt + (1) / ) dt > 2/ / V(s — 11)Z(s) ds dt. (19)
Integrating by parts, it holds that
%3 t t 2 %)
e) [ tdsde= e e~ [Cawima
‘/ll ‘/‘l ‘/sz =1 . /’1 (20)
=) [ C@ds— ez ar
and
%] t
2/ / V(s —11)C dsdt—Z{ /11 "(s)(s —11)C dsLll—Z/1 to' (1) (t — 1) (t) dt
—212/120()5—11 ds—2/ to' () (t —1n)g(t)d (21)

—2/ (s — 1) (12 — $)g(s) ds.

Thus, it follows from (19)~(21) that
am[%uw3famwm—£%mwmwam£%@m
>2 [*0(5)(s ) - )2(5) ds,

that is,

2/ t)ydt < (§(n) +¢&(2)) [ 45*2/ )(s — 1) (12 —5)(s) ds,

which proves (16). O

2.3. The Set of Functions Zg(,]])
We define the set of functions Z#(J) as follows:

Definition 3. Let ¢ € C(J) and a > 0. Function v € ZF(J) if the following conditions hold:

(i) vecC )
(i) forall 11,1y € Jwith 11 < 1p, we have

éwxwm—vm»—wpr%@Ws

<ag(e) [ 2(s)ds. 22

Some examples of functions v and  such that v € Zg(J ) for some a > 0 are given

below.
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Example 8. Let {(s) = 1and v € C'(J) be such that

0 < M, :=sup|v/(s)] < +oo. (23)
sel

Then, by the mean value theorem, for all 11,1y € J with 11 < 1p, we have

= ’(U(lz) —v(n)) =0 (12) (12 — 11)|

= [v'(c) = v'(12)|(12 — 1)

)(0(e) o)~ () [ 2ls) s

i

for some 11 < ¢ < 1p. Hence, by (23), it holds that

) (00) = o(00) = () [ 206) | < 200012 ), @
Moreover, we have l
() [ 2(s)ds = (12— ) 5)
Then, it follows from (24) and (25) that
C)(00e) o)~ () [ 2661 ds| < 2200 [ )

forall 11,1 € Jwith 11 < 1p. Hence, v and { satisfy (22) with &« = 2M,. Consequently, we have
ve 7M.

Example 9. Leta >0, € C(J),{ > 0and v € C'(J) be such that

’C(ll)vl(lz) —(2)v' (1)
0(1)¢(r2)

forall 11,1 € Jwith 11 < 1p. Let us fix 11,1p € Jwith 11 < 1p. By (26), for all 11 < t < 1, we have

—al(H)(y) < LV () = L)V (1) < al(H)C(r2).

Integrating w.r.t. t €]1q,13], we obtain

(26)

~ad(e) [ ear <o) [L0dr—g) [T (at <allo) [“awan,

that is,
L

~aZ() "2 at < o) [Tt d = L) (0l) — o) < all) [ (et

I I I

This shows that v and { satisfy (22). Then, v € Z¢(J).

Example 10. Let { € C(J). Assume that

0 <inf|{(s)| := m; < Mg :=sup|{(s)| < +oo.
seJ seJ

Let v € CY(J) be such that
0 < My :=sup |v/(s)| < +o0.
seJ
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Then, for all 11,1, € J, we have

L) Ll %(Mgmv £ MM,)
_ 2M;M,

—
me

) , ) 2M; M,
This shows that v and { satisfy (26) with & = o

4

. Hence, by Example 9, we have v € Z{(J).

o

We have the following Fejér-type inequality for the class of functions v € Z7 (J).

Theorem 3. Let { € C(J) and v € Z¢(J) for some a > 0. Then, it holds that

Ip 1 2 Ip uc( Ip )2 )
ds — = ' ds| < — ds |, ,) €0°, 11 <. (27)
[, vee =g Loty [Paas < G([Teeds) () €<
Proof. Letq,1p € Jwith 11 < 1p. From (22), for all 11 < t < 1, we have
t t t
—ag(t) [ 2(s)ds < LD () = v(m) ~ V(1) [ () ds < wl(t) [ £(s)ds.
Integrating w.r.t. t €]i1, 15[, it holds that
%) %) 123 t 173 t
/ o(DZ (1) dt—v(ll)/l Z(t) dt—/ v'(t)/l g(s)dsdt' Sw/ @(t)/l 2(s) ds dt. (28)

On the other hand, we have

[P /tg(s) ds dt — {v(t) /tg(s) dsr - [Fetgtar

I Bt I t=1 1 (29)

and
[Fe /[:as) dsdt = [( /l:as) dsﬂ o [Fe /:as)dsdt
_ ( /1:2 Z(s) ds)z - /: (1) /: 7(s)ds dt,
that is,

Ip t Ip 2
[ C(t)/l 7(s)dsdt = ;([ Z(s) ds) . (30)
Then, it follows from (28)—(30) that
] 2 2 2
2 [*oweod - i) + o) [“coa] < §([*a0 )
which proves (27). O
Corollary 3. Leta >0, € C(J), { > 0and v € C'(J) be such that

‘C(ll)vl(lz) — {1 | o N
¢(1)C(r) -
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forall 11,1y € Jwith 11 < 1p. Then, (27) holds.
Proof. The result follows from Example 9 and Theorem 3. [
We now take { = 1 in Theorem 3. In this case, v € ZE(J ), & > 0, means that
i) vecld),;
(ii) forall iy, € Jwith iy < 1p, we have
v() —v(a) o) < a.
lh — 11
By Theorem 3, we obtain the following result:
Corollary 4. Let v € Z{(J]) for some a > 0. Then, it holds that
! /lzv(s)ds—liv(l‘) <§(l—l) (,) €T, 4 <1
p — 11 1 2],:1 ] — 4 2 1), 1,62 S 2.
3. Fejér-Type Inequalities on a Disk
Let us denote by A (Q) the set of C?(Q)-subharmonic functions v, that is,
(i) vecC*Q);
(i) forall z € (), we have
Av(z) > 0. 31)

We have the following Fejér-type inequality for the class of functions v € AT (Q):

Theorem 4. Let { : [0, +00[— R be a continuous and nonnegative function, and let v € AT (Q).
Then, for all R > 0 with Dg C (), it holds that

R
/DR v(x)Z(]|x]]) dx < %/0 s(s) ds/aDR v(x)dSy. (32)

Proof. Let R > 0 with D C Q. Let us introduce the function

R
@(s):/s t¢(t)dt, 0<s<R.

Clearly, we have (since ¢ > 0)

{'(s) = —sf(s) <0 (33)
and N N
Jnax, (s) = ¢(0). (34)
We also introduce the function
R Fo 7
sw=-[ Mds, x € D (35)
X
It follows from (34) that
¢(x) >0, x¢€Dg. (36)

Furthermore, since g is a radial function, that is,

g=g0)i=— [ EEE 0y,
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for all x € R? with 0 < ||x|| < R, we have
1 1 /
Ag(x) g (r)+8(r)
_ () =N +2(0) n g(r) - ¢
N r2 r2
o
r 7
which implies by (33) that
Ag(x) = =C([lx])), 0 <[fx[]] <R. (37)
We also notice that by (35), we have
g(x) =0, x€dDg. (38)
On the other hand, making use of the Green’s formula, we obtain
: x
o, v(x)Ag(x)dx = ./DR(Vv(x), Vg(x))dx — /E)DR (Vg(x), ﬁ)v(x) dSx.  (39)
Similarly, we have
— /DR g(x)Av(x)dx = /DR(VU(x),Vg(x)) dx — /BDR (Vv(x), %)g(x) dSy.  (40)
Hence, it follows from (39) and (40) that
x x
— /DR v(x)Ag(x)dx = /8DR (Vv(x), E)g(x) dSy — /E)DR (Vg(x), E)v(x) dSy )
— A dx.
[, sGavx) dx
Moreover, due to (38), we have
X
/8DR (Vv(x), E)g(x) s, =0. (42)
Since g is a radial function, for all x € 9Dg, we have
X\ g
(V) %) =)l
¢(r) —2(0)
- r |r:R
~ ~ 43
_UR) - (0) )
R
__&0
R

Thus, from (37), (41)-(43), we deduce that

/DRu(x)g(an)dx: %/BD v(x) dsx—/ ¢(x)Av(x) dx.

R Dg

Finally, due to (31) and since g > 0 by (36), the above inequality yields

[, vty dx < S [ o) dss,
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which is equivalent to (32). O

As a special case of Theorem 4, let us consider the weight function

where k > 0. In this case, we have

R R k+2
/ s{(s)ds = / 1 ge = B2
0 0

Thus, from Theorem 4, we deduce the following result:

Corollary 5. Let v € AT (Q). Then, for all k > 0 and R > 0 with D C Q, it holds that

k+1

[ o)l dx < R o(x) dSx. (44)

k+2 Jopg
Remark 2. Ifk = 0, then (44) reduces to (6).

4. Conclusions

New Féjer-type inequalities are established in one- and two-dimensional cases. In
the one-dimensional case, three classes of functions are introduced, namely X;(J), Yz (J)
and Z3(J), where { € C(J) and « > 0. If v € X;(J), it is proven that the Fejér inequality
(1) holds for all 11,1, € J with 13 < 1. If v € Yz(J), it is proven that the Abramovich-
Persson inequality (4) holds for all 11,1, € J with 11 < 1. Next, a weighted version of
Dragomir et al. inequality (3) is established for class of functions v € Zz(J). In all the
obtained results, no symmetry condition is imposed on weight function ¢. In the two-
dimensional case, a weighted version of Dragomir inequality (6) is derived for the class of
subharmonic functions.
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