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Abstract: Competing risks survival analysis is used to answer questions about the time to occurrence
of events with the extension of multiple causes of failure. Studies that investigate how clinical features
and risk factors of COVID-19 are associated with the survival of patients in the presence of competing
risks (CRs) are limited. The main objective of this paper is, under a CRs setting, to estimate the
Cumulative Incidence Function (CIF) of COVID-19 death, the CIF of other-causes death, and the
probability of being cured in subjects with COVID-19, who have been under observation from the
date of symptoms to the date of death or exit from the study because they are cured. In particular, we
compared the non-parametric estimator of the CIF based on the naive technique of Kaplan–Meier
(K–M) with the Aalen–Johansen estimator based on the cause-specific approach. Moreover, we
compared two of the most popular regression approaches for CRs data: the cause-specific hazard
(CSH) and the sub-distribution hazard (SDH) approaches. A clear overestimation of the CIF function
over time was observed under the K–M estimation technique. Moreover, exposure to asthma, diabetes,
obesity, older age, male sex, black and indigenous races, absence of flu vaccine, admission to the ICU,
and the presence of other risk factors, such as immunosuppression and chronic kidney, neurological,
liver, and lung diseases, significantly increased the probability of COVID-19 death. The highest
hazard ratio of 2.03 was observed for subjects with an age greater than 70 years compared with
subjects aged 50–60 years. The SDH approach showed slightly higher survival probabilities compared
with the CSH approach. An important foundation for producing precise individualized predictions
was provided by the competing risks regression models discussed in this paper. This foundation
allowed us, in general, to more realistically model complex data, such as the COVID-19 data, and can
be used, for instance, by many modern statistical learning and personalized medicine techniques to
obtain more accurate conclusions.
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1. Introduction

A novel coronavirus had been discovered by the end of 2019 as the source of a cluster
of pneumonia cases in Wuhan, China’s Hubei Province. It rapidly spread, resulting in
an epidemic throughout China, followed by several outbreaks in other countries world-
wide [1]. In February 2020, as the situation worsened, the World Health Organization
named the disease COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2). Later, on 11 March, COVID-19 was classified as a global pandemic. In
COVID-19 subjects, the interval between exposure and the onset of symptoms is expected
to be around 5 days, but it might be as long as 14 days. The median number of days
between the onset of symptoms and death among those who died from the condition is 14,
ranging from 6 to 41 days [2].
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Data analysis from COVID-19 subjects is required to study clinical prognostic expo-
sures, generate possible treatment drugs, and design intervention strategies. Many studies
have investigated COVID-19 data [3–6] to identify important exposures for the occurrence
of death or cure. However, statistical models were presented by either ignoring the com-
peting events or using inappropriate regression-based statistical methods. Thus, one of
the objectives of this paper is to consider the competing risks (CRs) settings to estimate
the likelihood of the event of interest among the numerous potential outcomes over time
using the Cumulative Incidence Function (CIF). The quantity CIF estimates the marginal
likelihood of patients who actually developed the event of interest, no matter if a patient
was censored or failed in other competing events. The graphical representation of CIF
curves is always appealing and, thus, is popular in medical research. CR extends the
conventional survival techniques of Kaplan–Meier (K–M) estimate, the log-rank test, and
the Cox regression to handle data that have multiple event types. However, in the presence
of CR data, the K–M method for the estimation of CIF, the log-rank test for comparison of
CIF curves, and the conventional Cox model for assessing exposures lead to incorrect and
biased results [7]. This bias arises because the aforementioned conventional techniques
assume that all events are independent, which means they censor events other than the
event of interest. Moreover, with the CR settings, the log-rank test and Cox regression do
not automatically lead to a correct analysis of the CIF, although they can be adapted with
minimal effort to make inferences about the CSH function [8]. If one wants to apply the
K–M estimator using the CIF, then obtaining the correct estimation is possible when there
is only one event of interest (which equals the complementary survival function). As an
alternative, regression approaches can be employed. In this context, this paper aims to com-
pare a frequently used conventional technique and two regression approaches to estimate
the CIF in the presence of competing events. These are Kaplan–Meier (K–M), cause-specific
hazard (CSH), and sub-distribution hazard (SDH), proposed by [9–11], respectively. The
SDH approach is also known as the Fine–Gray method [11], where the CIF can be modeled
for one particular event of interest. Alternatively, the CIF can be computed by modeling the
CSHs, which models the CSHs of all causes. The Fine–Gray method provides an important
contribution to modeling the CIF. With the SDH approach, the CIF can be modeled by its
direct relation with the SDH rate (λ∗k ) under the assumption that only one event is possible
at a given time t. Furthermore, the CSH and SDH approaches differ in the definition of the
risk set: in the CSH approach, the risk set decreases when an event of the competing cause
or censoring is observed, whereas under the SDH approach, patients who failed from an
event other than the one of interest before t remain in the risk set. The SDH approach is
similar to a Cox proportional regression model, but it also takes into account cumulative
incidence and the SDH rate. In particular, the effect of exposure on the CSH function may
be quite different from the effect on the CIF. This implies that exposure may have a strong
influence on the CSH function, but have no effect on the CIF [11]. Therefore, the SDH
approach takes into account the informative censoring nature of the CR events, while the
CSH approach views CR events as non-informative censorship [12].

The competing risks regression models that are discussed in this study offer a crucial
basis for obtaining precise individualized predictions. In particular, using a competing
risk strategy, this study will help to prioritize patients for vaccination and/or guide clin-
ical decisions either for close monitoring or admission to the ICU, or approval for new
intervention. In addition to that, for any other applicable disciplines, the development of
precise regression models, for instance, under competing risks data with the CSH and SDH
regression approaches has the potential to be of significant importance.

This paper is organized as follows. In Sections 2.1 and 2.3, the non-parametric (without
covariate) estimation technique of the CSH and SDH approaches are discussed, respectively.
Semi-parametric and parametric (with covariate) estimation techniques are discussed in
Sections 2.2 and 2.4, respectively. Section 3 reports the results from COVID-19 data. In
Section 3.4, regression analyses to estimate the parameters are compared and in Section 3.5,
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model prediction between the CSH and SDH approaches is compared. Finally, a discussion
is reported in Section 4.

2. Materials and Methods

Consider a CR setting with an event (i.e., cause) of interest (type 1; k = 1) and a
competing event (type 2; k = 2). Here, the indicator variable is ε ∈ {1, 2}. Then, assume that
T1 and T2 are the potential unobservable event times of type k = 1 and k = 2, respectively.
For the CR data, T = min(T1, T2) is observed, and the indicators of the type of event are
ε = 1 if T = T1 and ε = 2 if T = T2.

Denote the observed data on the i-th individual by (Ti, Ci), i = 1, . . . , n, respectively.
Right-censored CR data, T∗i = min(Ti, Ci), for each patient are observed. The event is δi =
1(Ti ≤ Ci), where 1(.) is an indicator function, δi = 1 if {Ti ≤ Ci} and δi = 0 if {Ci < Ti},
and ki ∈ {1, 2}, for the causes of event types 1 and 2. The CIF for event type 1 is the
probability that an event of type 1 occurs at or before time t, i.e., CIF1(t) = P(T ≤ t, k = 1).
In this context, the CIF in clinical trial settings can be defined as follows: assume that
a is the patient’s accrued time and f̃ is the follow-up time. Then, the probability of a
patient who has the event of death within the time interval [t, a + f̃ ] can be estimated, given
that he/she entered the study at time t. This is a conditional CIF that can be rewritten as
CIF1(a + f̃ − t) = P(T̃ ≤ a + f̃ − t, k = 1), where T̃ = T− t is the survival time given that
the patient enters at time t without having an event before t.

2.1. Non-Parametric Estimation Technique: CSH Approach

It is convenient to model survival times through the hazard function because of
censoring [13]. The joint distribution of event time and event cause may be completely
specified through the CSHs. The advantage of presenting the non-parametric estimator
of the CSH approach in this subsection is that it provides a template for predicting the
CIF in CSH regression models. In the regression approach, the Nelson–Aalen estimator
is replaced with its model-based counterparts [14]. The CSH function of event type k is
defined as follows:

λk(t) = lim
∆t↓0

P(t ≤ T < t + ∆t, ε = k|T ≥ t)
∆t

For simplicity, event type 1 (main event of interest) and event type 2 (competing event) are
considered in this paper. The CIF for type 1 is then determined by also accounting for the
competing event type 2, and it is:

CIF1(t) =
∫ t

0
λ1(u)e−{Λ1(u)+Λ2(u)}du

where Λk(u) =
∫ u

0 λk(v)dv is the cumulative CSH function for event k and k = 1, 2. It
is clear that CIF1(t) involves not only the hazard function, but also all the competing
CSH functions when k > 1. When k = 1, the sub-distribution function degenerates to
CIF1(t) = 1− exp(−Λ1(t)) and becomes a function of only λ1(t).

To estimate CIF1(t) non-parametrically, let us assume D distinct event time-points,
0 = t0 < t1 < . . . < tD. Then, at a particular event time ti, let d1 and d2 be the number of
patients who experienced event types 1 and 2, respectively, and assume thatR(ti) denotes
the risk set at event time ti and includes individuals who did not fail due to any causes or
are not censored just before ti. Here, it should be noted that under the CSH approach, a
patient is no longer at risk for having the event of interest if he/she experiences a competing
event and thus leaves the risk set. Therefore, the CSH rate λk is estimated by counting the
number of events of type k, divided by the observed number at risk:

λ̂k(ti) =
dk(ti)

R(ti)
.
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The overall survival function for T can be obtained by using the Kaplan–Meier estimate [9]:

Ŝ(t) = ∏
ti≤t

(
1− d(ti)

R(ti)

)

where d(ti) = d1(ti) + d2(ti). Alternatively, S(t) can be obtained through Ŝ(t) = exp[
−(Λ̂1(t) + Λ̂2(t))

]
. Here, Λ̂k(t) is the Nelson–Aalen estimator for the cumulative CSH

function for the event type k.
Finally, the CIF function for event type k can be obtained from the CSHs through

CIFk(t) =
∫ t

0 λk(u)S(u)du, and a natural non-parametric estimate of CIFk(t) is

ĈIFk(t) =
∫ t

0
λ̂k(u)Ŝ(u)du = ∑

ti≤t

dk(ti)

R(ti)
Ŝ
(
t−i
)

for, k = 1, 2.

A step function is returned with jumps at time points of observed events of type k, and
constant values at times where no events or a competing event is observed [15]. That
estimator for the CIF in a CR setting is a special case of the Aalen–Johansen estimator
for transition probabilities in multi-state models [16]. The Aalen–Johansen estimator can
be obtained as the product-integral of the Nelson–Aalen estimators for the cumulative
transition intensities [17].

2.2. Semi-Parametric Regression Models for the CSH Approach

The difference in the cumulative incidence curves between treatment groups is identi-
fied either indirectly using a Cox proportional hazard (PH) model for the main event of
interest (considering other CRs as censored), or with the direct regression model with the
effect of covariates on the CIF.

The PH model assumes that hazards are proportional in the follow-up period, and
a separate model can be fit for each event type. However, the analysis is more powerful
when all competing events are combined. Specifically, the literature in [18,19] considered
the following Cox proportional hazards models for all causes:

λk(t|X) = λk0(t) exp
{

βT
k x
}

(1)

where λk0(t) is the baseline hazard function for cause k, x is a vector of covariates that is
assumed to be equal among events, and βk is the vector of regression coefficients.

The regression coefficients βk can be estimated for cause k by maximizing the Cox
partial likelihood and log partial likelihood

ln[L(βk)] = ln

 n

∏
i=1

(
exp

(
βT

k xi
)

∑j∈R(ti)
exp

(
βT

k xj
))δi

 =
n

∑
i=1

δi

βT
k xi − ln

 ∑
j∈R(ti)

exp
(

βT
k xj

),

The score function is

s(βk) =
∂ ln L(βk)

∂βk
=

n

∑
i=1

δi

[
xi −

∑j∈R(ti)
xj exp

(
βT

k xj
)

∑j∈R(ti)
exp

(
βT

k xj
) ].

Asymptotically, the maximum likelihood estimate β̂k is normally distributed, as
√

n
(

β̂k − βk

)
' N (0, V), where V = I−1

βk
is the asymptotic variance–covariance matrix of the

√
nβ̂k and

Iβk is the Fisher Information matrix. In practice, the asymptotic variance of the estimator
of each single coefficient βkj is obtained from the diagonal elements Vjj of the Information
matrix. Then, the frequently used Wald test can be applied, where the test statistic under

the null hypothesis H0 : βkj = β0 is Zkj =
√

n
(

β̂kj − β0

)√
V̂jj and asymptotically follows

a standard Normal distribution. However, in practice, the variance is evaluated under
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the alternative hypothesis H1 : βkj 6= β0. Let V∗ be the variance of
√

nβ̂k under the
alternative. Theoretically, it is proved by Slutsky’s theorem that the distributions of Zkj and
√

n
(

β̂kj − β0

)
/
√

V∗jj are equivalent for large n [20–22].

Furthermore, predicting the CIF is not straightforward when using the CSH approach.
To do so for a particular event type, the fitted cause-specific Cox model has to be used for
each event type. Here, if we assume that the goal is to fit separate models to each of the k
events for the given covariates x, then the cause-specific Cox model leads to

Λ̂k(t|x∗) = exp
(

β̂
T
k x∗
)

Λ̂k0(t),

where β̂k is the maximum partial likelihood estimate, Λ̂k0(t) is the estimate from the
Breslow estimator of the baseline cumulative CSH function, and x∗ is the specific-subject
covariate values for which we are interested in obtaining predictions.

Then, the predicted CIF is

ĈIFk(t|x∗) =
∫ t

0
Ŝ
(
s−|x∗

)
dΛ̂k(s|x∗)

where the predicted survival function is

Ŝ(t|x∗) = ∏
ti :ti≤t

[
1− Λ̂(ti|x∗)

]
with Λ̂(t|x∗) = ∑2

k=1 Λ̂k(t|x∗) being the predicted cumulative function estimated for a
patient with covariates x∗.

2.3. Non-Parametric Estimation Technique: The SDH Approach

Contrary to the CSH approach, patients who experienced an earlier competing event
remain included in the risk set. Thus, in the SDH, the risk set at time t is

R∗(ti) = {i : (t ≤ Ti) ∪ (t ≥ Ti ∩ εi 6= 1), i = 1, . . . , n}.

A patient who has not experienced failure or death due to the event of interest by
time t is at risk. Those who are included in this risk set can be divided into two distinct
categories: patients who never failed due to any cause and patients who have previously
failed due to competing causes. Here, the SDH can be interpreted as the likelihood of
observing an event that is of main interest in the next time interval, with the condition
that either the main event of interest did not occur until that time or that the CR event
had occurred previously. A sub-distribution function is one in which the value does not
increase from 0 to 1 as time progresses due to competing events which can prevent the
event from occurring. Literature [23] describes SDH for cause 1 as:

λ∗1(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t, ε = 1|T ≥ t ∪ {T ≤ t ∩ ε 6= 1})
∆t

=
−∂ log{1− CIF1(t)}

∂t
.

The cumulative SDH for cause 1 is defined as Λ1(t) =
∫ t

0 λ∗1(s)ds. Moreover, for SDH
approach, a direct relationship exists between the Cumulative Incidence Function CIF1(t)
and the SDH rate λ∗1) [11]:

CIF1(t) = 1− S∗1(t) = 1− e−Λ∗1(t) = 1− e−
∫ t

0 λ∗1(u)du.

This implies ∫ t

0
λ∗1(u)du = − log(1− CIF1(t)) = g(CIF1(t)) (2)
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where g(·) is, here, the complementary -log link function. In terms of estimation, this means
that the occurrence of a competing event is ignored and such patients remain in the risk set
until the time at which they are censored for a reason other than the competing event. This
suggests the following estimator: λ̂∗k (ti) =

dk(ti)
R∗(ti)

, whereR∗(ti) is never smaller thanR(ti).
Therefore, the classical K–M is always at least as steep as the estimator of the cause-specific
cumulative incidence, due to overestimation.

2.4. Semi-Parametric Regression Models for the SDH Approach

Under the SDH approach, a frequently used regression model is the so-called Fine–
Gray model [11]. The likelihood function differs from that of the CSH approach in terms
of the definition of risk set. Although the risk set is unconventional, it leads to a proper
partial likelihood [11], which can be expressed as:

L̃(βk) =
n

∏
i=1

[
exp

(
βT

k xi
)

∑j∈R∗i exp
(

βT
k xj
)]δi

.

After fitting the CR models, one can use these models to make predictions about CIFs.
For the Fine and Gray model, predicting them for the event of interest is a straightforward
task because the sub-distribution hazard is modeled directly, and the CIF is only one
transformation away. The Cox-type proportional sub-distributional hazard model for cause
k can be written as [11]:

− log{1− CIFk(t | x)} =
∫ t

0
λ∗k0(u) exp(βT

k x)du = exp(βT
k x)

∫ t

0
λ∗k0(u)du,

where λ∗k0(t) is the baseline sub-distribution hazard for cause k. Then, the predicted CIF
with time-invariant covariates x can be estimated by

ĈIFk(t|x) = 1− exp
[
−Λ̂∗k0(t) exp

(
β̂

T
k x
)]

where Λ̂∗k0(t) is the baseline cumulative sub-distribution hazard function for cause k.

3. Application to COVID-19 Data

We applied the competing risk survival analyses described above for estimating the
CIF of dying from COVID-19 and the CIF of dying from other causes in Brazilian subjects
with COVID-19.

3.1. Data Sources and Variables

We analyzed data from subjects who had COVID-19 symptoms and were under
observation from the date of symptoms to the date of death or exit from the study because
they were cured or no longer in danger. Our time-to-event data were obtained from the
Brazilian Ministry of Health for all COVID-19 patients from 1 January 2020 to 30 April 2021.
Figure 1 summarises the main outcomes that we analysed on these data.

The exposures that we considered as risk factors were some patient characteristics
and types of COVID-19 symptoms. We considered the binary variable risk factor (does
the subject present some risk factor? 1: yes, 2: no) to categorize patients in two groups:
those who did not have any risk factors and those who had one or more risk factors
prior to COVID-19 symptoms. The considered risk factors were: asthma (1: yes, 2: no),
cardio.dis (chronic cardiovascular disease 1: yes, 2: no), diabetes (1: yes, 2: no), hepatic.dis
(chronic liver disease 1: yes, 2: no), immuno (immunosuppression which is decreased from
immunological system function 1: yes, 2: no), kidney (chronic kidney disease 1: yes, 2:
no), neuro (neurological diseases 1: yes, 2: no), obesity (1: yes, 2: no), pneumo (lung chronic
disease 1: yes, 2: no), pneumo.dis (other chronic pneumatopathy 1: yes, 2: no), other.risk
(other risk factors 1: yes, 2: no). In addition, the considered COVID-19 symptoms were:
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loss.smell (1: yes, 2: no), loss.taste (1: yes, 2: no), cough (1: yes, 2: no), diarrhea (1: yes, 2:
no), dyspnea (1: yes, 2: no), fatigue (1: yes, 2: no), fever (1: yes, 2: no), resp.disc (respiratory
discomfort 1: yes, 2: no), sore.throat (1: yes, 2: no), vomit (1: yes, 2: no), saturation (oxygen
saturation < 95%? 1: yes, 2: no), abdom.pain (abdominal pain 1: yes, 2: no), other.symp (1:
yes, 2: no). The patient characteristics were: flu.vaccine (flu vaccine last campaign 1: yes, 2:
no), race (1: White; 2: Black; 3: East Asian; 4: Brown; 5: Indigenous), age (age in years at first
symptoms), sex (male = 1; female = 2), ICU (admitted to Intensive Care Unit 1: yes, 2: no),
parto (has the subject given birth less than 45 days from the first symptoms? 1: yes, 2: no).

It was found in the recent literature (see, e.g., [2]) that about 80% of COVID-19 deaths
were in those over 60 years of age, and 75% had pre-existing health problems. Thus, it was
meaningful to study the effect of COVID-19 outcomes on different age groups. The variable
age has been categorized as follows: less than 40 years (“Young”); between 40 and 50 years
(“Young-Old”); between 50 and 60 years (“Medium-Old”), between 60 and 70 years (“Old”)
and, finally, age greater than 70 years (“Old-old”).

In our preliminary analysis (Sections 3.2 and 3.3), the time to become cured was
considered as a cause of interest and investigated on its own (see Figure 1 for a data
summary of the outcome). However, in the competing risks regression analysis, this was
considered as a censored time, since the main focus was on the causes of death. Moreover,
we did not possess the exact dates of exit from the hospital due to being cured, but only the
date formally registered by the Brazilian Health Ministry, which could also be considerably
later than the actual date. The latter violates the assumption of non-informative censoring,
i.e., the cured patients are not representative of the whole population of those who were
admitted to the hospital in terms of their risk of dying, because they are associated with
a lower risk. However, when the regression approach is based on the Inverse of the
Probability of Censoring Weights (IPCW) technique, as in the Fine–Gray model, this setting
is particularly relevant because regression models can also account for dependent censoring.

Figure 1. Outcome variable for one main event of interest and two competing events.

3.2. Results of Non-Parametric Estimation of the CIF

Figure 2 shows the CIFs for cured subjects, death due to COVID-19, and death due to
other causes, which were estimated non-parametrically using the Aalen–Johansen estimator.
Here, the estimated probability of COVID-19 death was 24% after the first 20 days from the
day of symptoms and became 35% after 30 days. Meanwhile, the likelihood of becoming
cured was 50% after the first 20 days and around 60% after 40 days. Death due to other
causes was found to be negligible, as the probability of death over time was slightly over
zero. This is because, when compared to COVID-19 death and cured subjects, there were
very few patients who experienced death due to other causes (only 0.30% death due to
other causes, whereas n = 219, 325 for COVID-19 death and n = 376, 549 for cured events,
see Figure 1).



Mathematics 2023, 11, 3772 8 of 16

Figure 2. Cumulative Incidence Functions (CIFs) for subjects who were cured from COVID-19, death
due to COVID-19, and other causes of death in the whole population.

3.3. Comparison between the Kaplan–Meier and CSH Approaches

The objective here was to compute the CIFs based on the conventional technique
(K–M) and then compare the results with the competing risks CSH approach. The K–M plot
for COVID-19 death estimates the survival probability of subjects who did not experience
COVID-19 death. The CIF can be obtained by plotting the complimentary function (1-KM),
which estimates the cumulative risk of dying from COVID-19 over time, in the absence
of the competing events (here, we treated all of them as right-censored times). Overall,
Figures 3–12 satisfied the proportional hazards assumption since risk curves do not cross
during the analyzed period. A clear overestimation of the CIFs over time was observed
under the K–M estimation technique compared with the CSH approach. The overestimation
gap between the (1-KM) and CSH approaches was severe, mainly for COVID-19 death. For
these reasons, the following results are shown for both the K–M and CSH approaches, but
their interpretation is provided only under the CSH approach.

The subjects who developed the exposures of chronic liver disease (hepatic.dis), other
symptoms, respiratory discomfort (resp.disc), oxygen saturation level, and ICU admission
had a lower probability of survival after 20 days of hospitalization than subjects who did
not experience these characteristics. In particular, the most severe exposure group was
the one who entered the ICU, and they had about a 40% less probability of survival after
20 days than those subjects who were not admitted to this unit (Figure 10). Furthermore,
the cumulative risk for COVID-19 death was slightly higher among subjects who had a
fever, as compared with subjects who did not experience fever (Figure 4). Moreover, the
CIFs for subjects who had been vaccinated for the flu and those who had not received
the flu vaccine were almost indistinguishable (Figure 5). Additionally, the probability of
COVID-19 death for male subjects was higher as compared with female subjects (Figure 3).
However, under the CSH approach, flu vaccine and sex exposures were both found to
be statistically significant with a hazard ratio of 0.94 and 1.06, respectively (Table 1). The
probability of COVID-19 death increased with older age; in particular, it was more severe
for the group with age greater than 70 years, being 50% after 30 days (‘Old-old’, blue
lines in Figure 11). Black subjects were found to have a higher probability of dying from
COVID-19 and White subjects were associated with lower risk, as compared with the other
races (Figure 12).

Note that, as expected, the results of cured subjects in Figures 3–12 show an inverse
situation on the CIFs with respect to the curves for COVID-19 death.
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Figure 3. Cumulative Incidence Function (CIF) curves for exposure sex.

Figure 4. Cumulative Incidence Function (CIF) curves for exposure fever.

Figure 5. Cumulative Incidence Function (CIF) curves for exposure flu vaccine.

Figure 6. Cumulative Incidence Function (CIF) curves for exposure hepatic.dis (chronic liver disease).
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Figure 7. Cumulative Incidence Function (CIF) curves for exposure other.symp (other symptoms).

Figure 8. Cumulative Incidence Function (CIF) curves for exposure resp.disc (respiratory discomfort).

Figure 9. Cumulative Incidence Function (CIF) curves for exposure saturation (oxygen saturation).

Figure 10. Cumulative Incidence Function (CIF) curves for exposure ICU.
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Figure 11. Cumulative Incidence Function (CIF) curves for exposure age.

Figure 12. Cumulative Incidence Function (CIF) curves for exposure race.

Table 1. Results from the CSH model for COVID-19 mortality (COVID-19 death is the main event of
interest): regression coefficient estimates (‘Estimates’), hazard ratios (HR), standard errors (SE), 95%
confidence intervals (‘Lower CI’, ‘Upper CI’), p-values.

Exposures Estimates HR SE Lower CI Upper CI p-Value

Asthma (Yes) −0.115 0.891 0.029 0.842 0.943 <0.001
Diabetes (Yes) 0.077 1.080 0.011 1.058 1.104 <0.001
Obesity (Yes) 0.034 1.034 0.018 0.998 1.072 0.060
Other.risk (Yes) 0.058 1.060 0.011 1.038 1.082 <0.001
Immuno (Yes) 0.252 1.286 0.024 1.227 1.348 <0.001
Kidney (Yes) 0.238 1.269 0.019 1.222 1.317 <0.001
Neuro (Yes) 0.270 1.310 0.019 1.262 1.360 <0.001
Flu.vaccine (Yes) −0.063 0.939 0.011 0.918 0.960 <0.001
Hepatic.dis (Yes) 0.247 1.280 0.040 1.184 1.384 <0.001
Age: Old (60–70 Years) 0.276 1.318 0.018 1.272 1.366 <0.001
Age: Old-old (>70 Years) 0.712 2.038 0.017 1.973 2.104 <0.001
Age: Young (<40 Years) −0.333 0.717 0.031 0.675 0.761 <0.001
Age: Young-Old (40–50 Years) −0.120 0.887 0.026 0.844 0.933 <0.001
Sex (Male) 0.060 1.062 0.011 1.040 1.085 <0.001
ICU (Yes) 0.430 1.537 0.011 1.504 1.571 <0.001
Pneumo (Yes) 0.133 1.143 0.019 1.100 1.187 <0.001
Race: Black 0.198 1.219 0.023 1.165 1.275 <0.001
Race: East Asian 0.064 1.066 0.049 0.968 1.174 0.194
Race: Brown 0.149 1.160 0.011 1.135 1.187 <0.001
Race: Indigenous 0.315 1.370 0.096 1.136 1.653 <0.001

‘Other.risk’ = other risk factors; ‘immuno’ = immunosuppression, which is decreased from immunological system
function; ‘kidney’ = chronic kidney disease; ‘neuro’ = neurological diseases; ‘flu.vaccine’ = flu vaccine last campaign;
‘hepatic.dis’ = chronic liver disease; ‘pneumo’ = lung chronic disease; ‘ICU’ = admitted to Intensive Care Unit.
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3.4. Regression Analysis under the CSH and SDH Approaches

To analyze the effect of the exposures on the CIF, it was found that there were con-
founding effects among the symptoms and some of the patients’ risk factors. Thus, we
separated those confounding exposures and investigated the remaining risk factors on the
cause of interest. In particular, the stepwise variable selection techniques were applied
based on the AIC and likelihood ratio test under the Cox proportional hazard assump-
tions for the CSH and SDH approaches. The data were analyzed in R statistical software,
version 4.1.1 [24]. The final regression model included the following variables: asthma,
diabetes, obesity, other.risk, immuno, kidney, neuro, flu.vaccine, hepatic.dis, age, sex, ICU,
pneumo, and race.

3.4.1. Regression Analysis for the CSH Approach

From Table 1, the worst outcome was observed for the age group Old-old (>70 years)
with a hazard ratio around two-folds higher (HR: 2.038, CI: 1.973–2.104) as compared
with the reference group of Medium-Old age (50–60 years). Furthermore, subjects who
were admitted to the Intensive Cure Unit (ICU) had a significantly higher COVID-19
mortality than those not admitted in the ICU (HR: 1.537, CI: 1.504–1.571). Moreover, the
exposures diabetes, other risks, and male sex had hazard ratios of 1.8, 1.06, and 1.06,
respectively, indicating a mortality increase of 6–8% with respect to the their respective
reference levels. In addition, it was found that the subjects who had been vaccinated
for the flu were associated with a 6% decreased COVID-19 mortality than those who
had not been vaccinated (HR: 0.939, CI: 0.918–0.960). Moreover, subjects with a state of
decreased immunological system function (Immuno), chronic kidney disease, neurological
disease, and chronic liver disease (hepatic.dis1) had an increased COVID-19 mortality of
approximately 27–31% (HRs = 1.286, 1.269, 1.310, and 1.28, respectively) as compared with
those who had no such disease status. Additionally, the rate of dying due to COVID-19
was significantly higher for all races as compared with White subjects, and, in particular, it
was 37% and 22% higher, respectively, for Indigenous and Black subjects (HR: 1.370 and
CI: 1.136–1.653, HR: 1.219 and CI: 1.165–1.275). Subsequently, the mortality rate for Black
and Brown subjects was also found to be significantly higher than that for White subjects.
Interestingly, subjects with asthma were found to have a lower COVID-19 mortality (HR:
0.891, CI: 0.842–0.943) with respect to subjects without this chronic disease. This may be
justified by the fact that subjects with asthma were faster hospitalized and received extra
care during hospitalization. Thus, the the risk of dying lessened.

3.4.2. Regression Analysis for the SDH Approach

This section explores the performance of the SDH approach, i.e., the Fine–Gray model.
This approach makes it possible to obtain both the naive and the robust model-based
standard errors. Here, only robust standard errors are reported. It is observed from Table 2
that the estimated coefficients for COVID-19 death deviate slightly from those obtained
from the CSH regression model. The differences in the estimated parameters reflect the
different underlying assumptions under competing risks survival data. Moreover, note that
the CSH model describes the effect on the COVID-19 mortality rate, whereas the Fine–Gray
model describes the effect on the cumulative risk of dying from COVID-19, transformed on
the scale of the link function. The estimates derived from the Fine–Gray model have no
simple interpretation, but they follow the same direction as the CSH model.
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Table 2. Results from the Fine–Gray model (SDH approach) for the cumulative incidence of COVID-
19 death (main event of interest): regression coefficient estimates (‘Estimates’), hazard ratios (HR),
robust standard errors (Robust SE), 95% confidence intervals (‘Lower CI’, ‘Upper CI’), p-values.

Exposures Estimates HR SE Lower CI Upper CI p-Value

Asthma (Yes) −0.115 0.891 0.029 0.842 0.943 <0.001
Diabetes (Yes) 0.078 1.081 0.011 1.058 1.105 <0.001
Obesity (Yes) 0.037 1.037 0.018 1.001 1.075 <0.050
Other.risk (Yes) 0.056 1.058 0.011 1.036 1.081 <0.001
Immuno (Yes) 0.241 1.272 0.025 1.211 1.338 <0.001
Kidney (Yes) 0.235 1.265 0.021 1.216 1.317 <0.001
Neuro (Yes) 0.267 1.306 0.021 1.253 1.361 <0.001
Flu.vaccine (Yes) −0.062 0.940 0.011 0.919 0.961 <0.001
Hepatic.dis (Yes) 0.244 1.276 0.044 1.171 1.391 <0.001
Age: Old (60–70 Years) 0.278 1.321 0.017 1.277 1.367 <0.001
Age: Old-old (>70 Years) 0.710 2.035 0.016 1.971 2.101 <0.001
Age: Young (<40 Years) −0.335 0.715 0.030 0.674 0.759 <0.001
Age: Young-Old (40–50 Years) −0.120 0.887 0.025 0.845 0.931 <0.001
Sex (Male) 0.061 1.063 0.011 1.041 1.086 <0.001
ICU (Yes) 0.434 1.543 0.011 1.510 1.577 <0.001
Pneumo (Yes) 0.132 1.141 0.020 1.097 1.188 <0.001
Race: Black 0.198 1.219 0.024 1.164 1.277 <0.001
Race3: East Asian 0.053 1.054 0.047 0.961 1.157 0.264
Race4: Brown 0.144 1.155 0.012 1.129 1.181 <0.001
Race: Indigenous 0.323 1.381 0.106 1.121 1.701 <0.003

‘Other.risk’ = other risk factors; ‘immuno’ = immunosuppression, which is decreased from immunological system
function; ‘kidney’ = chronic kidney disease; ‘neuro’ = neurological diseases; ‘flu.vaccine’ = flu vaccine last
campaign; ‘hepatic.dis’ = chronic liver disease; ‘pneumo’ = lung chronic disease; ‘ICU’ = admitted to Intensive
Care Unit.

3.5. Comparison of Model Predictions between the CSH and SDH Approaches

From the results obtained with the fitted regression models, the model-based predic-
tions can be undertaken and compared by analyzing the subject’s risk with some specific
given values for the exposures. As an illustration, let us predict the cumulative risk (CIF) of
dying from COVID-19 for subjects with a certain flu vaccination status and chronic liver dis-
ease status, under both the CSH and SDH approaches. Figure 13 shows two specific groups
based on the two considered subjects’ risk factors: group 1 is related to those who had been
vaccinated for the flu and had no chronic liver disease; group 2 refers to those who had not
been vaccinated for the flu and had chronic liver disease. From Figure 13 (left panel), it is
observed that, at the beginning of the study, the CIF curves between the two groups appear
to be similar until day 10. Then, the discrepancy of the CIF probabilities increases over time.
In particular, in the CSH approach, the cumulative risk (CIF) of COVID-19 death reaches
50% in 25 days for group 1, and in 30 days for group 2. Moreover, the CIF probability gap is
almost similar from 30 days to more than 100 days. On the contrary, in the SDH approach,
after 10 days, the discrepancy in the CIF probabilities between the two groups increased
similarly until 25 days, but then later on and up to 70 days, this gap is even more than that
under the CSH approach, and finally, after that period, the CIF curves appear to be flat (see
Figure 13, right panel).



Mathematics 2023, 11, 3772 14 of 16

Figure 13. Predictions of cumulative risk (CIF) of dying from COVID-19 for subjects with flu vaccine
and saturation status under the CSH approach (left panel) and the SDH approach (right panel).

4. Discussion

We used competing risk survival analyses to estimate the CIF of dying from COVID-19
and the CIF of dying from other causes in subjects with COVID-19 who had been monitored
from the time they first showed symptoms to the time they died or left the study because
they were cured. In the preliminary stage of this paper (Sections 3.2 and 3.3), the time to
become cured is regarded as one of the events of interest and explored on its own. However,
in the later part of this paper, while considering the competing risk settings, this event is
considered as censored since the primary focus is on the causes of mortality, in particular on
COVID-19 death. This setting goes against the presumption of non-informative censoring.
In particular, the likelihood of death among cured patients is not indicative of the likelihood
of death among patients remaining hospitalized. Regression models, on the other hand,
are particularly pertinent when the techniques are examined using the IPCW technique
because they can also take dependent censoring into consideration.

Since the cumulative risk curves did not cross over the studied time, Figures 3–12
generally satisfied the proportional hazards assumption. In comparison with the CSH
approach, the K–M estimation strategy clearly overestimated the CIF functions over time. A
significant overestimation gap was observed between the two approaches, particularly for
COVID-19 deaths. The exposures of asthma, diabetes, obesity, other.risk, immuno, kidney,
neuro, flu.vaccine, hepatic.dis, age, sex, ICU, pneumo, and race significantly increase the
probability of death due to COVID-19. The highest hazard ratio, equal to 2.03, was observed
for subjects with age greater than 70 years compared with the age group 50–60 years. The
Fine–Gray model (SDH approach) yielded estimated coefficients for death due to COVID-
19 that differed slightly from the CSH model’s results. The disparities in the predicted
parameters from the two approaches mirrored the differing underlying model assumptions
for the competing risks setting.

Furthermore, from the fitted regression models, model-based predictions were un-
dertaken and evaluated by assessing a certain subject’s risk with the desired specified
exposures. In the COVID-19 application, it was found that the SDH approach provides
slightly higher estimated Cumulative Incidence Functions as compared with the CSH ap-
proach. Nowadays, competing risks data are found in many fields, ranging from medicine,
where several types of oncology and therapeutic outcomes are studied simultaneously over
time, to epidemiology, demography, and reliability, where, e.g., failure may be due to the
breakdown of a mechanical device for several different causes. Therefore, the construc-
tion of accurate regression models for competing risks data based on the two discussed
approaches (the CSH and SDH methods) is of potentially great interest in many other
contexts and applied fields. Furthermore, based on the fitted models, all desired individual
predictions of CIFs can be computed on the same data, i.e., the training data, but also on
new data, i.e., the testing data, and prediction accuracy can be measured. The competing
risks regression models described in this paper provide a very important foundation for ob-
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taining accurate personalized predictions, on which, e.g., many current statistical learning
and personalized medicine techniques are based.

In this study, the ICU is considered a time-constant exposure, but more appropriately,
one may also consider the ICU as a time-dependent covariate. Moreover, it could also be
of interest to study its time-varying effect on the CIFs. Due to the presence of acute severe
respiratory failure in a significant proportion of COVID-19 cases, hospitalization, admission
to the Intensive Care Unit, and intubation are frequently necessary to treat these cases [25].
Thus, alternative approaches such as extension to multi-state regression models [26] or direct
regression models based on binomial regression [27] could help with predicting such an
objective, allowing one to model time-dependent covariates and time-varying coefficients.
Furthermore, although the estimation technique by [11] is efficient to estimate the proportional
SDHs, alternative approaches such as pseudo-value and binomial regression approaches have
more flexibility to model the CIF directly through different link functions. Nevertheless,
the interpretation of the regression parameters in all these approaches is direct but not
straightforward, depending on the chosen link function. However, computation and graphical
representation of the CIF curves between different risk factor groups are straightforward and
always possible to help one make personalized individual clinical decisions.

The data may not be comprehensive for all of the Brazilian COVID-19 population due to
possible errors in the compilation and registration of the information by the diseased patients
or the Personnel of the Ministry offices. The registration of cured patients was recorded only
on some days and not continuously, providing some possible underestimation of the CIF
for cured subjects. In addition, our analyses have the limitation that they do not further
investigate the difference in the CIF between subjects who have one or more risk factors from
subjects without risk factors, and they do not account for delayed entry into the ICU.
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