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Abstract: Multi-criteria decision-making (MCDM) assists in making judgments on complex problems
by evaluating several alternatives based on conflicting criteria. Several MCDM methods have been
introduced. However, real-world problems often involve uncertain and ambiguous decision-maker in-
puts. Therefore, fuzzy MCDM methods have emerged to handle this problem using fuzzy logic. Most
recently, the method based on the removal effects of criteria using the geometric mean (MEREC-G)
and ranking the alternatives based on the trace to median index (RATMI) were introduced. However,
to date, there is no fuzzy extension of the two novel methods. This study introduces a new hybrid
fuzzy MCDM approach combining fuzzy MEREC-G and fuzzy RATMI. The fuzzy MEREC-G can
accept linguistic input terms from multiple decision-makers and generates consistent fuzzy weights.
The fuzzy RATMI can rank alternatives according to their fuzzy performance scores on each criterion.
The study provides the algorithms of both fuzzy MEREC-G and fuzzy RATMI and demonstrates
their application in adopted real-world problems. Correlation and scenario analyses were performed
to check the new approach’s validity and sensitivity. The new approach demonstrates high accuracy
and consistency and is sufficiently sensitive to changes in the criteria weights, yet not too sensitive to
produce inconsistent rankings.

Keywords: fuzzy MEREC-G; fuzzy RATMI; fuzzy logic; hybrid; MCDM

MSC: 03E72; 90B50

1. Introduction

Multi-criteria decision-making (MCDM), a major subdiscipline of the operations
research domain, assists in making judgments in complex real-world challenges. It allows
for formulating problems comprising several alternatives in a structured format to find the
best ranking or select the best alternative based on multiple conflicting criteria. The criteria
are conflicting in the sense of being benefit criteria and non-benefit criteria to reflect their
roles in maximizing or minimizing the alternatives, respectively. Moreover, the criteria are
weighted to represent the problem better and make the best decision on the alternatives.
Several MCDM methods have emerged, with different characteristics and purposes, with
broad applications in many disciplines [1,2]. The two primary components of MCDM are
weighing the criteria and ranking the alternatives.

The first component of MCDM, weighting the criteria, entails designating importance
or preference values to each criterion. Depending on whether the weights are based on
quantified qualitative inputs from the decision-maker’s judgments using a predefined
scale (i.e., subjective data) [3–5], based on quantitative data (i.e., objective data) [6–10], or a
combination of both (i.e., a mix of subjective and objective data) [11–13], there are various
MCDM methods for weighting criteria. Methods like the analytic hierarchy process (AHP),
analytic network process (ANP), and best-worst method (BWM) are examples of subjective
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methodologies for finding the weights of criteria [4,5]. These pairwise-based methods
compare criteria using a scale of preferences to quantify qualitative inputs. Entropy and
criteria importance through inter-criteria correlation (CRITIC) are examples of objective
methods [14]. These data-based methods use mathematical algorithms to calculate the
weights based on the information entropy, the correlation coefficients, or the compromise
ranking of the alternatives. However, fuzzy AHP, fuzzy ANP, and fuzzy BWM accept a
combination of subjective and objective data for finding the criteria weights. These methods
base the calculations of weights in a fuzzy environment to account for uncertainty and
ambiguity in decision-makers’ inputs [15].

The second component of MCDM, ranking the alternatives, entails the performance
scoring of each alternative on each criterion and finding the best ranking or choice ac-
cordingly. Various techniques for ranking alternatives based on multiple criteria have
been developed. Such methods include outranking algorithms like “élimination et choix
traduisant la realité” (ELECTRE), which translates to elimination and choice translat-
ing reality, and the preference ranking organization method for enrichment evaluations
(PROMETHEE) [16–18], to mention two. These methods compare alternatives pair-wisely
using measures of concordance and discordance between them on each criterion.

However, fuzzy MCDM alternative ranking methods have been developed and ap-
plied to enable them to handle the uncertainty and ambiguity of decision-makers’ sub-
jective scoring inputs. Such methods are the fuzzy BWM [19–26], fuzzy additive ratio
assessment (ARAS) [27–29], fuzzy measurement alternatives and ranking according to
compromise solution (MARCOS) [30–32], fuzzy technique for order preference by sim-
ilarity to ideal solution (TOPSIS) [24,33,34], fuzzy multi-attributive border approxima-
tion area comparison (MABAC) [35–38], fuzzy VlseKriterijumska Optimizacija I Kompro-
misno Resenje (VIKOR) [39–42], fuzzy multi-attributive ideal–real comparative analysis
(MAIRCA) [43–47], and, most recently, the fuzzy multiple criteria ranking by alternative
trace (MCRAT) [48]. Several investigators applied the two components of MCDM in
different fields [49–63].

Two of the most recent MCDM methods for weighting the criteria and ranking the
alternatives are the method based on the removal effects of criteria (MEREC) [64–66] and
ranking the alternatives based on the trace to median index (RATMI) techniques [67]. The
MEREC was developed as an objective method for weighting the criteria. In 2023, an
updated and enhanced version of the MEREC, labeled as the method for removal effects of
criteria with a geometric mean (MEREC-G), was developed to enable it to process objective
and subjective data [65]. Also, fuzzy extension and modification of the MEREC method
were recently developed, enabling it to process subjective data using linguistic term judg-
ments by decision-makers [68,69]. However, to date, there is no fuzzy extension to the
enhanced MEREC-G. Additionally, in 2022, the RATMI was developed as an alternative
ranking method. RATMI bases the ranking algorithm on the trace to median index, which
combines ranking alternatives based on median similarity (RAMS), and the MCRAT meth-
ods, using a majority index and the concept of the VIKOR method [67]. In addition, despite
this, the RATMI method is a relatively new alternative ranking method; it has proven its
efficacy in real-world applications [70,71]. However, to date, there is no fuzzy extension to
the RATMI method.

Therefore, this study aims to first develop a fuzzy MEREC-G as a weighting criteria
method and a fuzzy RATMI as an alternative ranking method. Secondly, it proposes a
new hybrid MCDM approach based on the developed fuzzy MEREC-G and fuzzy RATMI.
The proposed new hybrid MCDM approach will provide advancements in that the fuzzy
MEREC-G can accept linguistic input terms from multiple decision-makers, handle their
ambiguous judgments on a complex problem, and produce consistent fuzzy weights of
the criteria when converted to crisp values. This, in turn, will enable the use of the
produced fuzzy weights from the fuzzy MEREC-G in the fuzzy RATMI, which will be able
to accept and process fuzzy ranking scores of each alternative for each criterion and rank
them accordingly.
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The new proposed hybrid MCDM approach is provided in the following section. In
the subsequent sections, along with a discussion, a numerical application of the proposed
approach is provided to compare its results with other fuzzy MCDM methods to check its
validity and sensitivity. Finally, the last section of this paper provides a conclusion to the
proposed approach and some future research directions.

2. Preliminaries of Fuzzy Sets

Definition 1 ([69]). ã = (k, l, m) is a representation of a triangular fuzzy number (TFN). The
µã(z) membership function of a TEN, ã, has the definition given by Equation (1).

µã(z) =


0, i f z < k,

z−k
l−k , i f k ≤ z < l,
m−z
m−l , i f l ≤ z ≤ m,

0, i f z > m,

(1)

Definition 2 ([72]). Let x̃ = (a1, b1, c1) and ỹ = (a2, b2, c2) be two non-negative TFNs.
According to the extension principle, the arithmetic operations are defined as follows:

• x̃⊕ ỹ = (a1 + a2, b1 + b2, c1 + c2);
• x̃	 ỹ = (a1 − c2, b1 − b2, c1 − a2);
• α� x̃ = (α.a1, α.b1, α.c1);

• x̃−1 ∼=
(

1
c1

, 1
b1

, 1
a1

)
;

• x̃⊗ ỹ ∼= (a1 × a2, b1 × b2, c1 × c2);
• x̃ c ỹ ∼= (a1/c2, b1/b2, c1/a2).

3. The Proposed Hybrid Fuzzy MEREC-G and Fuzzy RATMI Methods

Figure 1 illustrates the proposed fuzzy MEREC-G and fuzzy RATMI methods in three
main phases. The first phase involves defining the problem under study by specifying the
alternatives and criteria with their objective. The decision-maker invites the experts who
will provide their initial fuzzy decision matrices between the alternatives and criteria. The
second phase applies the fuzzy MEREC-G method to assign weights to each criterion based
on the information from the first phase. The third step uses the fuzzy RATMI method to
rank the alternatives according to the weighted fuzzy criteria obtained in the second phase.
The following sections explain these phases in more detail.

3.1. Phase 1: Formulate the Problem Using the MCDM Model

Step 1.1: The decision-maker identifies “m” possible alternatives, “n” relevant crite-
ria, and the nature of each criterion (i.e., whether it is a benefit criterion that should be
maximized or a non-benefit criterion that should be minimized) for the problem at hand.

Step 1.2: The decision-maker determines “k” experts who have knowledge and experi-
ence about the problem to participate in the decision-making process by providing either
subjective or objective input data represented by triangular fuzzy numbers (TFNs).

Step 1.3: The experts, E = {E1, E2, . . . , Ek}, will provide a realistic evaluation of each
alternative in A = {A1, A2, . . . , Am} based on each criterion in C = {C1, C2, . . . , Cn},
which is represented by the fuzzy number xu

ij =
(

au
ij, bu

ij, cu
ij

)
, i = 1, . . . , m; j = 1, . . . , n; u =

1, . . . , k. The fuzzy decision matrix, Xu, for each expert, “u”, can be constructed using
Equation (2).

Xu =
[

xu
ij

]
mxn

=


A/C C1 C2 . . . Cn
A1 xu

11 xu
12 . . . xu

1n
A2 xu

21 xu
22 . . . xu

2n
...

...
...

. . .
...

Am xu
m1 xu

m2 . . . xu
mn

 (2)
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Step 1.4: Construct the combined fuzzy decision matrix, X̃, using Equation (3).

X̃ =
[
x̃ij
]

mxn (3)

where
x̃ij =

(
aij, bij, cij

)
, aij = mink

(
ak

ij

)
, bij =

1
k

(
∑k

u=1 bu
ij

)
, and cij = maxk

(
ck

ij

)
.
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Figure 1. The framework of the proposed hybrid fuzzy MEREC-G and fuzzy RATMI methods.

3.2. Phase 2: Fuzzy MEREC-G Method

Step 2.1: Normalize the combined fuzzy decision matrix to reduce the disparity
between the magnitude of alternatives and dimensions, with a normalized value within
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[0, 1]. The component of a normalized matrix, ẽij, will be produced by the triangular fuzzy
number (TFN) according to [69] using Equation (4) for benefit criteria and Equation (5) for
non-benefit criteria.

ẽij =
(

rl
ij, rm

ij , ru
ij

)
=

(
aij

cmax
j

,
bij

cmax
j

,
cij

cmax
j

)
∀ i ∈ [1, . . . , m] , ∀ j ∈ [1, . . . , n] (4)

ẽij =
(

rl
ij, rm

ij , ru
ij

)
=

(
amin

j

cij
,

amin
j

bij
,

amin
j

aij

)
∀ i ∈ [1, . . . , m] , ∀ j ∈ [1, . . . , n] (5)

Step 2.2: Calculate the fuzzy overall performance value, P̃i, of the alternatives using
the geometric mean of the fuzzy normalized matrix, as presented by Equation (6).

P̃i =
(

n
√

∏n
j=1 rl

ij,
n
√

∏n
j=1 rm

ij , n
√

∏n
j=1 ru

ij

)
∀ i ∈ [1, . . . , m] (6)

Step 2.3: This step considers the core of the classical MEREC-G [65], in which the
changes in the overall performance value of the alternatives will be calculated by removing
the effect of each criterion from the overall performance. This step can be calculated for the
fuzzy MEREC-G using Equation (7) to find the changes represented by the fuzzy number, t̃ij.

t̃ij =

 n

√√√√∏n
j=1 rl

ij

rl
ik

, n

√
∏n

j=1 rm
ij

rm
ik

, n

√
∏n

j ru
ij

ru
ik

 ∀ i ∈ [1, . . . , m] , k 6= j (7)

Step 2.4: Find the removal effect, Ẽj, using Equation (8) to obtain the final fuzzy
weights, w̃j, of each criterion using Equation (9) and Equation (10).

Ẽj =
(
∑m

i=1 t̃l
ij , ∑m

i=1 t̃m
ij , ∑m

i=1 t̃u
ij

)
∀ j ∈ [1, . . . , n] (8)

w̃j =

(
∑m

i=1 t̃l
ij

∑n
j=1 Ẽu

j
,

∑m
i=1 t̃m

ij

∑n
j=1 Ẽm

j
,

∑m
i=1 t̃u

ij

∑n
j=1 Ẽl

j

)
∀ j ∈ [1, . . . , n] (9)

w̃j =
(

wl
j , wm

j , wu
j

)
∀ j ∈ [1, . . . , n] (10)

Step 2.5: To obtain the crisp weights, w∗j , of the criteria, the obtained fuzzy weights,
w̃j, are converted using Equation (11). The sum of the crisp weights equals one.

w∗j =
wl

j + 4wm
j + wu

j

6
(11)

3.3. Phase 3: Fuzzy RATMI Method

Step 3.1: The values in the combined fuzzy decision-making matrix will be normalized
by the Equations (4) and (5) that are used for the fuzzy MEREC-G technique.

Step 3.2: The fuzzy weights of the criteria are multiplied by the fuzzy normalized
values to obtain fuzzy weighted normalized values using Equation (12).

g̃ij =
(

gl
ij, gm

ij , gu
ij

)
= w̃j × ẽij =

(
wl

j × rl
ij, wm

j × rm
ij , wl

j × ru
ij

)
(12)

Step 3.3: Determine the fuzzy optimal alternative using Equations (13) and (14).
Then, decompose the fuzzy optimal alternative into two components using Equations (15)
and (16), followed by decomposing the other alternatives into two components using
Equations (17) and (18).

q̃j = max
(

g̃ij|1 ≤ j ≤ n
)

(13)
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Q̃ = {q̃1, q̃2, . . . , q̃n} (14)

Q̃ = Q̃max ∪ Q̃min (15)

Q̃ = {q̃1, q̃2, . . . , q̃k} ∪ {q̃1, q̃2, . . . , q̃h}; k + h = j (16)

Ṽ = Ṽmax ∪ Ṽmin (17)

Ṽ = {ṽ1, ṽ2, . . . , ṽk} ∪ {ṽ1, ṽ2, . . . , ṽh}; k + h = j (18)

Step 3.4: Calculate the fuzzy magnitude of optimal alternative components using
Equations (19) and (20) and the fuzzy magnitude of other alternative components using
Equations (21) and (22).

Q̃k =
(

ql
k, qm

k , qu
k

)
=

(√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

k
)2,
√(

qm
1
)2

+
(
qm

2
)2

+ . . . +
(
qm

k
)2,

√(
qu

1
)2

+
(
qu

2
)2

+ . . . +
(
qu

k
)2
)

(19)

Q̃h =
(

ql
h, qm

h , qu
h

)
=

(√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

h
)2,
√(

qm
1
)2

+
(
qm

2
)2

+ . . . +
(
qm

h
)2,

√(
qu

1
)2

+
(
qu

2
)2

+ . . . +
(
qu

h
)2
)

(20)

Ṽk =
(

vl
k, vm

k , vu
k

)
=

(√(
vl

1
)2

+
(
vl

2
)2

+ . . . +
(
vl

k
)2,
√(

vm
1
)2

+
(
vm

2
)2

+ . . . +
(
vm

k
)2,

√(
vu

1
)2

+
(
vu

2
)2

+ . . . +
(
vu

k
)2
)

(21)

Ṽh =
(

vl
h, vm

h , vu
h

)
=

(√(
vl

1
)2

+
(
vl

2
)2

+ . . . +
(
vl

h
)2,
√(

vm
1
)2

+
(
vm

2
)2

+ . . . +
(
vm

h
)2,

√(
vu

1
)2

+
(
vu

2
)2

+ . . . +
(
vu

h
)2
)

(22)

Step 3.5: In this step, the alternatives will be ranked twice. The first uses the fuzzy
MCRAT [48], and the second uses fuzzy RAMS as a part of the proposed fuzzy RATMI.
Ranking by fuzzy MCRAT uses the following sub-steps:

Step 3.5.1: Create the matrix, Ỹ, composed of the optimal alternative component, as
shown in Equation (23).

Ỹ =

[
Q̃k 0
0 Q̃h

]
(23)

Step 3.5.2: Create the matrix, B̃i, composed of the alternative’s component using
Equation (24).

B̃i =

[
Ṽik 0
0 Ṽih

]
(24)

Step 3.5.3: Create the matrix, Z̃i, using Equation (25).

Z̃i = Ỹ× B̃i =

[
z̃11;i 0

0 z̃22;i

]
(25)

Step 3.5.4: Then, the fuzzy trace of the matrix, Z̃i, can be obtained using Equation (26).

tr
(
Z̃i
)
= z̃11;i + z̃22;i =

(
zl

11,i + zl
22,i, zm

11,i + zm
22,i, zu

11,i + zu
22,i

)
(26)

In Equation (26), tr
(
Z̃i
)
=
(

Zl
i , Zm

i , Zu
i

)
indicates the fuzzy trace of the Zi matrix, and

the value is defuzzied to obtain tr(Zi) by using Equation (27). Here, rank the alternatives
in descending order of the tr(Zi) values.

Zi =
Zl

j + 4Zm
j + Zu

j

6
(27)
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Ranking by fuzzy alternatives median similarity (RAMS) uses the following sub-steps:
Step 3.5.5: Determine the fuzzy median of similarity of the optimal alternative using

Equation (28).

D̃ =
(

dl , dm, du
)
=

(√
Q̃2

k + Q̃2
h

)
/2 (28)

Step 3.5.6: Determine the fuzzy median of similarity of the alternatives using
Equation (29).

D̃i =
(

dl
i , dm

i , dl
i

)
=

(√
Ṽ2

ik + Ṽ2
ih

)
/2 (29)

Step 3.5.7: Calculate the fuzzy median similarity, ms
(

M̃i
)
, which represents the ratio

between the perimeter of each alternative and the optimal alternative using Equation (30).

ms
(

M̃i
)
=

D̃i

D̃
=

(
dl

i
du ,

dm
i

dm ,
du

i
dl

)
(30)

In Equation (30), ms
(

M̃i
)
=
(

Ml
i , Mm

i , Mu
i

)
indicates the median similarity of the Mi

matrix, and the value is defuzzied to obtain ms(Mi) by using Equation (31). Here, rank the
alternatives in descending order of the ms(Mi) values.

Mi =
Ml

j + 4Mm
j + Mu

j

6
(31)

Step 3.6: If v is the weight of fuzzy MCRAT’s strategy, and (1− v) is the weight of
RAMS’s strategy, then the majority index, Ei, between the two strategies can be calculated
using Equation (32). Then, find the final rank of the alternatives in descending order of Ei.

Ei = v
(tr(Zi)− tr∗)
(tr− − tr∗)

+ (1− v)
(ms(Mi)−ms∗)
(ms− −ms∗)

(32)

where
tr∗ = min(tr(Zi), ∀i ∈ [1, 2, . . . , m]);
tr− = max (tr(Zi), ∀i ∈ [1, 2, . . . , m]);
ms∗ = min (ms(Mi), ∀i ∈ [1, 2, . . . , m]);
ms− = max(ms(Mi), ∀i ∈ [1, 2, . . . , m]);
v is a value from 0 to 1. Here, v = 0.5.

4. Applications and Results

This section applies the proposed hybrid fuzzy MEREC-G and fuzzy RATMI methods
using the data from Ulutaş et al. [48] to purchase a forklift that laborers can use in the
warehouse. The following is an application of the three phases previously mentioned to
rank the alternatives based on weighted criteria.

4.1. Phase 1: Formulate the Problem Using the MCDM Model

Following step 1.1, the decision-maker determined eight criteria and six forklifts as
alternatives. The criteria for assessment of the forklifts were C1 (purchasing price), C2
(lifting height), C3 (lowering speed), C4 (loading capacity), C5 (lifting speed), C6 (movement
area requirement), C7 (image of the manufacturer company), and C8 (supply of spare
parts). Only two criteria (C1 and C6) were non-benefit, and the others were benefit criteria.
Using steps 1.2, 1.3, and 1.4, the decision maker determined six experts to evaluate the
performance of the forklifts under each criterion using the linguistic phrases shown in
Stanković et al. [31]. The experts’ assessments were transformed into fuzzy values using
those linguistic phrases and aggregated using Equation (3). The combined fuzzy decision
matrix, as given by Ulutaş et al. [48], is presented in Table 1.
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Table 1. The combined fuzzy decision matrix [48].

Alternatives C1 C2 C3 C4

A1 (4.0000, 5.6670, 6.0000) (5.3330, 6.3330, 7.3330) (2.0000, 3.0000, 4.0000) (5.6670, 6.6670, 7.6670)
A2 (5.0000, 5.6670, 7.0000) (5.3330, 6.3330, 7.3330) (3.6670, 5.0000, 5.6670) (4.0000, 5.0000, 6.0000)
A3 (5.6670, 7.3330, 7.6670) (6.6670, 7.3330, 8.6670) (4.0000, 5.6670, 6.0000) (5.6670, 6.6670, 7.6670)
A4 (5.6670, 7.3330, 7.6670) (5.6670, 6.6670, 7.6670) (4.0000, 5.6670, 6.0000) (5.6670, 6.6670, 7.6670)
A5 (5.0000, 6.0000, 7.0000) (5.6670, 6.6670, 7.6670) (4.0000, 5.6670, 6.0000) (4.0000, 5.0000, 6.0000)
A6 (5.0000, 6.0000, 7.0000) (5.6670, 6.3330, 7.6670) (4.0000, 5.6670, 6.0000) (4.0000, 5.0000, 6.0000)

Alternatives C5 C6 C7 C8

A1 (4.3330, 5.3330, 6.3330) (5.3330, 6.3330, 7.3330) (5.3330, 6.0000, 7.3330) (4.6670, 5.6670, 6.6670)
A2 (4.3330, 5.3330, 6.3330) (6.3330, 7.3330, 8.3330) (6.0000, 6.6670, 8.0000) (5.6670, 6.0000, 7.6670)
A3 (6.0000, 7.0000, 8.0000) (6.3330, 7.3330, 8.3330) (6.0000, 7.0000, 8.0000) (5.0000, 6.0000, 7.0000)
A4 (6.0000, 7.0000, 8.0000) (6.3330, 7.3330, 8.3330) (5.3330, 6.0000, 7.3330) (4.6670, 5.6670, 6.6670)
A5 (4.3330, 6.0000, 6.3330) (5.3330, 6.3330, 7.3330) (5.6670, 6.0000, 7.6670) (5.0000, 6.0000, 7.0000)
A6 (4.3330, 5.6670, 6.3330) (5.0000, 5.6670, 7.0000) (5.0000, 5.6670, 7.0000) (5.6670, 6.3330, 7.6670)

4.2. Phase 2: Application and Results of the Fuzzy MEREC-G Method

Equations (4) and (5) of step 2.1 have been used to determine the fuzzy decision matrix
with normalization. Table 2 presents the results obtained from this step.

Table 2. The normalized fuzzy decision matrix.

Alternatives C1 C2 C3 C4

A1 (0.6667, 0.7058, 1.0000) (0.6153, 0.7307, 0.8461) (0.3333, 0.5000, 0.6667) (0.7391, 0.8696, 1.0000)
A2 (0.5714, 0.7058, 0.8000) (0.6153, 0.7307, 0.8461) (0.6112, 0.8333, 0.9445) (0.5217, 0.6521, 0.7826)
A3 (0.5217, 0.5455, 0.7058) (0.7692, 0.8461, 1.0000) (0.6667, 0.9445, 1.0000) (0.7391, 0.8696, 1.0000)
A4 (0.5217, 0.5455, 0.7058) (0.6539, 0.7692, 0.8846) (0.6667, 0.9445, 1.0000) (0.7391, 0.8696, 1.0000)
A5 (0.5714, 0.6667, 0.8000) (0.6539, 0.7692, 0.8846) (0.6667, 0.9445, 1.0000) (0.5217, 0.6521, 0.7826)
A6 (0.5714, 0.6667, 0.8000) (0.6539, 0.7307, 0.8846) (0.6667, 0.9445, 1.0000) (0.5217, 0.6521, 0.7826)

Alternatives C5 C6 C7 C8

A1 (0.5416, 0.6666, 0.7916) (0.6818, 0.7895, 0.9376) (0.6666, 0.7500, 0.9166) (0.6087, 0.7391, 0.8696)
A2 (0.5416, 0.6666, 0.7916) (0.6000, 0.6818, 0.7895) (0.7500, 0.8334, 1.0000) (0.7391, 0.7826, 1.0000)
A3 (0.7500, 0.8750, 1.0000) (0.6000, 0.6818, 0.7895) (0.7500, 0.8750, 1.0000) (0.6521, 0.7826, 0.9130)
A4 (0.7500, 0.8750, 1.0000) (0.6000, 0.6818, 0.7895) (0.6666, 0.7500, 0.9166) (0.6087, 0.7391, 0.8696)
A5 (0.5416, 0.7500, 0.7916) (0.6818, 0.7895, 0.9376) (0.7084, 0.7500, 0.9584) (0.6521, 0.7826, 0.9130)
A6 (0.5416, 0.7084, 0.7916) (0.7143, 0.8823, 1.0000) (0.6250, 0.7084, 0.8750) (0.7391, 0.8260, 1.0000)

Steps 2.2 and 2.3 have been applied with the help of Equations (6) and (7), respectively,
to calculate the overall performance of alternatives in the fuzzy decision matrix and then
calculate the changes in this overall performance by removing each fuzzy number. Table 3
shows the results of Equation (7) of step 2.3.

Table 3. The changes in the overall performance of alternatives.

Alternatives C1 C2 C3 C4

A1 (0.6231, 0.7428, 0.8718) (0.6294, 0.7396, 0.8902) (0.6795, 0.7755, 0.9171) (0.6151, 0.7237, 0.8718)
A2 (0.6585, 0.7653, 0.8892) (0.6524, 0.7620, 0.8830) (0.6530, 0.7496, 0.8709) (0.6660, 0.7729, 0.8917)
A3 (0.7331, 0.8544, 0.9599) (0.6984, 0.8088, 0.9190) (0.7110, 0.7977, 0.9190) (0.7019, 0.8060, 0.9190)
A4 (0.7018, 0.8223, 0.9294) (0.6823, 0.7877, 0.9035) (0.6806, 0.7677, 0.8898) (0.6719, 0.7757, 0.8898)
A5 (0.6662, 0.7981, 0.9049) (0.6551, 0.7840, 0.8936) (0.6535, 0.7641, 0.8800) (0.6738, 0.8003, 0.9074)
A6 (0.6701, 0.7981, 0.9122) (0.6589, 0.7890, 0.9008) (0.6573, 0.7641, 0.8871) (0.6777, 0.8003, 0.9147)
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Table 3. Cont.

Alternatives C5 C6 C7 C8

A1 (0.5999, 0.7178, 0.8839) (0.5805, 0.7006, 0.8628) (0.5824, 0.7058, 0.8656) (0.5900, 0.7073, 0.8721)
A2 (0.6251, 0.7427, 0.8757) (0.6160, 0.7403, 0.8761) (0.5967, 0.7194, 0.8470) (0.5979, 0.7259, 0.8470)
A3 (0.6659, 0.7808, 0.9080) (0.6874, 0.8092, 0.9392) (0.6659, 0.7808, 0.9080) (0.6793, 0.7934, 0.9199)
A4 (0.6335, 0.7474, 0.8751) (0.6540, 0.7745, 0.9051) (0.6442, 0.7640, 0.8860) (0.6526, 0.7656, 0.8927)
A5 (0.6335, 0.7599, 0.8934) (0.6130, 0.7544, 0.8721) (0.6096, 0.7599, 0.8694) (0.6169, 0.7553, 0.8754)
A6 (0.6377, 0.7661, 0.9017) (0.6130, 0.7425, 0.8721) (0.6248, 0.7661, 0.8889) (0.6100, 0.7495, 0.8721)

Equations (8)–(10) from step 2.4 have been used to calculate the fuzzy criteria weight
of each criterion. Then, Equation (11) from step 2.5 was used to calculate the crisp value of
each criterion. Table 4 shows the results of these calculations.

Table 4. Resulting effect and weights of the fuzzy MEREC-G.

Removal effect

Ẽ1 Ẽ2 Ẽ3 Ẽ4

(4.0527, 4.7810, 5.4674) (3.9764, 4.6710, 5.3902) (4.0348, 4.6188, 5.3640) (4.0064, 4.6790, 5.3944)

Ẽ5 Ẽ6 Ẽ7 Ẽ8

(3.7955, 4.5147, 5.3378) (3.7639, 4.5214, 5.3273) (3.7236, 4.4961, 5.2648) (3.7467, 4.4970, 5.2792)

Fuzzy weights

w̃1 w̃2 w̃3 w̃4

(0.0946, 0.1300, 0.1758) (0.0929, 0.1270, 0.1733) (0.0942, 0.1256, 0.1725) (0.0936, 0.1272, 0.1735)

w̃5 w̃6 w̃7 w̃8

(0.0886, 0.1228, 0.1716) (0.0879, 0.1229, 0.1713) (0.0869, 0.1222, 0.1693) (0.0875, 0.1223, 0.1697)

Crisp weights

w*
1 w*

2 w*
3 w*

4

0.1317 0.1290 0.1282 0.1293

w*
5 w*

6 w*
7 w*

8

0.1252 0.1252 0.1242 0.1244

4.3. Phase 3: Application and Results of the Fuzzy RATMI Method

The fuzzy MEREC-G method is used to determine the fuzzy criteria weights, which
are then combined with the decision matrix to form the decision-making matrix. The fuzzy
RATMI method is applied to this matrix to rank the alternatives. From step 3.1, the fuzzy
decision-making matrix is normalized using Equations (4) and (5), which are the same as
those used in the fuzzy MEREC-G. The fuzzy weighted decision-making matrix is obtained
using Equation (12) from step 3.2 and shown in Table 5.

First, the fuzzy optimal alternatives are determined using Equations (13) and (14),
and then they are decomposed into their components using Equations (15) and (16). Next,
Equations (17) and (18) are used to decompose the alternatives into their components.
Finally, the fuzzy magnitude of the components is calculated using Equations (19) and (20).
The values of the fuzzy magnitude of components are shown in Table 6.

The same process is performed for the alternatives using Equations (21) and (22). Then,
with Equations (23)–(25), the values of z̃11;i and z̃22;i, which are the elements of the Z̃i, are
found. Equation (26) is used to obtain the fuzzy trace, tr

(
Z̃i
)
, of the matrix, Z̃i. Finally, this

fuzzy value is defuzzified using Equation (27). Table 7 shows these values and the results
of the fuzzy MCRAT method.
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Table 5. The fuzzy weighted decision-making matrix.

Alternatives C1 C2 C3 C4

A1 (0.0631, 0.0918, 0.1758) (0.0571, 0.0928, 0.1466) (0.0314, 0.0628, 0.1150) (0.0691, 0.1106, 0.1735)
A2 (0.0541, 0.0918, 0.1406) (0.0571, 0.0928, 0.1466) (0.0576, 0.1047, 0.1629) (0.0488, 0.0830, 0.1357)
A3 (0.0494, 0.0709, 0.1241) (0.0714, 0.1075, 0.1733) (0.0628, 0.1186, 0.1725) (0.0691, 0.1106, 0.1735)
A4 (0.0494, 0.0709, 0.1241) (0.0607, 0.0977, 0.1533) (0.0628, 0.1186, 0.1725) (0.0691, 0.1106, 0.1735)
A5 (0.0541, 0.0867, 0.1406) (0.0607, 0.0977, 0.1533) (0.0628, 0.1186, 0.1725) (0.0488, 0.0830, 0.1357)
A6 (0.0541, 0.0867, 0.1406) (0.0607, 0.0928, 0.1533) (0.0628, 0.1186, 0.1725) (0.0488, 0.0830, 0.1357)

Alternatives C5 C6 C7 C8

A1 (0.0480, 0.0818, 0.1359) (0.0599, 0.0971, 0.1606) (0.0580, 0.0917, 0.1552) (0.0533, 0.0904, 0.1476)
A2 (0.0480, 0.0818, 0.1359) (0.0527, 0.0838, 0.1352) (0.0652, 0.1019, 0.1693) (0.0647, 0.0957, 0.1697)
A3 (0.0665, 0.1074, 0.1716) (0.0527, 0.0838, 0.1352) (0.0652, 0.1070, 0.1693) (0.0571, 0.0957, 0.1550)
A4 (0.0665, 0.1074, 0.1716) (0.0527, 0.0838, 0.1352) (0.0580, 0.0917, 0.1552) (0.0533, 0.0904, 0.1476)
A5 (0.0480, 0.0921, 0.1359) (0.0599, 0.0971, 0.1606) (0.0616, 0.0917, 0.1622) (0.0571, 0.0957, 0.1550)
A6 (0.0480, 0.0870, 0.1359) (0.0628, 0.1085, 0.1713) (0.0543, 0.0866, 0.1481) (0.0647, 0.1010, 0.1697)

Table 6. The fuzzy magnitude of components’ values.

Components Magnitude

Q̃k (0.1633, 0.2665, 0.4205)
Q̃h (0.0890, 0.1421, 0.2455)

Table 7. Results of the fuzzy MCRAT method.

Alternatives Ṽik Ṽih z̃11;i z̃22;i

A1 (0.1324, 0.2192, 0.3594) (0.0870, 0.1336, 0.2381) (0.0216, 0.0584, 0.1511) (0.0077, 0.0190, 0.0584)
A2 (0.1404, 0.2295, 0.3774) (0.0755, 0.1243, 0.1951) (0.0229, 0.0612, 0.1587) (0.0067, 0.0177, 0.0479)
A3 (0.1605, 0.2646, 0.4147) (0.0722, 0.1098, 0.1835) (0.0262, 0.0705, 0.1744) (0.0064, 0.0156, 0.0451)
A4 (0.1517, 0.2529, 0.3983) (0.0722, 0.1098, 0.1835) (0.0248, 0.0674, 0.1675) (0.0064, 0.0156, 0.0451)
A5 (0.1392, 0.2378, 0.3748) (0.0807, 0.1301, 0.2135) (0.0227, 0.0634, 0.1576) (0.0072, 0.0185, 0.0524)
A6 (0.1395, 0.2341, 0.3754) (0.0829, 0.1388, 0.2216) (0.0228, 0.0624, 0.1578) (0.0074, 0.0197, 0.0544)

Alternatives tr
(
Z̃i
)

tr(Zi) Rankings

A1 (0.0294, 0.0774, 0.2095) 0.0914 6
A2 (0.0296, 0.0788, 0.2066) 0.0919 5
A3 (0.0326, 0.0861, 0.2194) 0.0994 1
A4 (0.0312, 0.0830, 0.2125) 0.0960 2
A5 (0.0299, 0.0819, 0.2100) 0.0946 4
A6 (0.0302, 0.0821, 0.2122) 0.0952 3

Another ranking will be obtained by the fuzzy RAMS method. In this method, the
alternatives are ranked based on the median similarity between the optimal alternatives
and other alternatives by applying Equations (28)–(31). This was followed by finding the
majority index between the fuzzy MCRAT and fuzzy RAMS methods using Equation (32)
with v = 0.5. The results of these calculations are shown in Tables 8 and 9, along with the
alternative rankings according to the fuzzy RATMI method.



Mathematics 2023, 11, 3773 11 of 19

Table 8. Results of the fuzzy RAMS technique.

Alternatives

Max Min Median Median similarity

Q̃k Q̃h D̃ ms
(
M̃i
)

(0.1633, 0.2665, 0.4205) (0.0890, 0.1421, 0.2455) (0.0930, 0.1510, 0.2434)

Ṽik Ṽih D̃i

A1 (0.1324, 0.2192, 0.3594) (0.0870, 0.1336, 0.2381) (0.0792, 0.1284, 0.2155) (0.3254, 0.8500, 2.3175)
A2 (0.1404, 0.2295, 0.3774) (0.0755, 0.1243, 0.1951) (0.0797, 0.1305, 0.2124) (1.4031, 2.2837, 15.0859)
A3 (0.1605, 0.2646, 0.4147) (0.0722, 0.1098, 0.1835) (0.0880, 0.1432, 0.2268) (1.5398, 2.4381, 16.5554)
A4 (0.1517, 0.2529, 0.3983) (0.0722, 0.1098, 0.1835) (0.0840, 0.1379, 0.2193) (1.4822, 2.3577, 15.9359)
A5 (0.1392, 0.2378, 0.3748) (0.0807, 0.1301, 0.2135) (0.0804, 0.1355, 0.2157) (1.4571, 2.3188, 15.6662)
A6 (0.1395, 0.2341, 0.3754) (0.0829, 0.1388, 0.2216) (0.0811, 0.1361, 0.2180) (1.4634, 2.3434, 15.7337)

Alternatives ms(Mi) Rankings

A1 1.0071 6
A2 1.0113 5
A3 1.0989 1
A4 1.0591 2
A5 1.0398 4
A6 1.0470 3

Table 9. Alternatives rankings according to the fuzzy RATMI method.

Alternatives

Fuzzy MCRAT Fuzzy RAMS Majority Index Rankings

tr∗ = 0.0914 ms∗ = 1.0071

Eitr− = 0.0094 ms− = 1.0989

tr(Zi) ms(Mi)

A1 0.0914 1.0071 0.0000 6
A2 0.0919 1.0113 0.0538 5
A3 0.0994 1.0989 1.0000 1
A4 0.0960 1.0591 0.5670 2
A5 0.0946 1.0398 0.3742 4
A6 0.0952 1.0470 0.4502 3

Another application of the proposed fuzzy MCDM approach was conducted using
two other problems [61,62] that are demonstrated in Table 10. The computations of these
two examples are attached in the Supplementary Materials as Table S1 for Example 1 and
Table S2 for Example 2.
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Table 10. Details of the selected problems and comparisons with the proposed approaches.

Prob No. Ref. No. Problem Field Objective of the Study Fuzzy MCDM Tool(s) Used Comparison of Results with the Proposed and Used
Fuzzy Approaches

1 [61] Food security

This study examined the various
supplier selection approaches to
determine Jordan’s primary wheat
suppliers and rank them according
to specified criteria. The fuzzy
VIKOR approach assessed, selected,
and ranked the best wheat suppliers
in Jordan.

Fuzzy VIKOR with the following
characteristics:

• 12 experts
• seven criteria
• five wheat suppliers as

alternatives (Romania,
Ukraine, Syria, Russia, and
Australia)

• The used approach found Romania is the best supplier,
followed by Ukraine.

• The proposed approach found that Ukraine is a better
supplier than Romania.

• The Spearman’s rho and Kendall’s tau_b correlations
between the alternative rankings of the two methods are 60%
and 40%, respectively.

• The used approach used crisp weights as input to the fuzzy
VIKOR matrix, while the proposed approach used fuzzy
weights created by fuzzy MEREC-G to be an input to the
fuzzy RATMI decision matrix.

2 [62] Waste
management

This study used a fuzzy TOPSIS to
evaluate the performance of five
waste disposal locations in Park
Avenue, Vijayashanti apartments in
Chennai, Tamil Nadu (India)

Fuzzy TOPSIS with the following
characteristics:

• one expert
• five criteria
• five garbage disposal places as

alternatives

• The used approach ranked the five disposal sites in the order
S5, S4, S3, S1, and S2.

• The proposed approach ranked the fice disposal sites in the
order S5, S4, S3, S2, and S1.

• The Spearman’s rho and Kendall’s tau_b correlations
between the alternative rankings of the two methods are 90%
and 78%, respectively.

• The used approach applied, given fuzzy weights as input to
the fuzzy TOPSIS matrix, while the proposed approach used
fuzzy weights obtained from fuzzy MEREC-G.
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5. Discussion

The numerical application of the proposed hybrid MCDM approach based on fuzzy
MEREC-G and fuzzy RATMI methods in this research study showed that it can generate
alternative rankings. However, ensuring its validity and checking how those generated
alternative rankings compare with rankings of other fuzzy MCDM methods is essential.
Moreover, it is also necessary to check the sensitivity of the proposed model. Therefore, the
validity and sensitivity analyses are provided in the following subsections.

5.1. Validity Analysis of the Proposed Approach

The validity of the resulting alternative rankings from the fuzzy MCRAT, fuzzy RAMS,
and fuzzy RATMI methods presented in Tables 7–9, respectively, are checked. This was
done by comparing these rankings from the proposed methods in this study with those
resulting from multiple fuzzy MCDM methods presented in Table 11. Those other MCDM
methods are the fuzzy ARAS, fuzzy MARCOS, fuzzy TOPSIS, fuzzy MABAC, fuzzy
VIKOR, and fuzzy MAIRCA. It is worth mentioning that the researchers who created these
fuzzy MCDM methods applied criteria with established fuzzy weights. In contrast, in
this research study, the fuzzy weights were unknown and determined by the proposed
MEREC-G method. The nonparametric correlation coefficients of ranked data, Spearman’s
rho, and Kendall’s tau_b, which might be better for smaller samples [73], were found as
shown in Tables 12 and 13, respectively. The correlation analyses show high correlations
with statistical significance levels between the resulting alternative rankings from the fuzzy
MCRAT, fuzzy RAMS, and fuzzy RATMI methods and those resulting from the other
fuzzy MCDM methods. This result indicates high accuracy and consistency between the
alternative rankings of the proposed hybrid MCDM approach based on fuzzy MEREC-G
and fuzzy RATMI methods in this research study and the other fuzzy MCDM methods.
Therefore, the proposed approach is deemed valid.

Table 11. Alternative rankings resulted from multiple fuzzy MCDM methods.

Alternatives Fuzzy
ARAS *

Fuzzy
MARCOS *

Fuzzy
TOPSIS *

Fuzzy
MABAC *

Fuzzy
VIKOR *

Fuzzy
MAIRCA *

Fuzzy
MCRAT **

Fuzzy
RAMS **

Fuzzy
RATMI **

A1 5 6 6 5 6 5 6 6 6
A2 6 5 5 6 5 6 5 5 5
A3 1 1 1 1 1 1 1 1 1
A4 2 2 2 2 2 2 2 2 2
A5 4 4 4 4 4 4 4 4 4
A6 3 3 3 3 3 3 3 3 3

* Alternative ranking adopted from [48]. ** Alternative ranking based on Tables 7–9.

Table 12. Spearman’s rho correlation coefficients between alternative rankings resulted from multiple
fuzzy MCDM methods.

Fuzzy
ARAS

Fuzzy
MARCOS

Fuzzy
TOPSIS

Fuzzy
MABAC

Fuzzy
VIKOR

Fuzzy
MAIRCA

Fuzzy
MCRAT

Fuzzy
RAMS

Fuzzy
RATMI

Fuzzy ARAS 0.943 0.943 1.000 0.943 1.000 0.943 0.943 0.943
Fuzzy MARCOS 1.000 0.943 1.000 0.943 1.000 1.000 1.000
Fuzzy TOPSIS 0.943 1.000 0.943 1.000 1.000 1.000
Fuzzy MABAC 0.943 1.000 0.943 0.943 0.943
Fuzzy VIKOR 0.943 1.000 1.000 1.000

Fuzzy MAIRCA 0.943 0.943 0.943
Fuzzy MCRAT 1.000 1.000
Fuzzy RAMS 1.000
Fuzzy RATMI

Note: All Spearman’s rho correlation coefficients are significant at the p ≤ 0.01 level (2-tailed).
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Table 13. Kendall’s tau_b correlation coefficients between alternative rankings resulted from multiple
fuzzy MCDM methods.

Fuzzy
ARAS

Fuzzy
MARCOS

Fuzzy
TOPSIS

Fuzzy
MABAC

Fuzzy
VIKOR

Fuzzy
MAIRCA

Fuzzy
MCRAT

Fuzzy
RAMS

Fuzzy
RATMI

Fuzzy ARAS 0.867 * 0.867 * 1.000 ** 0.867 * 1.000 ** 0.867 * 0.867 * 0.867 *
Fuzzy MARCOS 1.000 ** 0.867 * 1.000 ** 0.867 * 1.000 ** 1.000 ** 1.000 **
Fuzzy TOPSIS 0.867 * 1.000 ** 0.867 * 1.000 ** 1.000 ** 1.000 **
Fuzzy MABAC 0.867 * 1.000 ** 0.867 * 0.867 * 0.867 *
Fuzzy VIKOR 0.867 * 1.000 ** 1.000 ** 1.000 **

Fuzzy MAIRCA 0.867 * 0.867 * 0.867 *
Fuzzy MCRAT 1.000 ** 1.000 **
Fuzzy RAMS 1.000 **
Fuzzy RATMI

* Correlation is significant at the p≤ 0.05 level (2-tailed). ** Correlation is significant at the p≤ 0.01 level (2-tailed).

5.2. Sensitivity Analysis of the Proposed Approach

The sensitivity of the proposed MCDM approach in this study is checked by analyzing
the effect of different criteria weights on the resulting rankings of alternatives (A1–A6)
from the fuzzy RATMI. The sensitivity analysis was performed by calculating different
fuzzy criteria weights of each of the eight criteria (C1–C8) based on a range of 10% to
90% with 10% increments and equally distributing the remainder of the 100% on the
reset of criteria in each scenario. This has created a total of 72 run scenarios of the fuzzy
RATMI algorithm (i.e., nine sets of criteria weights × eight criteria = 72 run scenarios).
This procedure enabled comparing the effect of different weights of each criterion on the
resulting alternative rankings.

Figure 2 shows the resulting alternative rankings from the sensitivity analysis. As
shown in Figure 2a, criterion C1 demonstrated its sensitivity in most of the alternative
rankings in the 10% and 20% scenarios and provided consistent rankings for the 30% to 90%
scenarios. Figure 2b shows that criterion C2 changed the rankings of the alternatives A3 and
A4 only in the 10% scenario and showed consistent alternative rankings in the 20% to 90%
scenarios. For criterion C3, the analysis shows that it gave consistent alternative rankings
for the whole range of scenarios from 10% to 90%, as presented in Figure 2c, indicating that
changing its weight does not influence the decision-making problem. Figure 2d shows that
criterion C4 changed the rankings of the alternatives in the 10%, 80%, and 90% scenarios
and gave consistent alternative rankings in the 20% to 70% scenarios. Figure 2e shows
that criterion C5 changed the rankings of the alternatives A2, A3, and A4 only in the
10% scenario and showed consistent alternative rankings in the 20% to 90% scenarios.
Figure 2f shows that criterion C6 changed the rankings of the alternatives in the 10% and
20% scenarios while giving consistent alternative rankings in the 30% to 90% scenarios.
Figure 2g shows that criterion C7 changed the rankings of the alternatives in the 10%,
20%, and 70% scenarios while giving consistent alternative rankings in the other scenarios.
Finally, Figure 2h shows that criterion C8 changed the rankings of the alternatives in
the 10%, 20%, and 30% scenarios and gave consistent alternative rankings in the 40% to
90% scenarios. These results indicate that the proposed approach is sensitive enough
to changes in the criteria weights and reflects those changes on the alternative rankings,
yet not too sensitive and capable of producing consistent rankings based on alternatives’
performance scoring.
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6. Conclusions

Decision-making can be challenging when faced with multiple conflicting criteria and
uncertain or vague information. Fuzzy logic can model the uncertainty and ambiguity in
the decision process and provide a framework for fuzzy MCDM methods. These methods
help decision-makers assign weights to the criteria and rank the alternatives systematically.
This paper introduces a new hybrid fuzzy MCDM approach that combines two novel
methods: fuzzy MEREC-G for criteria weighting and fuzzy RATMI for alternative rankings.
The new approach was tested with real-world problem data adopted from Ulutaş et al. [48]
and compared with other MCDM methods: fuzzy ARAS, fuzzy MARCOS, fuzzy TOPSIS,
fuzzy MABAC, fuzzy VIKOR, and fuzzy MAIRCA, fuzzy MCRAT, and fuzzy RAMS.
The validity and sensitivity of the proposed hybrid MCDM approach were evaluated.
The validity was measured using the nonparametric Spearman’s rho and Kendall’s tau_b
correlation coefficients of ranked data. The correlation coefficients were 0.943 and 1.00
using Spearman’s rho methodology, while they were 0.867 and 1.00 using Kendall’s tau_b
methodology. These figures indicate that the proposed approach was valid and can be
applied to different real problems with fuzzy data, such as supplier selection [49,52] and
selecting pandemic hospital sites [55]. The sensitivity was checked by analyzing how
different criteria weights affected the alternative rankings from the fuzzy RATMI, which
showed that the approach was sensitive enough to reflect the changes in the criteria weights
on the alternative rankings, but not too sensitive and able to produce consistent rankings
based on the alternatives’ performance scorings. Therefore, this study’s new hybrid fuzzy
approach is deemed valid.

There are always opportunities for further studies in any new approach. The following
are possible future directions to extend the study on the proposed hybrid fuzzy MEREC-G
and fuzzy RATMI approach:

• Using the proposed fuzzy hybrid approach for different problems in multi-disciplines
can further ensure its effectiveness in solving research and industrial decision-making
problems.

• Conduct comparative studies between the new hybrid fuzzy approach and different
hybrid fuzzy methods in the literature or to be developed in the future.

• Study the efficacy of the proposed fuzzy hybrid approach when the number of decision
criteria increases.

• Apply other variations and extensions of traditional fuzzy set theory, such as intuition-
istic, hesitant, and Pythagorean fuzzy, in the developed method, which might better
handle the uncertainty and vagueness of inputs in decision-making problems.

• For further comparative analyses, the proposed fuzzy hybrid approach could apply to
other studies, such as the recent study presented by Görçün et al. [63].
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27. Rostamzadeh, R.; Esmaeili, A.; Sivilevičius, H.; Nobard, H.B.K. A fuzzy decision-making approach for evaluation and selection of
third party reverse logistics provider using fuzzy ARAS. Transport 2020, 35, 635–657. [CrossRef]

28. Karagöz, S.; Deveci, M.; Simic, V.; Aydin, N. Interval type-2 Fuzzy ARAS method for recycling facility location problems. Appl.
Soft Comput. 2021, 102, 107107. [CrossRef]

https://doi.org/10.2174/2352096514666211029112443
https://doi.org/10.3390/encyclopedia3010006
https://doi.org/10.33552/SJRR.2022.03.000558
https://doi.org/10.1007/s13198-020-01033-3
https://doi.org/10.4314/jasem.v23i8.7
https://doi.org/10.31181/dmame210402076i
https://doi.org/10.3390/sym13040525
https://doi.org/10.1007/s41870-021-00643-9
https://doi.org/10.3390/sym13060973
https://doi.org/10.1109/ICMCCE51767.2020.00271
https://doi.org/10.3390/systems11020074
https://doi.org/10.1016/j.cie.2022.108138
https://doi.org/10.1007/s13762-020-02922-7
https://doi.org/10.26417/ejms.v5i1.p93-101
https://doi.org/10.1016/j.esr.2019.03.003
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.1080/00218839.2020.1718341
https://doi.org/10.1016/j.knosys.2017.01.010
https://doi.org/10.1007/s00477-020-01816-x
https://doi.org/10.1080/16258312.2020.1788905
https://doi.org/10.1080/13504509.2020.1793424
https://doi.org/10.1155/2019/2456260
https://doi.org/10.1016/j.jenvman.2018.08.005
https://doi.org/10.1016/j.renene.2020.11.051
https://doi.org/10.1016/j.jclepro.2020.121981
https://doi.org/10.3846/transport.2020.14226
https://doi.org/10.1016/j.asoc.2021.107107


Mathematics 2023, 11, 3773 18 of 19

29. Mavi, R.K. Green supplier selection: A fuzzy AHP and fuzzy ARAS approach. Int. J. Serv. Oper. Manag. 2015, 22, 165–188.
[CrossRef]

30. Bakır, M.; Atalık, Ö. Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline
industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [CrossRef]
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