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Abstract: Species richness is a widely used measure for assessing the diversity of a particular area.
However, observed richness often underestimates the true richness due to resource limitations,
particularly in a small-sized sample or highly heterogeneous assemblage. To estimate the number of
different species (species richness) present across several different sites (communities), researchers
often use a combined collection of data (an integrated dataset). This dataset is created by collecting
samples from each site individually and independently. However, the pooled sample of integrated
data is no longer a random sample from the entire area, and the use of different sampling schemes
results in different collected data formats. Consequently, employing a single sampling distribution
to model the pooled sample becomes unfeasible, rendering existing richness estimators inadequate.
This study provides a theoretical explanation for the applicability of Chao’s lower bound estimator
in assessing species richness across multiple sites based on the pooled sample. Additionally, a new
non-parametric estimator is introduced, which adjusts the bias of Chao’s lower bound estimator by
leveraging the Good–Turing frequency formula. This proposed estimator only utilizes the richness
of singletons, doubletons, and tripletons in the pooled sample to estimate undetected richness.
Simulated datasets across various models are employed to demonstrate the statistical performance of
the estimator, showcasing its ability to reduce the bias of observed richness and provide accurate
95% confidence intervals. Real datasets are also utilized to illustrate the practical application of the
proposed approach.

Keywords: Chao’s lower bound estimator; Good–Turing frequency formula; integrated data;
singleton; doubleton; tripleton

MSC: 62G05

1. Introduction

Species richness is the most commonly used quantitative diversity metric and is
easily understood. The term “species” can be broadly defined to include biological species,
software bugs, words in a book, genes, alleles, or other discrete entities, as reviewed in [1–3].
This article focuses on biological applications—specifically, the number of detectable species
within a given area. However, due to constraints in resources or sampling, creating a
complete species inventory for a target area is often unfeasible. Instead, a random sample,
representing a small portion of the target area’s size or community, is typically used to
evaluate species diversity. In ecological studies, there are two main formats for assessing
species diversity: individual-based abundance data and sample-based incidence data.
Individual-based abundance data involve randomly sampling and identifying individual
organisms to species and recording the frequency of species. Sample-based incidence data
involve randomly sampling a plot, quadrat, trap, transect, or net from the target area and
recording the presence or absence of species appearing in the sampled unit [4].

Since the true number of species in an area is the sum of the species observed in the
sample and those not appearing in the sample, the observed richness in the sample always
underestimates the true richness. Generally, the extent to which species are underestimated
in a sample hinges on sampling efforts and sample completeness [5]. Accurately estimat-
ing the species richness of an assemblage remains a statistical challenge, particularly in
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highly heterogeneous assemblages [6]. To address the negative bias of observed richness,
numerous estimators have been proposed, leading to significant advancements in various
disciplines (refer to the review papers [1,3,7,8] for detailed information).

Generally, richness estimators in the literature can be classified into three types: curve-
fitting, parametric, and non-parametric approaches. Curve-fitting approaches utilize para-
metric curves to extrapolate species-accumulation or species-area curves, aiming to predict
their asymptote as an estimate of species richness [9,10]. This method does not directly
leverage the frequencies of common and rare species. Instead, it only anticipates the tra-
jectory of the rising curve. Parametric approaches treat species composition as a random
variable, adhering to a distribution with limited parameters [11–13]. This parameter reduc-
tion enables the application of standard traditional statistical inference procedures, such
as the maximum likelihood method. A primary advantage of parametric methods is their
simplicity. However, curve-fitting and parametric methods face challenges in selecting
the appropriate parametric function or distribution. Models using different functions or
distributions might fit the data similarly, resulting in vastly different estimates. Further, a
well-fitting parametric model does not guarantee a satisfactory estimate of species richness.
Non-parametric richness estimators, which do not make model assumptions about species
detection probability or species composition, tend to be more robust and are often preferred
by ecologists. In the realm of ecological research, Chao’s lower bound estimators [14,15],
which are rooted in the Cauchy–Schwarz inequality, are prominently used. Moreover, to ad-
dress the bias in observed richness, jackknife-based estimators [16,17] were crafted. These
work by consecutively excluding individuals from the data to analyze various sub-datasets.
In addition, these non-parametric estimators do not require all the information on observed
species; only rare species (singletons and doubletons) are used in the sample to estimate
undetected richness. These estimators could show expected robust statistical behavior only
when the sampling unit (i.e., an individual in abundance data and a plot in incidence data)
is randomly sampled. However, due to resource constraints, a random sample is often only
feasible in a limited area, not in a large-scale area.

In recent decades, monitoring species richness to reveal the impact of human activities
on a large or global scale has become an increasingly urgent task [18–23]. However,
estimating richness for large-scale areas (or across multiple sites) remains a statistical
challenge, and no reliable estimator has been developed to date. In general, the collected
datasets used to estimate the richness across multiple sites usually consist of the samples
that are separately sampled from each site by implementing different sampling schemes.
Therefore, this integrated dataset is composed of different kinds of data formats, including
individual-based abundance data and sample-based incidence data. However, the widely-
used rigorous estimators in the literature have their limitations due to their underlying
theoretical assumptions, and they are not equipped to analyze this type of integrated data.
Therefore, until now, no estimator has been specifically proposed for integrated data to
estimate the richness across multiple sites.

In this article, I provide a theoretical interpretation of the applicability of Chao’s lower
bound estimator for estimating species richness based on a pooled sample of integrated
data. Additionally, utilizing the Good–Turing frequency formula [24], I address the negative
bias inherent in Chao’s lower bound estimator and propose a bias-corrected alternative. The
variance of the new estimator can be calculated through the asymptotic approach, and its
95% confidence interval can be obtained through logarithmic transformation. To evaluate
the efficacy of this proposed estimator, three commonly used ecological models and two real
datasets are utilized in simulation studies and illustrative examples. Based on simulation
results from various scenarios of integrated data, both estimators significantly reduce the
negative bias of observed richness, providing reliable lower bound estimates across various
hypothetical models and exhibiting convergence towards the true richness as the sample
size increases. Notably, the newly proposed bias-corrected estimator outperforms Chao’s
lower bound, exhibiting lower bias, lower root mean square error (RMSE), and a more
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accurate 95% confidence interval (CI) for the true richness, particularly when dealing with
small sample sizes or highly heterogeneous communities.

2. Materials and Methods
2.1. Sampling Distribution Model

Assume there are a total of S distinct species in the community of interest. In ecological
studies, individual-based abundance data and sample-based incidence data are the most
commonly collected data types in the assessment of richness diversity [4]. The sampling
unit of individual-based abundance data is an individual independently sampled and
identified to a species from the target area, the sampling unit of sample-based incidence
data is a plot, quadrat, trap, transect, or net randomly sampled from the target area,
and only the incidence (presence or absence) of species appearing in the selected plot
is recorded.

For individual-based abundance data, assume n (a small fraction of community size)
individuals are independently sampled by sampling with replacement or sampling without
replacement. Let Xi be the number of individuals of species i counted in the sample.
The species frequency or species abundance (X1, X2, . . . , XS) could be assumed to follow
a multinomial distribution with size n and probabilities (p1, p2, . . . , pS), and the species
frequency Xi follows a binomial distribution with parameters n and pi:

Xi∼Binomial(n, pi), i = 1, 2, . . . , S,

where pi is the relative detection probability of species i. Let fk = ∑S
i=1 I(Xi = k) be

the number of species that are observed exactly k times in the sample, k = 1, 2, . . . , n.
Therefore, f0, f1, f2, and f3 represent the undetected richness, singleton richness, doubleton
richness, and tripleton richness in the abundance sample, respectively, where f0 is an
unknown parameter.

For sample-based incidence data, assume t sampling units are randomly sampled from
the target area and only the incidence (presence or absence) of species in the sampled unit is
recorded. Let Yi be the number of units in which species i is detected in the t sampled units.
Then, Yi could be assumed to follow a binomial distribution with size t and probability
πi, i = 1, 2, . . . , S:

Yi∼Binomial(t, πi), i = 1, 2, . . . , S,

where πi is the detection probability of species i, which depends on the abundance, body
size, and color of species i, as well as the investigator’s capability. Let Qk = ∑S

i=1 I(Yi = k)
be the number of species that are detected in exactly k out of t sampling units, k = 1, 2, . . . t.
Therefore, Q0, Q1, Q2, and Q3 are the unseen richness, singleton richness, doubleton
richness, and tripleton richness in the incidence sample, respectively, where Q0 is an
unknown parameter.

2.2. Richness Estimation for a Single Assemblage Using Integrated Data

Assuming that N samples are randomly collected from the target area through vari-
ous sampling schemes, including individual-unit-based and sample-unit-based sampling
methods, the integrated data comprise two formats (i.e., abundance data and incidence
data), as commonly seen in ecological studies. To determine the richness of the assemblage,
Chao1 and Chao2 [14,15], derived without model assumption on species detection rates,
are the most commonly used estimators, which are briefly outlined below. In this context,
I will not deeply explore jackknife-based estimators because they lack a theoretical basis
for bias reduction in species richness estimation [25] and they exhibit inferior statistical
performance compared to Chao’s lower bound estimators [26].

2.2.1. Chao’s Lower Bound Estimators

Based on Cauchy–Schwarz inequality, and without making any assumptions on
species detection rates, Chao proposed lower bound estimators for richness in 1984 and
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1987. These estimators were designed for individual-based abundance data and sample-
based incidence data and are referred to as the Chao1 and Chao2 estimators, respectively.
The Chao1 and Chao2 estimators are separately expressed as

Chao1 = Sobs +


f 2
1

2 f2
i f f2 > 0

f1 ( f1−1)
2 i f f2 = 0

(1)

Chao2 = Sobs +


t−1

t
Q2

1
2Q2

i f Q2 > 0

t−1
t

Q1(Q1−1)
2 i f Q2 = 0

. (2)

Chao’s lower bound estimators only use the frequency counts of the two rarest species
(i.e., the numbers of singleton and doubleton species) in the sample to estimate unde-
tected richness.

On the basis of Cauchy–Schwarz inequality theory, Chao’s lower bound estimators are
unbiased when the detection rates of species are homogeneous (i.e., pi =

1
S in Equation (1)

or πi = c in Equation (2), for i = 1, 2, . . . , S). In addition, according to the Good–Turing
frequency formula [24], Chao et al. [27,28] show that Chao’s lower bound estimators
are nearly unbiased estimators only when rare species have approximately homogenous
detection probabilities (or rates). Therefore, the degree of heterogeneity of the abundant
species in the assemblage contains no information about the unbiasedness of Chao’s lower
bound estimators. When the detection rate of rare species is highly heterogeneous or the
sample size is not large enough, in contrast to other parametric estimators, Chao1 or Chao2
can provide a lower bound and robust richness estimate [2,28]. However, Chao1 and
Chao2 were separately derived based on different sampling models for abundance data
and incidence data. Importantly, there is still no theoretical evidence or proof that Chao’s
lower bound estimator can be used to estimate species richness using a pooled sample of
integrated data.

2.2.2. Extending Chao’s Lower Bound Estimators for Integrated Data

Many richness estimators proposed in the literature, whether they are parametric or
non-parametric, are designed for randomly sampled data. This means that the detection
rate of a species for each random trial, such as a selected individual or plot, is assumed to
be identical. These estimators assume that the underlying assumptions of the binomial
distribution are met.

However, if N samples are separately collected using different sampling methods (e.g.,
sampling schemes, sampling efforts, plot sizes, or investigators) from the target area, the
observed species count in the pooled sample no longer follows a binomial distribution.
This violates the theoretical assumption of a random sample. This type of integrated data
is often encountered in ecological studies, where individual-based abundance data and
sample-based incidence data are collected from the same target area. While integrated data
are commonly employed to estimate richness, no estimator has been rigorously designed for
such data. In this section, I will theoretically illustrate how Chao’s lower bound estimator
can be modified to handle integrated data.

For individual-based abundance data, according to probability theory, when sample
size n is sufficiently large and relative abundance (or detection probability) p is sufficiently
small, the species frequency (X ) follows a binomial distribution that converges to a Poisson
distribution. This implies that the frequency ( X ) of rare species (i.e., p is sufficiently small)
in the sample could approximate a Poisson distribution with mean n p (i.e., X ∼ poi(np ))
for species with low detection rate. This convergence feature also applies to sample-based
incidence data. When the number of plots t is large and the detection rate π tends to
zero, the incidence count (Y ) of rare species in the sample could approximate a Poisson
distribution with mean t π (i.e., Y ∼ poi(tπ)) for species with a low detection rate.
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Without loss of generality, two random samples are collected from the target region
through different sampling schemes, namely, individual-based sampling and plot-based
sampling methods. These samples correspond to individual-based abundance data and
sample-based incidence data, respectively. When the two sampled samples are pooled,
the pooled species frequency Zi = Xi + Yi represents the count of species i in the pooled
sample. Here, Zi is no longer a random variable following a binomial distribution.

Based on the convergence principle between the binomial and Poisson distributions
discussed earlier, for species with low detection rates in the combined sampling scheme
(i.e., small pi and small πi), the species abundance (Zi) in the pooled sample approximately
follows a Poisson distribution with a mean parameter λi = npi + tπi. For simplicity,
let denote this mean parameter as λi = mdi, where m represents the unknown size of the
pooled sample and di represents the detection rate of species i. Next, let Gk = ∑S

i=1 I(Zi = k)
be the species frequency count, representing the number of species that are present exactly
k times in the pooled sample. When k is small (e.g., k = 0, 1, 2 or 3) and the size of the
pooled sample is sufficiently large, Gk is primarily contributed by the rare species, which
approximately follow a Poisson distribution. Given a specific sampling scheme, all species
in the region can be divided into a set of rare species, denoted as {srare}, and a set of
abundant species, denoted as {sabun}. Based on the existing convergence theory between
the binomial distribution and the Poisson distribution, we have the approximation of the
expectation of Gk for small k:

E[Gk] = E
[
∑S

i=1 I(Zi = k)
]
= ∑i∈{Srare} P(Zi = k) + ∑i∈{Sabun}

P(Zi = k).

When k is small, the probability that abundant species have a count of k tends to zero.
Therefore, ∑i∈{Sabun} P(Zi = k) is roughly equal to 0. We have

E[Gk] ≈∑i∈{Srare} P(Zi = k) + 0.

According to the convergence property between binomial and Poisson distribution for
rare species, the following approximation is held:

E[Gk] ≈∑i∈{Srare} P(Zi = k) ≈∑i∈{Srare}
λk

i
k!

e−λi ≈∑S
i=1

λk
i

k!
e−λi .

Therefore, we can derive the following four approximation equations for the expecta-
tion of undetected richness, singleton richness, doubleton richness, and tripleton richness,
which represent the number of rare species in the pooled sample:

E[G0] = E
[
∑S

i=1 I(Zi = 0)
]
= ∑S

i=1 P(Zi = 0) ≈∑S
i=1 e−λi (3a)

E[G1] = E
[
∑S

i=1 I(Zi = 1)
]
= ∑S

i=1 P(Zi = 1) ≈∑S
i=1 λi e−λi (3b)

E[G2] = E
[
∑S

i=1 I(Zi = 2)
]
= ∑S

i=1 P(Zi = 2) ≈∑S
i=1

λi
2

2
e−λi (3c)

E[G3] = E
[
∑S

i=1 I(Zi = 3)
]
= ∑S

i=1 P(Zi = 3) ≈∑S
i=1

λi
3

6
e
−λi

. (3d)

It is worth emphasizing once again that these approximations are valid only for lower
species frequency counts in the sample, under the condition that sample sizes (n and t) are
sufficiently large. In Appendix A, I provide evidence that the aforementioned approximate
equations hold by demonstrating their validity through numerical simulations.
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Based on the Cauchy–Schwarz inequality, we have the following inequality:

∑S
i=1 e−λi∑S

i=1 λi
2e−λi ≥

(
∑S

i=1 λi e−λi
)2

. (4)

According to Equations (3a) and (3b), Equation (4) is equivalent to E[G0]E[2G2] ≥
E[G1]

2. This inequality is also held when species detected mean abundance λi is assumed
to be a random variable with probability density function f (λ), expressed as(

S
∫

e−λ f (λ)dλ

)(
S
∫

λ2e−λ f (λ)dλ

)
≥
(

S
∫

λ e−λ f (λ)dλ

)2
.

Therefore, we have the lower bound estimator of undetected richness Ĝ0 =
G2

1
2G2

, which
uses the number of singletons and doubletons in the pooled sample to estimate undetected
richness. Therefore, the proposed richness estimator could be interpreted as an extension
of Chao1 or Chao2. It is denoted as Chao3, and the modified formula can be expressed as

Chao3 = Sobs +


G2

1
2G2

i f G2 > 0

G1(G1−1)
2 i f G2 = 0.

(5)

2.2.3. Modified Good–Turing Frequency Formula for Integrated Data

Before adjusting Chao’s lower bound estimator for a more accurate estimator, it is
essential first to introduce the Good–Turing frequency formula. Given a species abundance
sample of size n collected randomly, let αr symbolize the mean relative abundance of species
that appear exactly r times in the sample, expressed as αr = ∑S

i=1 pi I(Xi = r)/ fr. The Good–
Turing frequency formula, designed to estimate αr, is presented as α̂r =

(r+1) fr+1
n fr

; r = 1, 2, . . . .
This formula has its roots in the work of Alan Turing and I. J. Good during World

War II. They collaborated on deciphering German ciphers and innovatively utilized this
statistical method to estimate the true frequencies of rare code elements, including those
undetected, based on observed frequencies in intercepted samples of Nazi code. Later,
Good’s papers in 1953 [29], and jointly with Toulmin in 1956 [24], shed light on Turing’s
wartime explorations concerning the frequency formula and other related research topics.

In ecological studies, sample coverage represents the proportion of the total number
of individuals in a community that belong to the species represented in the sample. This is
represented mathematically as C = ∑S

i=1 pi I(Xi > 0), providing a measure of the sample’s
completeness. Since sample coverage is equivalent to C = 1− α0 f0, it can be estimated
as 1− α̂0 f0 = 1− f1/n [24]. This provides insight into the proportion of individuals from
sampled species. This metric helps ecologists determine how well their sample represents
the underlying community and whether more sampling is needed.

The Good–Turing frequency formula also can be used to estimate the number of
unobserved species in a sample, based on the intuitive concept that the mean relative abun-
dance of unseen species should be no greater than the mean relative abundance of species
observed once in the sample (i.e., α0 ≤ α1). Upon employing the Good–Turing frequency
formula to estimate α0 and α1, we arrive at the inequality f1/(n f0) ≤ 2 f2/(n f1). Then, the
lower bound estimator of undetected richness can be obtained, shown as f̂0 = f 2

1 /2 f2,
that is identical the Chao1 lower bound estimator initially derived via Cauchy–Schwarz
inequality.

Based on the concept of the Good–Turing frequency formula, for the pooled sample
from an integrated data, the mean detection rate of species which are present r times in the
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pooled sample is denoted as d(r) = ∑S
i=1 di I(Zi = r)/Gr. That can be effectively estimated

via a modified Good–Turing frequency formula, shown as

d̂(r) =
(r + 1)Gr+1

mGr
. (6)

2.2.4. Modified Chao’s Lower Bound Estimator for Integrated Data

According to the Cauchy–Schwarz inequality, we know that Chao3 is a lower bound
estimator. Based on the Good–Turing frequency formula, Chao3 will be severely negatively
biased when the rare species have a high degree of heterogeneity. In this section, the
negative bias of Chao3 can be corrected based on the Good–Turing frequency formula [24].
The bias of Chao3 is approximately equal to

E

[
G2

1
2G2

]
− E[G0] ≈

(
∑S

i=1 mdi e−mdi
)2

2∑S
i=1

(mdi)
2

2 e−mdi

−∑S
i=1 e−mdi .

Using the modified Good–Turing frequency formula (Equation (6)), we have the
following approximate equations:

E[G1] ≈∑S
i=1 mdi e−mdi = ∑S

i=1
2

mdi
E[I(Zi = 2)] ≈ 2

md(2)
E[G2] (7a)

E[G0] ≈∑S
i=1 e−mdi = ∑S

i=1
1

mdi
E[I(Zi = 1)] ≈ 1

md(1)
E[G1]. (7b)

According to Equations (7a) and (7b), the bias of G2
1/(2G2) can be approximately

derived as

BiasChao3 = E

[
G2

1
2G2

]
− E[G0] ≈

(
1

md(2)
− 1

md(1)

)
E[G1].

Therefore, the bias of Chao3 can be estimated by replacing d(1) and d(2) with d̂(1) and
d̂(2), respectively. It is given as

B̂iasChao3 =
G2

1
2G2

(
2G2

2
3G1G3

− 1

)
.

Then, we have the bias-corrected estimator of Chao3, expressed as

Chao3Adj = Sobs +
G2

1
2G2

2−
(

2G2
2

3G1G3

)−, (8)

where (A)− equals 1 if A ≥ 1 and A if A < 1. Here, as G3 = 0 (or G1 = 0), G3 (or
G1) is replaced by 1 to make Equation (8) always well-defined. The mathematic form of
the estimator shown in Equation (8) is identical to the parametric estimator proposed by
Chiu [30,31] which was derived based on the beta-binomial mixture model for sample-
based incidence data or based on the gamma-Poisson mixture model for individual-based
abundance data. The new estimator can also be proved to be a lower bound of richness
under the incidence-based beta-binomial mixture model or the abundance-based gamma-
Poisson mixture model [30,31].

Since the Chao3Adj estimator utilizes the first three rarest species in the sample to
estimate undetected richness, it can be applied to integrated data consisting of multiple
samples randomly collected from the target area without adhering to a specific sampling
model or scheme. For a comprehensive comparison, a table is provided in Appendix B.
This table details the equations and symbols utilized in the proposed estimators, complete
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with their definitions, origins (cited with references), and their statistical performances in
estimating richness.

2.3. Estimating Richness across Multiple Assemblages Using Integrated Data

When there are N assemblages (sites), species sampling data are collected indepen-
dently and separately from each site. The sampling data can be collected by either an
individual-unit-based sampling method or a sample-unit-based sampling method. Let Xij
represent the number of sampling units (such as the number of individuals in individual-
based abundance data or the number of plots in sample-based incidence data) of species
i in the sample j, which is collected from the jth site. Here, i ranges from 1 to S for the S
species, and j ranges from 1 to N for the N sites. If the sample size (i.e., the total number of
individuals in abundance data or the total number of plots in incidence data) is sufficiently
large in each sample, the counts (Xij) of species with low detection rates will approximate a
Poisson distribution. Then, the total count of species i in the pooled sample, denoted as
Xi+ = ∑N

j=1 Xij, will approximate a Poisson distribution when the detection rate of species
i in each site is uniformly low.

Let Gk = ∑S
i=1 I(Xi+ = k) be the number of species with a count of exactly k in

the pooled sample. The approximate equations shown in Equations (3a)–(3d) are also
applicable to the pooled sample of integrated data. Additionally, formulae for Chao3 and
Chao3Adj can be derived to estimate species richness across multiple assemblages based
on the Good–Turing frequency formula without making any specific model assumptions.
Similarly, their variance estimators can be obtained using the asymptotic approach, and
the 95% confidence interval (CI) of species richness can be derived by referring to the
discussion surrounding Equation (9).

According to the derivation, the proposed richness estimator possesses the following
properties: (i) when the samples are individually and randomly collected from each site, the
sampled samples can be directly combined to estimate undetected richness, regardless of
whether the data format in each sample is identical or not; (ii) the estimation of undetected
richness is solely based on the frequency counts of the rarest species in the pooled sample;
(iii) when the detection rates of rare species are homogeneous (including the homogeneous
model as a special case) or the sample size is sufficiently large, the proposed estimators are
nearly unbiased.

2.4. Estimation of the Variance for the Estimator

To derive the variance estimator for the proposed richness estimator, an asymptotic
approach is employed. By defining G2+ as the total frequency count of species with a count
of at least 3 in the sample (i.e., G2+ = ∑k≥3 Gk), the estimator Chao3 can be expressed as
a function of (G1, G2, G2+). The estimator of Chao3′s variance could be obtained by the
asymptotic approach in which (G0, G1, G2, G2+) approximate a multinomial distribution
with parameters

(
S, E[G0]

S , E[G1]
S , E[G2]

S , E[G2+ ]
S

)
. Additionally, let G4+ be the total frequency

count of species with a count of at least 4 in the sample (i.e., G4+ = ∑k≥4 Gk); then, Chao3Adj
becomes a function of (G1, G2, G3, G4+). The estimator of Chao3Adj’s variance can also be
obtained using the asymptotic approach, where (G0, G1, G2, G3, G4+) approximately follow
a multinomial distribution with parameters

(
S, E[G0]

S , E[G1]
S , E[G2]

S , E[G3]
S , E[G4+ ]

S

)
.

The variance estimator of the Chao3 or Chao3Adj can be derived via the delta method
and is expressed as

v̂ar(Ŝ) ≈∑
i

∑
j

∂Ŝ
∂Gi

∂Ŝ
∂Gj

ĉov
(
Gi, Gj

)
,

where

ĉov
(
G, Gj

)
=

{
Gi
(
1− Gi/Ŝ

)
i f i = j

−GiGj/Ŝ i f i 6= j
.
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To derive the 95% confidence interval (CI) of species richness and to ensure that the
lower bound of the 95% CI of species richness is larger than the observed richness, assume
Ŝ − Sobs follows a log-normal distribution [27,32]; then, the two-sided 95% CI of species
richness is obtained as[

Sobs +
Ŝ − Sobs

R
, Sobs +

(
Ŝ− Sobs

)
R

]
, where R = exp

1.96

[
log

(
1 +

Var
(
Ŝ
)(

Ŝ − Sobs
)2

)] 1
2
. (9)

When samples are randomly collected, Chao3 consistently provides a lower bound
estimate of species richness. Similarly, the Chao3Adj also provides a lower bound estimate
of species richness under the gamma-Poisson model or the beta-binomial model [30,31].
Therefore, in cases where the community exhibits high heterogeneity or the sample size
is small, these two estimators can offer lower bound estimates and more informative
one-sided 95% confidence intervals (CIs) of species richness, shown as

[
Sobs +

Ŝ − Sobs
R

, ∞

]
, where R = exp

1.65

[
log

(
1 +

Var
(
Ŝ
)(

Ŝ − Sobs
)2

)] 1
2
 .

3. Results
3.1. Hypothetical Species Composition Models for Simulation Study

A simulation study was conducted to examine the statistical behaviors of the new
estimators. The study involved the use of three species abundance models to generate
individual-based abundance data and three species detection models to generate sample-
based incidence data. The number of species was kept constant at S = 600, and the simulated
datasets were generated separately and independently using the following models.

3.1.1. Models for Individual-Based Abundance Sampling

The species detection probabilities (or species relative abundance) (p1, p2, . . . , pS) =
(ca1, ca2, . . . , caS) in each model are provided below, where c is a normalizing constant such
that ∑S

i=1 pi = 1. The coefficient of variation (CV) of (p1, p2, . . . , pS) is also presented to
indicate the degree of heterogeneity of (p1, p2, . . . , pS).

a. Abundance model 1, random uniform model (CV = 0.53), with pi = cai, i = 1, 2, . . . , S,
where (a1, a2, . . . , aS)is a random sample from a uniform distribution.

b. Abundance model 2, broken-stick model (CV = 0.97), with pi = cai, i = 1, 2, . . . , S,
where (a1, a2, . . . , aS) is a random sample from an exponential distribution with
parameter 1. This model is commonly used in the literature and is equivalent to the
Dirichlet distribution.

c. Abundance model 3, log-normal model (CV = 1.56), with pi = cai, i = 1, 2, . . . , S,
where (a1, a2, . . . , aS) is a random sample from a log-normal distribution with param-
eters 0 and 1.

3.1.2. Models for Sample-Based Incidence Sampling

The species detection probabilities (π1, π2, . . . , πS) = (ca1, ca2, . . . , caS) in each model
were determined, where c is a rescaling constant such that the maximum detection proba-
bility is a fixed at a constant value. The coefficient of variation (CV) of (π1, π2, . . . , πS) is
also calculated to indicate the degree of heterogeneity of (π1, π2, . . . , πS).

d. Incidence model 1: the random uniform model (CV = 0.57), where πi = cai,
i = 1, 2, . . . , S, and (a1, a2, . . . , aS) is a random sample from a uniform distribution
with parameters (0, 1), and scale c is used to control the maximum of {πi, i = 1, 2, . . . , S}.

e. Incidence model 2: the broken stick model (CV = 0.99), where πi = cai, i = 1, 2, . . . , S,
and (a1, a2, . . . , aS) is a random sample from an exponential distribution with parame-
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ter 1, and scale c is used to control the maximum of {πi, i = 1, 2, . . . , S}. This model
is commonly used in the literature and is equivalent to the Dirichlet distribution.

f. Incidence model 3: the log-normal model (CV = 1.23), where πi = cai, i = 1, 2, . . . , S,
and (a1, a2, . . . , aS) is a random sample from a log-normal distribution, and scale c is
used to control the maximum of πi.

The coefficient of variation (CV) in these six models ranged from 0 to 1.56, encompass-
ing a wide range of values that encompass most practical cases in real-world applications.

In the simulation study, different sample sizes are considered to represent varying
levels of sampling effort. For each simulation scenario, 1000 simulated datasets are gener-
ated. The estimates and their corresponding estimated standard errors (SE) are averaged
across the 1000 simulated datasets to obtain the mean estimate and mean estimated SE. The
sample SE and root mean square error (RMSE) are calculated based on the 1000 estimates
to determine the sample SE and sample RMSE. The percentage of 95% confidence intervals
(CIs) that cover the true value and the average observed richness are also calculated. All the
simulation results are presented in Tables 1 and 2. For simplicity, the average estimates of
the discussed estimators are plotted in Figures 1 and 2 to illustrate their statistical behavior
as a function of sampling effort.
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Figure 1. Plot of the true richness of one assemblage and the average richness estimates (including
observed richness, Chao3, and the adjusted Chao3 (Chao3Adj)) as a function of the sampling effort for
four different scenarios. Each scenario involves different combinations of abundance and incidence
data sets: (a) three abundance data sets; (b) two abundance data sets and one incidence data set
(c) one abundance data and two incidence data sets; and (d) three incidence data sets.
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Figure 2. Plot of the true richness of multiple assemblages and the average richness estimates
(including observed richness, Chao3, and the adjusted Chao3 (Chao3Adj)) as a function of the sampling
effort for four different scenarios. Each scenario involves different combinations of abundance and
incidence data sets: (a) three abundance data sets; (b) two abundance data sets and one incidence
data set; (c) one abundance data set and two incidence data sets; and (d) three incidence data sets.

Table 1. The statistical behavior of Chao3 and Chao3Adj are analyzed in four scenarios to estimate
the richness of one assemblage.

Size
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio1

200, 200, 200
(352.3)

Chao3 557.3 −42.7 37.6 38.7 56.9 † 0.834
Chao3Adj 601.6 1.6 † 71.6 68.2 71.5 0.856 †

400, 400, 400
(480.0)

Chao3 582.1 −17.9 21.4 20.9 27.8 † 0.882
Chao3Adj 601.6 1.6 † 35.7 34.1 35.7 0.87 †

600, 600, 600
(536.2)

Chao3 590.4 −9.6 14.3 13.4 17.2 † 0.91
Chao3Adj 599.9 −0.1† 22.1 21.5 22.1 0.95 †
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Table 1. Cont.

Size
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio2

200, 200, 10
(307.9)

Chao3 548.8 −51.2 50.1 46.8 71.6 † 0.804
Chao3Adj 598.2 −1.8 † 93.2 82.1 93.1 0.890 †

400, 400, 20
(441)

Chao3 571 −29 26.3 25.3 39.1 † 0.8
Chao3Adj 596.3 −3.7 † 45.4 41.9 45.5 0.91 †

600, 600, 40
(513.4)

Chao3 584.9 −15.1 16.9 16.2 22.6 † 0.858
Chao3Adj 598.8 −1.2 † 27.4 26.4 27.4 0.932 †

Scenerio3

200, 10, 10
(330.8)

Chao3 547.9 −52.1 41 41.4 66.3 † 0.786
Chao3Adj 587.1 −12.9 † 74.5 70.7 75.5 0.872 †

400, 20, 20
(460.2)

Chao3 572.1 −27.9 22.6 22.4 35.9 † 0.814
Chao3Adj 593.6 −6.4 † 39.6 36.9 40 0.902 †

600, 40, 40
(538.5)

Chao3 589.3 −10.7 13.2 13.1 17 † 0.902
Chao3Adj 599.8 −0.2 † 20.7 21.3 20.6 0.95 †

Scenerio4

10, 10, 10
(445.0)

Chao3 570.1 −29.9 24.7 24.2 38.8 † 0.808
Chao3Adj 589.4 −10.6 † 41.8 38.2 43.1 0.88 †

20, 20, 20
(540.5)

Chao3 585 −15 11.8 11.8 19.1 † 0.826
Chao3Adj 594 −6 † 18.5 19.2 19.4 0.961 †

40, 40, 40
(583.9)

Chao3 596.3 −3.7 6.1 5.7 7.1 † 0.954
Chao3Adj 599.6 −0.4 † 9.1 10.5 9.1 0.952 †

Note: data in Scenerio1, Scenerio2, Scenerio3, and Scenerio4 are separately composed of three abundance data,
two abundance data and one incidence datum, one abundance datum and two incidence data, and three incidence
data, respectively. † denotes the least bias, lowest RMSE, and closest to 95% coverage. Abbreviations: SE, standard
error; RMSE, root mean square error; CI, confidence interval.

Table 2. The statistical behavior of Chao3 and adjusted Chao3 (Chao3Adj) were analyzed in four
scenarios to estimate the richness of multiple assemblages.

Sizes
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio1

500, 500, 500
(457)

Chao3 544.8 −55.2 21.7 20 59.3 0.42
Chao3Adj 572.9 −27.1 † 38.2 35.5 46.8 † 0.892 †

1000, 1000, 1000
(529.4)

Chao3 573.1 −26.9 13.5 12.8 30.1 0.6
Chao3Adj 587.3 −12.7 † 22.7 22.1 26 † 0.906 †

2000, 2000, 2000
(569.5)

Chao3 589.5 −10.5 9.3 8.3 14.1 † 0.806
Chao3Adj 596.3 −3.7 † 15.2 14.5 15.6 0.972 †

Scenerio2

500, 500, 10
(430.7)

Chao3 518 −82 20.1 20 84.4 0.13
Chao3Adj 545.7 −54.3 † 34.7 35.4 64.4 † 0.786 †

1000, 1000, 20
(502.5)

Chao3 553.2 −46.8 15.2 14.5 49.2 0.306
Chao3Adj 572.4 −27.6 † 26.4 25.4 38.1 † 0.858 †

2000, 2000, 40
(547.9)

Chao3 580.2 −19.8 12.9 11.7 23.7 0.694
Chao3Adj 593 −7 † 22.1 20.6 23.2 † 0.942 †
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Table 2. Cont.

Sizes
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio3

500, 10, 10
(452.6)

Chao3 540.9 −59.1 21.1 19.9 62.7 0.32
Chao3Adj 567.2 −32.8 † 36.8 34.9 49.3 † 0.862 †

1000, 20, 20
(524.9)

Chao3 570.4 −29.6 13.8 13.1 32.6 0.57
Chao3Adj 584.4 −15.6 † 23.4 22.6 28 † 0.912 †

2000, 40, 40
(566.4)

Chao3 587.4 −12.6 9.1 8.5 15.5 0.782
Chao3Adj 594.4 −5.6 † 14.5 14.6 15.4 † 0.984 †

Scenerio4

10, 10, 10
(492.4)

Chao3 553.4 −46.6 18 16.6 50 0.41
Chao3Adj 575.3 −24.7 † 31.6 29.3 40.1 † 0.886 †

20, 20, 20
(541.8)

Chao3 576.1 −23.9 12.7 11.6 27 0.642
Chao3Adj 587.3 −12.7 † 21.3 20.1 24.8 † 0.920 †

40, 40, 40
(571.8)

Chao3 588.3 −11.7 7.9 7.6 14.1 0.806
Chao3Adj 594.2 −5.8† 12.8 13.4 14† 0.976 †

Note: data in Scenerio1, Scenerio2, Scenerio3, and Scenerio4 are separately composed of three abundance data,
two abundance data and one incidence datum, one abundance datum and two incidence data, and three incidence
data, respectively. † denotes the least bias, lowest RMSE, and closest to 95% coverage. Abbreviations: SE, standard
error; RMSE, root mean square error; CI, confidence interval.

3.2. Simulation Results for Richness Estimation in a Single Assemblage

In this case, the integrated dataset consists of three random samples that are indepen-
dently collected from the same assemblage. Each sample is simulated separately based on
one of the three discussed abundance/incidence models, representing different sampling
situations or methods. Different sample sizes are considered to indicate varying levels of
sampling efforts, ranging from n = 200 to 600, with an increment of 50 for abundance data,
and t = 10 to 50 with an increment of 5 for incidence data.

Four different scenarios are examined, including:

a. Three abundance models: random uniform, broken-stick, and log-normal;
b. Two abundance models: random uniform and broken-stick; one incidence model:

log-normal;
c. One abundance model: random uniform; two incidence models: broken-stick and

log-normal;
d. Three incidence models: random uniform, broken-stick, and log-normal.

The simulation results for these four scenarios are presented separately in Figure 1a–d
and Table 1.

To estimate the richness of a single assemblage based on integrated data, as shown
in Figure 1 and Table 1, under various scenarios of integrated datasets, both Chao3 and
Chao3Adj can effectively reduce the negative bias of observed richness, and their bias and
RMSEs decrease as sample size increases. When the sample size is small, both Chao3 and
Chao3Adj provide a lower bound for the true richness, and they approach the true richness
as sampling increases. The estimator of variance derived via the asymptotic method could
perform well in all simulation scenarios (shown in Table 1).

Compared to Chao3, Chao3Adj offers a nearly unbiased and resilient estimate (with
reduced bias and RMSE) and a more accurate 95% CI in every simulation scenario (as
illustrated in Figure 1 and Table 1), even if the sample size is small.



Mathematics 2023, 11, 3775 14 of 24

3.3. Simulation Results for Richness Estimation across Multiple Assemblages

To evaluate the statistical behavior of the discussed estimators for richness estimation
based on integrated data, three assemblages (sites) are assumed here. The integrated data
consist of three samples that are collected separately from each site. It is assumed that
the three sites comprise S = 600 species, with each site containing 300 species. There are
varying numbers of shared species and unique species in each site.

Different sample sizes are considered to represent different sampling efforts, ranging
from n = 400 to 4000, with an increment of 450 for abundance data, and t = 10 to 50, with an
increment of 5 for incidence data. Four different scenarios are examined:

a. Three abundance models: random uniform, broken-stick, and log-normal;
b. Two abundance models: random uniform and broken-stick; one incidence model:

log-normal;
c. One abundance model: random uniform; two incidence models: broken-stick and

log-normal;
d. Three incidence models: random uniform, broken-stick, and log-normal.

The simulation results for these four scenarios are presented separately in Figure 2a,d
and Table 2.

To assess richness across multiple assemblages using integrated data, both Figure 2 and
Table 2 indicate that Chao3 and Chao3Adj effectively mitigate the negative bias of observed
richness in each discussed integrated data scenario. As the sample size increases, the bias
and RMSE for these two estimators decline. With limited sample sizes, Chao3 and Chao3Adj
act as lower bounds for true richness. As sample size increases, these estimators converge
toward true richness. The variance estimator, derived through the asymptotic method,
consistently performs well across all simulated scenarios, as corroborated by Table 2. While
Chao3Adj exhibits higher variance compared to Chao3, it yields more precise and consistent
estimates, demonstrating less bias and RMSE. This ensures a more dependable 95% CI
across all simulation scenarios, as emphasized in both Figure 2 and Table 2.

3.4. Remarks of Simulation Results

Undoubtedly, for a fixed sample size, a superior species richness estimator should
exhibit lower bias and variance (i.e., low RMSE). Additionally, the coverage rate of its
associated 95% confidence interval should be close to 0.95. As the sample size increases,
an effective estimator should exhibit the following key characteristics: its bias should
decrease; its accuracy (measured by RMSE) should enhance; and the coverage rate of its
confidence interval should generally become better, ultimately approximating the true
species richness when the sample size is adequately expansive. Based on these criteria, the
following findings can be concluded from the simulation results:

a. In all simulation scenarios presented in Tables 1 and 2 and Figures 1 and 2, both Chao3
and Chao3Adj consistently provide robust lower bound estimates in all hypothetical
models, and they tend to approach the true richness as the sample size increases;

b. Both Chao3 and Chao3Adj exhibit the essential statistical behaviors: their bias and
RMSE decrease, resulting in more accurate 95% confidence intervals as the sample
size increases (Tables 1 and 2);

c. The estimators of the discussed estimators’ variance, derived using the asymptotic
approach, perform well across all simulation scenarios (Tables 1 and 2);

d. Compared to Chao3, Chao3Adj exhibits lower bias, larger standard errors, and more
accurate 95% confidence intervals for the true richness in all simulation scenarios
(Tables 1 and 2);

e. When samples are directly collected from the entire region (Table 1), Chao3Adj has
higher RMSEs compared to Chao3; however, when samples are separately collected
from each local area within the target region (Table 2), Chao3Adj demonstrates
lower RMSEs.
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These findings collectively demonstrate the favorable performance of Chao3Adj in
terms of bias, standard error, and accuracy of the 95% confidence interval, particularly
when samples are collected from each site within the target area.

3.5. Using Datasets as True Assemblages

I utilized two biological survey datasets, representing true assemblages and generated
separate datasets, from these two assemblages. In each dataset, the observed species relative
abundance was considered as the true species relative abundance or detection probability.
A sample of size n (or t) was then generated through sampling with replacement to create
the sampling dataset. Different sample sizes were considered to indicate varying levels of
sampling efforts.

The average estimate and other relevant statistics obtained using the 1000 generated
datasets, as a function of sample size, are depicted in Figures 3 and 4 and Table A3 (refer
to Appendix C for detailed information). These evaluations aimed to assess the statistical
behaviors of the discussed richness estimators across four different sampling scenarios:
three abundance data; two abundance data and one incidence datum; one abundance
datum and two incidence data; and three incidence data.
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Figure 3. Plot of the true number of moth species and the average richness estimates (including
observed richness, Chao3, and the adjusted Chao3 (Chao3Adj)) as a function of the sampling effort for
four different scenarios. Each scenario involves different combinations of abundance and incidence
data: (a) three abundance data; (b) two abundance data and one incidence datum; (c) one abundance
datum and two incidence data; and (d) three incidence data.
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Figure 4. Plot of the true number of xylobiont beetle species and three average richness estimates
(including observed richness, Chao3, and the adjusted Chao3 (Chao3Adj), as a function of the sampling
effort for four different scenarios. Each scenario includes different combinations of abundance and
incidence data sets: (a) three abundance data sets; (b) two abundance data sets and one incidence
data set; (c) one abundance data set and two incidence data sets; and (d) three incidence data sets.

3.5.1. Moth Species Data

Moth species data were collected in the Golfo Dulce region of the Costa Rican rainforest
from July to October 2014 [33]. The target region was divided into three types of forest:
creek forest; slope forest; and ridge forest. Light traps were set up at 18 sites, with six
replicates within each forest type. Further details can be found in [33].

Table 3 presents a summary of the data, including the sample size, observed richness,
and the first five species frequency counts for each forest type. In the pooled sample, a
total of 421 species were recorded, with 115, 285, and 356 species observed in the creek,
slope, and ridge forests, respectively. In this case, the survey datasets are considered as
the true assemblages. The proportion of species in the sample is assumed to represent
the species’ relative abundance for generating individual-based abundance data, while
the ratio between species abundance and the maximum abundance is considered as the
species’ detection probability for generating sample-based incidence data. Consequently,
each type of forest has its corresponding abundance model and incidence model. Four
different scenarios are examined:

a. Three abundance models: creek, slope, and ridge;
b. Two abundance models: creek and slope; one incidence model: ridge;
c. One abundance model: creek; two incidence models: slope and ridge;
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d. Three incidence models: creek, slope, and ridge.

The simulation results for each scenario are depicted separately in Figure 3a–d and
Table A3 (Appendix C).

Table 3. The summary of three moth samples separately collected from creek, slope, and ridge
habitats in the Costa Rica rain forest [33], and three beetle samples separately collected from Quercus
robur, Tilia cordata, and Fraxinus excelsior tree species in the Leipzig floodplain forest [34].

Moth Species Data

Habitat Sample Size Observed Richness Sample CV f1 f2 f3 f4+

creek 461 115 1.86 54 22 9 32
slope 2382 285 2.40 92 47 23 123
ridge 3710 356 2.68 94 59 31 172

Beetle Species Data

Tree Species Sample Size Observed Richness Sample CV f1 f2 f3 f4+

Quercus robur 2205 174 2.72 74 29 10 61
Tilia cordata 1737 198 2.37 92 27 16 63

Fraxinus excelsior 1797 184 3.30 77 31 11 65

Abbreviations: CV, coefficient of variation; f1, f2, f3, and f4+ are, respectively, the singleton richness, doubleton
richness, tripleton richness, and the number of species observed more than three times in the sample.

3.5.2. Xylobiont Beetle Species Data

The second real dataset comprises xylobiont beetle species data collected from the
Leipzig floodplain forest in 2016 [34]. The beetle species data were collected separately
from three dominant tree species in the Leipzig floodplain forest area: Quercus robur (QR);
Tilia cordata (TC); and Fraxinus excelsior (FE). Table 3 provides information on the sample
size, observed richness, and the first three species frequency counts for each tree species. In
total, 307 beetle species were observed, with 174, 198, and 184 species recorded in QR, TC,
and FE tree species, respectively.

In this case, the survey datasets are treated as the true assemblages, and the species
abundance/incidence model is constructed using the same method discussed earlier for
each tree species. Four different scenarios are considered, including:

a. Three abundance models: QR, TC, and FE;
b. Two abundance models: QR and TC; one incidence model: FE;
c. One abundance model: QR; two incidence models: TC and FE;
d. Three incidence models: QR, TC, and FE.

The simulation results for each scenario are presented separately in Figure 4a,d and
Table A4 (Appendix C).

Abbreviations: CV, coefficient of variation; f1, f2, f3, and f4+ are, respectively, the
singleton richness, doubleton richness, tripleton richness, and the number of species
observed more than three times in the sample.

The results of the analysis, as depicted in Figures 3 and 4 and the Appendix C in
Appendix C, demonstrate that both Chao3 and Chao3Adj effectively reduce the underesti-
mation of observed richness. From a theoretical standpoint, and considering the results of
the simulation study, it is expected that Chao3Adj exhibits lower bias compared to Chao3,
particularly when there is high heterogeneity as indicated by a high coefficient of variation
(CV). Furthermore, the Appendix C in Appendix C confirm that Chao3Adj has lower bias,
higher standard error, and lower root mean square error (RMSE). The higher estimated
standard error of Chao3Adj compared to Chao3 suggests that the former estimator may
provide a more accurate 95% confidence interval for true richness. This observation aligns
with the findings of the simulation study presented in Tables 1 and 2.

Overall, the results support the notion that Chao3Adj has less bias and performs better
in terms of standard error and RMSE, indicating its potential to provide more accurate
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estimates and confidence intervals for true richness, particularly in scenarios with higher
heterogeneity.

4. Discussion and Conclusions

Species richness is the most commonly used diversity metric in ecological research.
Numerous methodologies for estimating total species richness in a given area have been
explored in the scholarly literature. These methods can be broadly categorized as either
parametric or non-parametric estimators. Parametric estimators leverage assumptions
about species compositions and necessitate complex computational processes to resolve
likelihood functions. Furthermore, these estimators often encounter convergence issues
during iterative numerical procedures or yield high variance when sample sizes are small.
As such, they are less suited to small sample sizes and seldom applied in ecological
studies. In contrast, non-parametric estimators, which do not impose assumptions on
species composition and feature simple, closed formulae, tend to be more robust in various
simulation cases. Consequently, they have gained widespread adoption in ecological
studies. However, parametric and non-parametric approaches are derived assuming the
sample is collected randomly from the target area, whereas in the abundance sample, the
number of individuals belonging to a specific species, or in the incidence sample, the
number of plots where a species is detected, both adhere to a binomial distribution.

Estimating species richness for a large-scale area or multiple assemblages poses a
statistical challenge due to the difficulty of obtaining a random sample from the entire
region. Typically, integrated data collected for assessing species richness in such cases
consist of multiple samples that are individually sampled from each assemblage or local-
area. Additionally, these samples may employ different sampling schemes or strategies.
Therefore, the detection probability of a species may vary across the samples, and the data
format (individual-based abundance data or sample-based incidence data) can differ among
the samples. As a result, the pooled sample of the integrated data cannot be considered a
random sample from the entire region, even though each individual sample is randomly
collected from its respective local area or assemblage. Consequently, the pooled sample
from the integrated data cannot be modeled using a traditional sampling distribution.
Additionally, no estimator has been previously developed in the literature to estimate
richness based on integrated data.

In this context, richness estimators that rely only on the frequency counts of rare
species in the sample have been theoretically demonstrated to be applicable to the pooled
sample, as long as the samples are randomly collected and the sample size is not excessively
small. While numerous non-parametric techniques are grounded on the frequency tallies of
infrequent species, such as the widely-adopted jackknife estimators, these often contravene
essential standards, where bias and root mean squared error (RMSE) ought to diminish
with the increasing sample size. Additionally, they are not consistently reliable, especially
with limited data or when the assemblage is highly heterogenous [26,30,35]. Hence, this
manuscript does not delve into these estimators; instead, it focuses on the widely used
Chao’s lower bound estimator, which utilizes the numbers of singletons and doubletons to
estimate undetected richness and provides a reabiable estimate when sample size is not
sufficiently large. This is the primary approach discussed in this text. In this research, a
lower bound estimator (Chao3) and its bias-corrected estimator (Chao3Adj) are theoretically
proven to be suitable for estimating richness in multiple assemblages based on the pooled
sample from integrated data. Chao3 derived using Cauchy–Schwarz inequality provides
a lower bound richness estimate, while Chao3Adj corrects the bias of Chao3 based on the
Good–Turing frequency formula.

Since a single statistical model cannot accurately fit all ecological communities, there
is no existing richness estimator that is uniformly unbiased for all such communities.
Therefore, the development of a more robust estimator becomes an essential issue in
estimating species richness. In this case, an estimator should be designed with functions
such that both its bias and accuracy (quantified by RMSE), the two most crucial properties
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for an estimator, decrease as the sample size increases. Additionally, the coverage rate of the
95% confidence interval should approach 0.95 as the sample size expands. Based on these
critical criteria, I arrived at the following conclusions from our simulation results. In all
simulated scenarios, the observed richness in the samples was significantly underestimated,
particularly when the sample size was small or when the species composition of the
community was highly heterogeneous. Simulation results demonstrate that both Chao3
and Chao3Adj could correct the severe negative bias of observed richness, and their bias
and RMSEs decreased as the sample size increased across all models discussed. These two
estimators provide lower bound estimates in all hypothetical models and tend to converge
to the true richness as the sample size increases. This implies that both proposed estimators
can be used to estimate regional richness based on the pooled sample from integrated data,
which aligns with the theoretical findings. Notably, when the sample size is small or the
community exhibits high heterogeneity, Chao3 presents a significant negative bias, and
its 95% confidence interval (CI) coverage rate is generally much lower than 0.95. In this
case, Chao3Adj outperforms Chao3 with lower bias, lower root mean square error (RMSE),
higher standard error (s.e.), and a more accurate 95% CI for true richness. This indicates
that Chao3Adj tends to be more stable and less susceptible to the challenges mentioned
compared to the traditional Chao’s lower bound estimator.

In the text, all proposed estimators are based on the assumption that each sampling
unit is collected independently. When individuals in the sample are not sampled indepen-
dently, and individuals of the same species are more likely to be sampled, the proposed
estimator can be severely negatively biased. Therefore, when individuals of a species
exhibit spatial aggregation patterns, it becomes challenging to collect them independently
and individually. In such cases, the individual-based sampling method may not be practical
to implement. In these situations, it is recommended to use the sample-based incidence
sampling method for collecting data to assess species richness. This method could ap-
proximately ensure that the sampling units are sampled independently to align with the
underlying model assumptions.

The proposed estimators depend solely on data related to rare species, namely, the
count of singletons, doubletons, and tripletons in the aggregated sample, in order to
estimate unobserved richness. Compared to more complex computations such as the maxi-
mum likelihood method, these methods offer a computational advantage as they provide
estimates more simply, and their user-friendliness is emphasized by their straightforward
formulae. From a practical standpoint, another significant benefit is that these estimators
eliminate the need for detailed tracking of the count of abundant species observed during
field surveys, thereby considerably reducing the field sampling burden.

In summary, while the newly introduced estimators show promising results in the
hypothetical models and two real datasets, their applicability still necessitates further
validation using a broader range of real datasets in the future.

Funding: This research was funded by National Science and Technology Council (Taiwan), grant
number 111-2118-M-002-002-MY2.

Data Availability Statement: All R codes used in this paper are archived on Zenodo: https://
doi.org/10.5281/zenodo.8118860 (accessed on 6 July 2023). The moth species dataset used in this
paper is archived on the website: https://doi.org/10.5061/dryad.783p8m2 (accessed on 6 July
2023). The xylobiont beetle species dataset used in this paper is archived on the website: https:
//doi.org/10.5061/dryad.d7wm37q0g (accessed on 6 July 2023).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Numerical Study to Show That the Expectation of Frequency Counts of
Rare Species in the Pooled Sample Is Approximately Identical to the Probability Sum
of the Poisson Distribution

Assume that there are S(=400) species contained in the target area, when both abun-
dance data and incidence data are collected from the same area, species abundance (Xi)
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follows a binomial distribution with size n and probability pi (i.e., Xi∼Binomial(n, pi)),
where ∑S

i=1 pi = 1. Additionaly, species incidence count (Yi) follows a binomial distribution
with size t and probability πi (i.e., Yi∼Binomial(t, πi)). Let the species frequency in the
pooled sample be Zi = Xi + Yi; then, Gk = ∑S

i=1 I(Zi = k) is the count of species frequency
in the pooled sample.

Here, I implement a simulation study to show that the following equation (Equation (A1))
is approximately held when sample size (n) and (t) is large and k is small (i.e., k = 0, 1, 2, 3):

E[Gk] = ∑S
i=1 P(Zi = k) ≈∑S

i=1
λk

i
k!

e−λi , where λi = npi + tπi. (A1)

a. For the individual-based abundance sampling model, the species detection probabili-
ties (or species relative abundance) pi = cai and ai∼U(0, 1), i = 1, . . . , S , where c
is a normalizing constant such that ∑S

i=1 pi = 1;
b. For the sample-based incidence model, the species detection probabilities

πi∼U(0.05, 0.2), i = 1, 2, . . . , 50 and πi∼U(0.8, 1), i = 51, 52, . . . , 100.

In the simulation study, different sample sizes are understood to indicate different
sampling efforts. For each simulation scenario, 1000 simulated datasets are generated; then,
Gk is averaged over the 1000 simulated datasets to estimate E[Gk]. The table below shows
that the equation (Equation (A1)) could be roughly held for k = 0, 1, 2, 3 when the sample
sizes (n and t) are sufficiently large.

Table A1. Expectation of the count for the first five rare species frequencies.

Sample Size k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 100, t = 10
∑S

i=1
λk

i
k! e−λi 59.4 65.1 43 23.4 14.3 13.6

E[Gk] 55.6 66.9 44.8 22 8 3.2

n = 200, t = 20
∑S

i=1
λk

i
k! e−λi 21.9 39.9 42.8 35.8 25.7 16.3

E[Gk] 20.2 39.2 43.3 37.4 27.1 17

n = 300, t = 30
∑S

i=1
λk

i
k! e−λi 9.4 22.4 30.5 32 29.3 24.4

E[Gk] 8.5 21.5 30 32.5 29.9 25.7

n = 400, t = 40
∑S

i=1
λk

i
k! e−λi 4.4 12.8 20.5 24.7 25.6 24.3

E[Gk] 4 12 20 24.5 25.4 24.8

n = 500, t = 50
∑S

i=1
λk

i
k! e−λi 2.2 7.4 13.7 18.4 20.7 21.2

E[Gk] 1.9 6.9 13.1 18.1 20.6 21.2

The simulation results show that the expectations of the first three frequency counts
(i.e., G0, G1, G2, G3) are roughly identical to the probability sum of the Poisson distribution
with mean λi = npi + tπi, i = 1, 2, . . . , S.
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Appendix B. The Summary of the Statistical Properties of the Richness Estimators
Discussed in the Text

Table A2. The summary of the statistical properties of the richness estimators discussed in the text.

Available Data and Notation Richness Estimator Pluses and Minuses

Individual-based abundance data: sampling unit
is an individual randomly selected from target
assemblage and identified as species.

Sobs : the observed richness;
f1 : the singleton richness in the sample;
f2 : the doubleton richness in the sample;
f3 : the tripleton richness in the sample.

Chao1 [6]

Sobs +

{ f 2
1

2 f2
i f f2 > 0

f1 ( f1−1)
2 i f f2 = 0

1. A lower bound estimator of
richness for all species
composition models;

2. A nearly unbiased estimator
when rare species are
homogeneous;

3. Has severely negative bias
when community is highly
heterogeneous.

Chao1Adj [19]

Sobs +
f 2
1

2 f2

(
2− 2 f 2

2
3 f1 f3

)
1. A lower bound estimator of

richness for gamma-Poisson
models;

2. Compared to Chao1, Chao1Adj
has less bias, higher variance,
lower RMSE, and a more
accurate coverage rate of 95%
confidence interval.

Sample-based incidence data: sampling unit is a
quadrat or plot, and only the incidence of species
appearing in the selected plot is recorded.

Sobs : the observed richness;
Q1 : the singleton richness in the sample;
Q2 : the doubleton richness in the sample;
Q3 : the tripleton richness in the sample;
t : the number of selected plot.

Chao2 [7]

Sobs +

{
t−1

t
Q2

1
2Q2

i f Q2 > 0
t−1

t
Q1(Q1−1)

2 i f Q2 = 0

1. A lower bound estimator of
richness for all species
composition model;

2. A nearly unbiased estimator
when rare species are
homogeneous;

3. Has severely negative bias
when community is highly
heterogeneous.

Chao2Adj [20]

Sobs +
t−1

t
Q2

1
2Q2

(
2− 2Q2

2
3Q1Q3

)
1. A lower bound estimator of

richness for beta-binomial
models;

2. Compared to Chao2, Chao2Adj
has less bias, higher variance,
lower RMSE, and has more
accurate coverage rate of 95%
confidence interval.

Pooled sample of integrated data: we directly
pool the individual-based abundance data and
sample-based incidence data as a new sample.

Sobs : the observed richness;
G1 : the singleton richness in pooled sample;
G2 : the doubleton richness in the pooled sample;
G3 : the tripleton richness in the pooled sample.

Chao3 (New proposed)

Sobs +

{
G2

1
2G2

i f G2 > 0
G1(G1−1)

2 i f G2 = 0

1. Chao3 is available for pooled
sample of integrated data;

2. A lower bound estimator of
richness when sample size is
large enough;

3. Has severely negative bias
when community is highly
heterogeneous.

Chao3Adj (New proposed)

Sobs +
G2

1
2G2

(
2− 2G2

2
3G1G3

)
1. Compared to Chiao3, Chao3Adj

has less bias, higher variance,
and lower RMSE;

2. Has more accurate coverage
rate of 95% confidence interval.
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Appendix C

Table A3. The statistical behavior of Chao3 and Chao3Adj were analyzed in four scenarios to estimate
the number of the moth species (richness = 421) [22].

Size
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio1

100, 300, 400
(200.0)

Chao3 301.6 −119.4 30.4 29.4 123.2 0.158
Chao3Adj 350.7 −70.3 † 57.8 56.8 91 † 0.85 †

300, 900, 1000
(288.2)

Chao3 367.6 −53.4 22.1 22.4 57.8 0.49
Chao3Adj 399.1 −21.9 † 39.6 41.7 45.2 † 0.926 †

500, 1500, 1600
(328.2)

Chao3 391.9 −29.1 19.8 18.7 35.2 † 0.754
Chao3Adj 416.4 −4.6 † 36.1 34.1 36.3 0.943 †

Scenerio2

100, 300, 10
(201.2)

Chao3 303.7 −117.3 30.1 29.5 121.1 0.18
Chao3Adj 353.4 −67.6 † 58.3 56.9 89.2 † 0.846 †

300, 900, 30
(297.3)

Chao3 333 −88 30.5 27.2 93.1 0.294
Chao3Adj 377.2 −43.8 † 57.9 51.9 72.6 † 0.891 †

500, 1500, 50
(338.4)

Chao3 351.8 −69.2 26 25.1 73.9 0.408
Chao3Adj 389 −32 † 49 47.2 58.5 † 0.931 †

Scenerio3

100, 10, 10
(200)

Chao3 310.2 −110.8 29.4 28.8 114.7 0.186
Chao3Adj 357.1 −63.9 † 56.3 54.8 85.1 † 0.846 †

300, 30, 30
(288.2)

Chao3 339.2 −81.8 28.6 26.5 86.7 0.32
Chao3Adj 380 −41 † 54.7 49.6 68.3 † 0.882 †

500, 50, 50
(328.2)

Chao3 357.2 −63.8 24.5 24.3 68.3 0.4
Chao3Adj 393.7 −27.3 † 46.5 45.9 53.9 † 0.942 †

Scenerio4

10, 10, 10
(221.1)

Chao3 313.3 −107.7 28.7 26.7 111.4 0.168
Chao3Adj 356.3 −64.7 † 54.6 50.9 84.6 † 0.842 †

30, 30, 30
(311.1)

Chao3 341.3 −79.7 25.4 25 83.7 0.286
Chao3Adj 379.5 −41.5 † 47.6 47 63.1 † 0.911 †

50, 50, 50
(348.0)

Chao3 359.3 −61.7 23.6 23.2 66 0.428
Chao3Adj 393.7 −27.3 † 44.4 43.3 52.1 † 0.941 †

Note: data in Scenerio1, Scenerio2, Scenerio3 and Scenerio4 are separately composed by three abundance data,
two abundance data and one incidence datum, one abundance datum and two incidence data, and three incidence
data, respectively. † denotes the least bias, lowest RMSE, and closest to 95% coverage. Abbreviations: SE, standard
error; RMSE, root mean square error; CI, confidence interval.
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Table A4. The statistical behavior of Chao3 and Chao3Adj were analyzed in four scenarios to estimate
the number of the beetle species (richness = 207) in Leipzig floodplain forest [23].

Size
(Observed
Richness)

Estimator Average
Estimate Bias Sample

SE

Average
Estimated

SE

Sample
RMSE

95% CI
Coverage

Rate

Scenerio1

200, 200, 200
(132.2)

Chao3 212.3 −94.7 29.9 29.1 99.3 0.321
Chao3Adj 253.7 −53.3 † 59 56.2 79.5 † 0.856 †

600, 600, 600
(196.4)

Chao3 233.7 −73.3 28.4 27.4 78.6 0.428
Chao3Adj 271.6 −35.4 † 55.4 52.5 65.8 † 0.912 †

1000, 1000, 1000
(228.1)

Chao3 250 −57 28.3 26.5 63.6 0.561
Chao3Adj 287.6 −19.4 † 54.4 50.5 57.7 † 0.928 †

Scenerio2

200, 200, 10
(115.7)

Chao3 199.1 −107.9 34.6 31.8 113.3 0.287
Chao3Adj 245.9 −61.1 † 69.2 62.3 92.3 † 0.841 †

600, 600, 30
(181.3)

Chao3 221.3 −85.7 30.3 29.5 91 0.386
Chao3Adj 263.1 −43.9 † 59.7 56.9 74.1 † 0.892 †

1000, 1000, 50
(215.8)

Chao3 238.3 −68.7 30.3 28.3 75.1 0.497
Chao3Adj 278.8 −28.2 † 59.7 54 66 † 0.912 †

Scenerio3

200, 10, 10
(127.5)

Chao3 209.3 −97.7 30.4 30 102.3 0.334
Chao3Adj 252.2 −54.8 † 59.4 58.5 80.8 † 0.855 †

600, 30, 30
(195.4)

Chao3 232 −75 29.1 27.8 80.5 0.43
Chao3Adj 269.9 −37.1 † 57.1 52.9 68.1 † 0.885 †

1000, 50, 50
(227.8)

Chao3 245.5 −61.5 26.4 25.3 66.9 0.504
Chao3Adj 278.4 −28.6 † 50.4 47.7 57.9 † 0.929 †

Scenerio4

10, 10, 10
(141.1)

Chao3 228.5 −78.5 33.2 31 85.2 0.453
Chao3Adj 274.3 −32.7 † 66.1 60.3 73.7 † 0.882 †

30, 30, 30
(213.0)

Chao3 251.5 −55.5 27.9 28.5 62.2 0.613
Chao3Adj 291.2 −15.8 † 55.1 54.3 57.3 † 0.916 †

50, 50, 50
(246.2)

Chao3 264.4 −42.6 27.8 25.6 50.8 † 0.685
Chao3Adj 297.5 −9.5 † 52.7 47.7 53.6 0.922 †

Note: The data sets in Scenerio1, Scenerio2, Scenerio3, and Scenerio4 are separately composed of three abundance
data sets, two abundance data sets and one incidence data set, one abundance data set and two incidence data sets,
and three incidence data sets. † denotes the least bias, lowest RMSE, and closest to 95% coverage. Abbreviations:
SE, standard error; RMSE, root mean square error; CI, confidence interval.
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