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Abstract: The elastic wave equation with seismic tensorial force is solved in a homogeneous and
isotropic medium (the Earth). Spherical-shell waves are obtained, which are associated to the primary
P and S seismic waves. It is shown that these waves produce secondary waves with sources on
the plane surface of a half-space, which have the form of abrupt walls with a long tail, propagating
in the interior and on the surface of the half-space. These secondary waves are associated to the
seismic mainshock. The results, previously reported, are re-derived using Fourier transformations
and specific regularization procedures. The relevance of this seismic motion for the ground motion,
the seismographs’ recordings and the effect of the inhomogeneities in the medium are discussed.
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1. Introduction

A typical seismogram recorded on the Earth’s surface consists of a faible tremor followed
by an abrupt motion with a long tail [1]. The precursory tremor is associated with spherical-
shell waves, called primary seismic waves, while the abrupt motion is known as the seismic
mainshock. Such a seismogram is sketched in Figure 1. The interpretation of seismograms
has been recognized since long as the Seismological Problem (or Lamb’s problem) [2]. It is
known that this seismic motion originates in a very small focal region, where a short, sudden
disturbance occurs. In the absence of knowledge of the force acting in the seismic focus, the
primary waves are derived via the so-called double-couple procedure, based on the solution
to the Stokes problem [3]. Apart from inconvenient restrictions to particular orientations of
the double couple, the result may include unphysical contributions [4,5]. The mainshock,
associated with Rayleigh surface waves [6], is treated as a vibration problem [7,8].

P S MS

t

Figure 1. Schematic representation of a typical seismogram, with the P and S waves and the
mainshocks MS; the arrow indicates the flow of the time t.

The force density acting in the seismic focus has been introduced in Ref. [9]. It reads

fi = TMijδ(t)∂jδ(R− R0) , (1)

where Mij are the Cartesian components of a symmetrical tensor, known as the tensor of
the seismic moment; this force acts in a very short time T in the seismic focus localized
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at position R0. It corresponds to a shearing fault. The total force and the total angular
momentum of this force density are zero, according to the physical requirements. The
primary P (longitudinal) and S (transverse) seismic waves produced by this force in a
homogeneous and isotropic elastic body have been derived, in agreement with the recorded
seismograms [9]. The force given by Equation (1) corresponds to a single rupture in the
focus; several successive ruptures may appear (for a so-called structured focus), with
corresponding oscillations displayed by the seismic waves.

For limited distances, the Earth may be approximated by a half-space with a plane sur-
face. Once arrived at the Earth’s surface, the primary waves generate surface sources which,
in turn, produce secondary waves, according to Huygens’ principle. These secondary
waves have the form of an abrupt wall with a long tail (actually two walls, corresponding
to the two primary waves), in agreement with the mainshock exhibited by seismograms [9].
A structured focus may generate oscillations in the mainshock.

Also, the static deformations of a (homogeneous and isotropic) elastic half-space
generated by the tensorial force density given by Equation (1) have been computed, as
well as the vibrations of the half-space [10]. Moreover, the seismic moment tensor was
derived from measurements of the primary waves at Earth’s surface (the so-called Inverse
Seismological Problem) [10].

The Seismological Problem is an old problem. On one hand, its solution should
respond to our need to know the form of the seismic waves that appear on the Earth’s
surface during an earthquake, and, on the other, we hope to know the characteristics of
the focal region from measurements of the seismic waves. Basic answers to this problem
are included in classical books (see, for instance Refs. [4,5]). Great progress has been made
in recent times in analyzing methods of solution, as, for example, in Refs. [11–14], where
important new insights have been obtained on Lamb’s problem for an elastic half-space.
The method of solution consists in using Green functions for the elastic wave equation with
combinations of Stokes solutions for double-couple elastic forces. The results depend on
the particular orientation of the couples. A fully covariant solution would require the use
of a tensorial force like that given by Equation (1), which was introduced only recently in
Refs. [9,10]. In general, any method of solving the equation of elastic waves for a localized
focus implies unphysical contributions, which should be regularized. The reason for such
a rather special situation is the singular nature of the seismic source. In many cases, the
standard solution includes an undesired continuous displacement between the wavefronts
of the two primary waves, which should be removed. The regularization is difficult to
apply on particular form of solution. In Ref. [9] a scheme of regularization is used for the
decomposition of the solution in Helmholtz potentials and the use of the Kirchhoff formula.
In the present paper, we use another method, based on Fourier transformations, which,
besides the standard regularization, requires an additional Coulomb-type regularization.
By using this new type of regularization, we re-obtain the previous results, which shows,
on one hand, the correctness of the results, and, on the other, the complexity of the problem.
The primary waves given by Equations (27) and (28) are new. Their scissor-like shape for
large distances are in perfect agreement with the recorded seismograms.

Moreover, the primary waves generate sources of (secondary) elastic waves on Earth’s
surface, which give rise to the mainshock, as observed in all seismograms. The standard
approach to this problem is the analysis of the surface Rayleigh waves, which leads to the
identification of many useful resonances. However, this is the typical method for a vibration
problem, while we would like to obtain the wall-like structure of a propagating mainshock,
which is a wave. The path to solving this problem is opened by the mainshock equation
discussed in this paper (Equation (29)), which has been introduced recently in Ref. [9]. In
that reference an approximate method of solution is used for the wave equation and the
corresponding Kirchhoff formula. In the present paper it is shown that by using Fourier
transformations, the problem can be reduced to a Weyl–Sommerfeld integral, which leads
to the same results. The wall-like structure of the mainshock is described by Equation (47)
and sketched in Figure 2.
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Figure 2. Primary wave (PW) moving with velocity v on the Earth’s surface, and secondary wave (SW)
moving with velocity c < v, the mainshock (MS) and the long tail (LT, Equation (47) for z = 0); the
separation between the two wavefronts is ∆s = 2(v− c)t and the time delay is ∆t = (2r/c)(v/c− 1),
where r is the epicentral distance.

All the results presented in this paper are new. The advantage of the methods
described here consists of a more exact formulation of the Seismological Problem, and
a consistent use of standard mathematical procedures. All these reveal the complexity
of the problem and the richness of the properties of its solution. The paper ends with a
brief presentation of the problem of the inhomogeneities in an elastic medium, which is
of great importance in seismology.

2. Elastic Wave Equation

Seismic waves are governed by the Navier–Cauchy equation [15]

üi − c2
t ∂j∂jui − (c2

l − c2
t )∂i∂juj = Tmijδ(t)∂jδ(R) , (2)

where ui (uj, i, j = 1, 2, 3) are the Cartesian components of the local displacement vector,
ct,l are the transverse and the longitudinal elastic wave velocities (in a homogeneous and
isotropic elastic body), mij is the symmetrical tensor of the seismic moment divided by the
density of the medium and T denotes the short duration of the force localized at the initial
moment t = 0 in the seismic focus placed at R = 0 [9].

Equation (2) was solved for the seismic waves in Ref. [9] by using the decomposition
in Helmholtz potentials and the Kirchhoff formula. A certain regularization procedure was
needed in order to remove unphysical contributions arising from the singular nature of
the source term in Equation (2). We describe here a different method of solving the above
equation, which throws more light upon the singular, unphysical behavior of the solution.

A direct way to solve Equation (2) is to perform a Fourier transform, which gives

(ω2 − c2
t k2)ui − (c2

l − c2
t )kik juj = −iTmijk j , (3)

where ki (k j) are the Cartesian components of the wavevector k; the arguments ω and
k of the Fourier transforms in Equation (3) are omitted for brevity. From this equation,
we obtain

kiui = −
iTmijkik j

ω2 − c2
l k2

, (4)

which, inserted in Equation (3), gives

ui = −
iTmijk j

ω2 − c2
t k2
− (c2

l − c2
t )

iTmjkkik jkk

(ω2 − c2
t k2)(ω2 − c2

l k2)
. (5)
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We denote the fractions on the right in this equation by u(1,2)
i and perform the reverse

Fourier transform. We obtain

u(1)
i = − iT

(2π)4

∫
dωdk

mijkj

ω2−c2
t k2 e−iωteikR =

= − T
(2π)4 mij∂j

∫
dωdk e−iωteikR

(ω−ctk+iε)(ω+ctk+iε) =

= T
4πct

mij∂j
δ(R−ctt)

R ,

(6)

where we placed the ω-poles in the lower half-plane (ε → 0+), in order to obtain waves
which obey the causality principle (i.e., they are vanishing for t < 0 ).

A similar procedure for u(2)
i gives

u(2)
i =

T
2ct(2π)2 mjk∂i∂j∂k

1
R

∫ +∞

−∞
dk

1
k2 eik(R−ctt) − (t→ l) . (7)

We can see that the k-integral in Equation (7) is improper. We need to give a meaning
to this integral.

We may use several procedures to regularize this integral. For instance, we note
that its second derivative is a Dirac δ-function, so we may integrate the δ-function
twice, with two constants which need to be determined. Another procedure might be
using the integral ∫ +∞

−∞
dk

1
k

eik(R−ctt) (8)

as a principal value; it is iπsgn(R − ctt), and we can integrate it with a constant to be
determined. Also, we may view the integral in Equation (8) as giving a stepwise θ-function.
All these regularization procedures give different results, and they need a justification.

3. Coulomb Potential Regularization

Let us introduce the function

F = − T
2c(2π)2

1
R

∫ +∞

−∞
dk

1
k2 eik(R−ct) . (9)

The solution u(2)
i reads

u(2)
i = mjk∂i∂j∂k(Fl − Ft) , (10)

where Fl,t is obtained by replacing c with cl,t. The factor 1/k2 in Equation (9) may be viewed
as the Fourier transform of the Coulomb potential. Indeed,∫

dR
1
R

e−ikRe−µR =
4π

k2 + µ2 , (11)

where µ→ 0+ is a small cutoff. This may suggest that F should be regularized by

F = − T
2c(2π)2

1
R

∫ +∞

−∞
dk

1
k2 + µ2 eik(R−ct) . (12)

On the other hand, using direct calculations we obtain from Equation (9)

F̈ = c2∆F = cT
4π

1
R δ(R− ct) ; (13)
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in the limit R → 0, the term c2∆F dominates, in comparison with F̈, so F satisfies
the equation

F̈− c2∆F = − cT
4π

1
R

δ(ct) = − T
4π

1
R

δ(t) . (14)

If we integrate this equation with respect to time, we obtain

∆
∫

dtF =
T

4πc2
1
R

; (15)

indeed, from Equation (9) we have∫
dtF = − T

4πc2
1
R

∫
dk

δ(k)
k2 + µ2 eikR (16)

and
∆
∫

dtF = T
4πc2

1
R
∫

dk k2δ(k)
k2+µ2 eikR =

= T
4πc2

1
R
∫

dkδ(k)eikR = T
4πc2

1
R .

(17)

It is easy to see that the µ-regularization does not work for the function F given by
Equation (12), because we have already imposed the retarded wave condition, while the
µ-regularization requires the presence of both retarded and advanced waves (according to
the regularization of the static Coulomb potential, Equation (11)). Consequently, we must
derive the function F from its wave Equation (14), and retain only the retarded solutions.
By Fourier transforming Equation (14), we obtain

F =
T

(k2 + µ2)(ω2 − c2k2)
(18)

and
F = T

(2π)4

∫
dωdk e−iωteikR

(k2+µ2)(ω2−c2k2)
=

= − T
2c(2π)2R

∫ dk
k2+µ2

[
eik(R−ct) − eik(R+ct)

]
,

(19)

where we placed the ω-poles in the lower half-plane, according to the causality principle
(such that F = 0 for t < 0). We can see that the term eik(R+ct) gives, in fact, a damped
contribution e−µ(R+ct), although, formally, it looks like an advanced wave. The result of
the integration in Equation (19) is

F = − T
8πcRµ

{
eµ(R−ct) − e−µ(R+ct) , 0 < R < ct ,

e−µ(R−ct) − e−µ(R+ct) , 0 < ct < R .

}
. (20)

Here, we may take the limit µ→ 0 and obtain

F = − T
4πc

[
θ(ct− R) +

ct
R

θ(R− ct)
]

, (21)

for the retarded wave, where θ(0) = 1/2; the value 1/2 is expected for a series of continuous
functions which approximate the stepwise θ-function. This result was previously obtained
in Ref. [9], by solving Equation (14) with the Kirchhoff retarded potentials (where the
function F was introduced and Equation (14) established using the Helmholtz potentials
for the Navier–Cauchy equation).

4. Seismic Wave Regularization

First, we note that the function F given by Equation (21) for ct 6= R satisfies the
free-wave equation. Therefore, the θ-contributions should be removed, and only the
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contributions for ct = R should be retained. This is valid also for the derivatives of the
prefactor of the θ-function. The first-order spatial derivative is

∂iF =
T

8πc

[
xi
R2 (R− ct)δ(R− ct) +

2ctxi
R3 θ(R− ct)

]
, (22)

where we introduced the factor 1/2 for θ(0) = 0. The first term in the above equation is
zero, while its derivatives are not; the second term should be disregarded, except for R = ct.
The second-order derivative is

∂i∂jF = T
8πc

(
δij
R −

ctδij
R2 −

xixj
R3 +

3ctxixj
R4

)
δ(R− ct)+

+ T
8πc

( xixj
R2 −

ctxixj
R3

)
δ
′
(R− ct)+

+ T
4πc

( ctδij
R3 −

3ctxixj
R5

)
θ(R− ct) .

(23)

From Equation (23), we obtain

∆F =
T

4πc
δ(R− ct)

R
+

T
8πc

(
1− ct

R

)
δ
′
(R− ct) , (24)

which differs from Equation (13) by the δ
′
-contribution. Consequently, the δ

′
-contribution

must be removed from ∂i∂jF. Also, according to the discussion above, the θ-contribution
must be removed, so we are left with the regularized expression

∂i∂jF =
T

8πc

(
δij

R
−

ctδij

R2 −
xixj

R3 +
3ctxixj

R4

)
δ(R− ct) . (25)

The regularization procedure described above amounts to viewing the function
δ(R− ct) as a function peaked on R = ct, of the order 1/l over a small distance l, and
zero otherwise. Similarly, the function δ

′
(R− ct) is of the order 1/l2 extended over l.

Indeed, this way, the δ
′
-function in Equation (23) brings a small contribution, which

may be neglected.
Now, it is easy to compute mjk∂i∂j∂k in Equation (10). In general, mjk∂k may be replaced

by an external force f j, which is applied to ∂i∂jF. It is not permissible to set ct = R in
Equation (25), because f j may include derivatives, which, for the prefactor in Equation (25),
should be computed before setting ct = R. For the derivative of the δ-function, we should
put ct = R in its prefactor, in accordance with the regularization of the quantity ∂i∂jF
discussed above. We obtain

mjk∂i∂j∂k =

= T
8πcR3

(
mjjxi + 4mijxj −

9mjkxixjxk
R2

)
δ(R− ct)+

+ T
4πc

mjkxixjxk
R4 δ

′
(R− ct) ,

(26)

where we set ct = R in the δ
′
-contribution.
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By making use of Equations (6) and (10), we obtain the near-field displacement

un
i = − Tmijxj

4πctR3 δ(R− ctt)+

+ T
8πR3

(
mjjxi + 4mijxj −

9mjkxixjxk
R2

)
·

·
[

1
cl

δ(R− clt)− 1
ct

δ(R− ctt)
]

(27)

and the far-field displacement (R� l)

u f
i =

Tmijxj
4πctR2 δ

′
(R− ctt)+

+
Tmjkxixjxk

4πR4

[
1
cl

δ
′
(R− clt)− 1

ct
δ
′
(R− ctt)

]
.

(28)

We can see that the far-field displacement consists of two spherical-shell waves with
a scissor-like shape, one longitudinal, propagating with velocity cl , the other transverse,
propagating with velocity ct. These are the P and S seismic waves [9]. The relevance of the
near-field displacement for the derivation of the seismic moment tensor has been discussed
in Ref. [10].

5. Secondary Waves

The focus of a typical earthquake is localized both in space and time, in a point beneath
the Earth’s surface. During the short time of releasing the seismic energy in an earthquake,
the focus produces two primary waves, which look like spherical shells, propagating with
the longitudinal and transverse elastic wave velocities cl,t. These primary waves are known
in seismology as the P and S seismic waves. Once arrived at the Earth’s surface, such
a primary wave generates a circular wavefront on the surface, which propagates with a
velocity v, greater than the velocity c of the primary wave. Indeed, it is easy to see, from
their definitions, that v = cR/r, where R is the Earth’s radius and r is the epicentral dis-
tance. The difference between the two velocities goes to zero for large epicentral distances.
These wavefronts are localized on the surface in an infinitesimal torus. According to the
Huygens principle, they generate secondary waves, which give the seismic mainshock. The
displacement is given by the derivatives of some potentials, denoted here generically by ψ.
These potentials satisfy the wave equation

ψ̈− c2∆ψ = δ(r− vt)δ(z) , (29)

where r is the position vector parallel to the surface and t denotes the time; the surface
is viewed as a plane surface, placed at z = 0. The velocity v is considered constant. This
equation can be called the mainshock equation. The (homogeneous and isotropic) elastic
medium occupies the half-space z < 0. The above equation is valid for a limited range of
epicentral distances, r, centered on a value of the order of the depth of the focus [9].

We introduce the notation

F(R, t) = δ(r− vt)δ(z) , (30)

where R = (r, z), and compare Equation (29) with the same equation with the source
S = δ(R)δ(t) = δ(r)δ(z)δ(t). The solution of this latter equation is the spherical wave
δ(R− ct)/4πcR. We note that source S is singular in a point with four coordinates (time
included), while source F is singular in a set of points, each with three coordinates,
placed along a line (r = vt). Therefore, source F is more singular than source S, so we
expect a divergent solution of Equation (29). The singularity is more effective for a
larger size of the length of the line r = ct, i.e., for large r, so we need, at least, a small
cutoff wavevector.
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We show below that Equation (29) has a regular solution for v ' c, when the source
may be treated as a boundary condition, in accordance with the standard procedure.

We perform Fourier transform on Equation (29),

(ω2 − c2K2)ψ(ω, K) = −F(ω, K) , (31)

where K = (k, κ) and

F(ω, K) =
∫

dtdRδ(r− vt)δ(z)eiωte−iKR =

= 1
v
∫

dreiωr/ve−ikr = 2π
v
∫

dr · reiωr/v J0(kr) ,
(32)

where J0(kr) is the Bessel function. This expression can also be written as

F(ω, K) = 2π
v

∂
∂(iω/v)

∫
dreiωr/v J0(kr) =

= − 2πi
vk2

∂
∂λ

∫ ∞
0 dxeiλx J0(x) ,

(33)

where λ = ω/vk. The integral in the second row of Equation (33) is the Weyl–
Sommerfeld integral,

I(λ) =
∫ ∞

0
dxeiλx J0(x) =

θ(1− | λ |)√
1− λ2

+ isgn(λ)
θ(| λ | −1)√

λ2 − 1
. (34)

Therefore, from Equation (31), we obtain

ψ(R, t) = i
(2π)3v

∫
dωdK ∂I/∂λ

k2(ω−cK+iε)(ω+cK+iε) e−iωteiKR , (35)

where ε→ 0+. We place the ω-poles in the lower half-plane in order to have ψ = 0 for t < 0,
according to the causality principle. Henceforth, we consider t > 0 only. Equation (35) can
also be written as

ψ(R, t) = i
(2π)3v2

∫
dλdK ∂I/∂λ

k3(λ−λ1)(λ−λ2)
e−ivktλeiKR , (36)

where λ1 = cK/vk− iε and λ2 = −cK/vk− iε. We need to compute ∂I/∂λ for λ1,2 using
Equation (34). We obtain

(∂I/∂λ)λ1 =


λ0

(1−λ2
0)

3/2 , λ0 = cK/vk < 1 ,

− iλ0
(λ2

0−1)3/2 , λ0 = cK/vk > 1
(37)

and

(∂I/∂λ)λ2 =

 −
λ0

(1−λ2
0)

3/2 , λ0 = cK/vk < 1 ,

− iλ0
(λ2

0−1)3/2 , λ0 = cK/vk > 1 .
(38)

It follows that

ψ(R, t) = 1
(2π)2v2

∫
dK 1

k3


cos cKt

(1−λ2
0)

3/2

− sin cKt
(λ2

0−1)3/2

eiKR =

= v
(2π)2

∫
dK

{ cos cKt
(v2k2−c2K2)3/2

− sin cKt
(c2K2−v2k2)3/2

}
eiKR ,

(39)

where the expressions under the square root are positive.
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The function ψ(R, t) given by Equation (39) is a superposition of plane waves eicKt+iKR

and e−icKt+iKR; we must retain only the outgoing wave e−icKt+iKR, in accordance with the
causality principle, so Equation (39) becomes

ψ(R, t) =
v

2(2π)2

∫
dK

{ 1
(v2k2−c2K2)3/2

− i
(c2K2−v2k2)3/2

}
e−icKteiKR (40)

(where in the second row we must add the complex conjugate and divide by 2). Also, the
wave should be progressive, i.e., ct > R, a condition which can also be written as

c2t2 > R2 = r2 + z2 ; (41)

otherwise, the wave is zero.

6. Mainshock

For v close to c, only the second row in Equation (40) is valid. By using γ2 = v2/c2− 1,
Equation (40) can be written as

ψ(R, t) = − iv
2(2π)2c3

∫
dkdκ e−ic

√
κ2+k2t

(κ2−γ2k2)3/2 eiκzeikr =

= − iv
4πc3

∫
dkkJ0(kr)

∫
dκ 1

(κ2−γ2k2)3/2 e−ic
√

κ2+k2teiκz .

(42)

For z < 0 the κ-integration must be carried out in the lower half-plane. The integrand
has two branch points at κ = ±γk. It is easy to see that the integral along this branch cut is
singular, as expected. According to the discussion above, we put v = c and displace the
pole κ = 0 slightly below in the lower half-plane. This operation provides the standard
procedure of treating the source as a boundary condition. For v = c (γ = 0), the integral in
Equation (42) becomes

ψ(R, t) ' − i
4πc2

∫
dkkJ0(kr)

∫
dκ

1
κ3 e−ic

√
κ2+k2teiκz . (43)

The pole placed slightly below κ = 0 plays the role of a lower cutoff wavevector. The
calculation of this contribution is performed by writing

e−ic
√

κ2+k2teiκz = e−ictke−ictκ2/2keiκz '

' e−ictk
(

1 + iκz− κ2z2

2 − i ctκ2

2k + . . .
)

,
(44)

which leads to
ψ(R, t) ' i

8πc2 {z2
∫

dkkJ0(kr)e−ictk+

+ict
∫

dkJ0(kr)e−ictk}
∫

dκ 1
κ .

(45)

Straightforward calculations give

ψ(R, t) ' i
4c2 { z2

r2
∂

∂λ

∫
dxe−iλx J0(x)+

+λ
∫

dxe−iλx J0(x)} ,
(46)

where λ = ct/r (>1 ). By making use of Equation (34), we obtain

ψ(R, t) ' 1
4c2

(
c2t2 − r2 − z2)ct
(c2t2 − r2)3/2 (47)
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for ct > r (i.e., c2t2 > r2, and c2t2 > r2 + z2). This is precisely the result obtained
previously [9]. In order to account for the small difference between the two velocities, from
the denominator in Equation (42) we may infer that K should be replaced with Kv/c in the
exponent of Equation (43), which amounts to replacing the time t with the retarded time
τ = tc/v. The mainshock exhibited by Equation (47) is shown schematically in Figure 2.

We can check via direct calculations that

ψ̈− c2∆ψ = ψ̈− c2
(

∂2ψ

∂r2 +
∂ψ

r∂r
+

∂2ψ

∂z2

)
= 0 , (48)

except for z→ 0, r → ct. The singularity at ct = r in Equation (47) (for z = 0) arises from
the sharpness of the δ-functions of the source term in Equation (29). It can be smoothed out
by replacing ct− r with l, where l is an infinitesimal distance.

The solution given by Equation (47) has a spherical wavefront r2 + z2 = c2t2; it has a
rapid variation with r and a rather slow variation with z, so it may be viewed as a quasi-
cylindrical wave, with a wall-like structure. It corresponds to the seismic mainshock. We can
see that the potential given by Equation (47) and its spatial derivatives (the displacement)
look like an abrupt wall with a long tail, propagating with velocity c in the interior of the
Earth and on its surface. Actually, we obtain two such walls, corresponding to the two
primary P and S waves, propagating with velocities cl,t.

7. Site Response and Inhomogeneities

The δ-functions occurring in these problems should be viewed as highly peaked
functions over a small region. For instance, δ(R), which occurs in the tensorial force
acting in the earthquake focus (Equation (1)), is approximately 1/l3 over a small region
with dimension l, where l is of the order of the dimension of the seismic focus. The
cutoff length l also occurs in the primary seismic waves derived above (Equations (28)).
It is related to the elastic energy stored in the seismic focus and released during an
earthquake. A measure of the seismic energy is the earthquake (moment) magnitude Mw,
such that, for instance, for an earthquake with magnitude Mw = 7, we obtain l = 316 m
(for a density ρ = 5 g/cm3 of the Earth and an average velocity c = 5 km/s of the elastic
waves). However, the extension of the spot left by the seismic waves on the Earth’s
surface is much larger. This is so because of the energy loss suffered by the seismic
waves during their propagation through the Earth.

The results presented above relate to a homogeneous and isotropic medium, while the
Earth is recognized as inhomogeneous and anisotropic. The spatial distribution of a wave
is characterized by its Fourier transform. Let us take a far-field seismic wave of the form

u =
δ
′
(R− ct)

R
; (49)

its Fourier transform is

u(K) =
∫

dR
δ
′
(R− ct)

R
e−iKR = −4π cos cKt. (50)

When encountering inhomogeneity, this wave sets in motion its particles, and even
the inhomogeneity as a whole. Consequently, the incident wave loses energy, which is
transferred to the inhomogeneity, which, in turn, generates secondary waves; part of the
energy may be dissipated. Obviously, the effect is larger for small wavelengths, which
are numerous, due to the large number of distinct directions for a large K. This is the
wave scattering, with a possible energy loss (absorption). It is reasonable to assume that
inhomogeneities are distributed relatively uniform, over their various size and mean
separation distances. Consequently, we expect a secondary (scattered) diffuse radiation,
with a large content of small wavelengths. It follows that the incident wave content is
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diminished isotropically, with a larger weight for small wavelengths. This amounts to
modifying the Fourier transform given above according to

u(K) = −4πe−αK cos cKt , (51)

where the parameter α characterizes the inhomogeneities’ distribution. The resulting
reverse Fourier transform is

u = − 4π
(2π)3

∫
dKe−αK cos cKteiKR =

= 1
πR

∂
∂R

α
(R−ct)2+α2 ,

(52)

where we retain only the retarded waves. We can see that we recover the incident wave
given by Equation (49) in the limit α → 0. The effect of the inhomogeneities, included
in the parameter α, is a flattening of the δ

′
-incident wave, which receives a larger width

l0 = 2α/
√

3 > l and a smaller height ' 1/l2
0 . The ratio l0/l may attain values of the order

of ten [16]. The scissor-like structure of the primary seismic waves shows that the frequency
content of these waves is mainly centered on a single frequency, of the order of the wave
velocity to the dimension of the seismic focus (c/l0). Therefore, the Fourier analysis of the
primary waves may give an estimate of the dimension of the focus [16].

The P and S seismic waves and the mainshock derived above are the seismic motion,
generated by a point-like seismic focus acting for a short time interval. These results are
obtained by assuming a homogeneous and isotropic elastic medium (the Earth). This
assumption is valid for an average of the elastic properties of the medium. As long as we
are interested in the overall, average behavior of the elastic motion, this is a satisfactory hy-
pothesis. However, if we are interested in the local elastic motion, the elastic particularities
of the site should be taken into account. In a simple model, any site may be viewed as a
damped harmonic oscillator, with frequency ωg, connected by elastic forces to its surround-
ings. The seismic motion acts as an external force upon such an oscillator. The resulting
motion is the ground motion. It consists of the original, scissor-like primary seismic waves
and the wall-like seismic mainshock, over which the damped ωg-oscillations of the site are
superposed; these damped oscillations are the seismic response of the site. In the ground
motion, the long tail of the seismic mainshock is governed by the damping coefficient of
the site. In turn, the ground motion acts as an external force upon the seismographs (or the
structures built on the Earth’s surface). As a simple model, we may take a linear damped
harmonic oscillator for the seismograph, with frequency ωs, such that the seismograms
record the ωg,s-oscillations, superposed over the original seismic motion. All these results
are included in Ref. [16], where an estimation is also given of the maximum (peak) values
of the ground motion displacement, velocity and acceleration, which may be useful as
input parameters for seismic hazard studies.

8. Concluding Remarks

The primary seismic waves and the seismic mainshock are derived for a homoge-
neous and isotropic half-space with a plane surface (the Earth), by solving the elastic
wave equation with the seismic tensorial force acting for a very short time interval (time-
impulse) in a localized (point-like) seismic focus. The solution is the seismic motion. It is
known as the Seismological, or Lamb’s, Problem. The results reported previously are
re-derived by using a new method, which emphasizes the regularization procedure. The
time-impulse and point-like tensorial force is a combination of a temporal δ-function
and derivatives of a spatial δ-function (Equation (1)). The equation of the elastic motion
with such a source term may be called a singular equation. The singular nature of such a
source leads to singular, improper solutions and unphysical contributions. Therefore,
a regularization procedure is necessary. The regularization procedure employed here
includes both a Coulomb-potential-type regularization, due to the use of the Fourier
expansions, and a seismic wave regularization, specific to the singular elastic wave
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equation. This regularization procedure amounts to using a long wavelength cutoff
(Coulomb potential), an approximation via a continuous-function series for the stepwise
θ-function, the removal of superfluous solutions of the free-wave equation and a small
cutoff time/length for the peaked temporal/spatial δ-distribution.

In addition, a summary is provided for the effect of the inhomogeneities and the site
response in determining the ground motion and the seismographs’ recordings.

The primary waves (Equations (27) and (28)) and the mainshock (Equation (47))
presented in this paper correspond to a single, localized seismic focus. It may happen that
the seismic energy is released by a succession of localized foci (ruptures), separated by
short times and short distances in the focal region. This is a structured focus, discussed
in detail in Ref. [10]. Since the equations are linear, the solution for a structured focus is a
superposition of primary waves and mainshocks, like those given in this paper. A more
complicated situation is a propagating focus, also discussed in Ref. [10].
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