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Abstract: Proposing a matrix transform method to solve a fractional partial differential equation
is the main aim of this paper. The main model can be transferred to a partial-integro differential
equation (PIDE) with a weakly singular kernel. The spatial direction is approximated by a fourth-
order difference scheme. Also, the temporal derivative is discretized via a second-order numerical
procedure. First, the spatial derivatives are approximated by a fourth-order operator to compute
the second-order derivatives. This process produces a system of differential equations related to the
time variable. Then, the Crank–Nicolson idea is utilized to achieve a full-discrete scheme. The kernel
of the integral term is discretized by using the Lagrange polynomials to overcome its singularity.
Subsequently, we prove the convergence and stability of the new difference scheme by utilizing the
Rayleigh–Ritz theorem. Finally, some numerical examples in one-dimensional and two-dimensional
cases are presented to verify the theoretical results.

Keywords: matrix transform method; fourth-order difference scheme; partial-integro differential
equation; Rayleigh–Ritz theorem; error estimate
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1. Introduction

PIDEs, also known as partial-integro differential equations, are commonly used in the
simulation of a wide range of complicated systems. In this work, we focused on PIDEs
with a weakly singular kernel. These forms of equations are frequently encountered in
applications such as heat flow in a material with memory [1] and linear viscoelastic mechan-
ics [2,3]. Recently, several researchers developed a variety of techniques for numerically
solving integro differential equations with a weakly singular kernel, for example, the Haar
wavelet method [4], high-order ADI orthogonal spline collocation method [5], orthogonal
cubic spline method [6], compact finite difference method [7], a fully spectral Galerkin
method [8], space–time Muntz spectral collocation approach [9], differential-quadrature-
based approach [10], two-grid temporal second-order scheme [11], second-order IMEX
scheme [12,13], and ADI Galerkin finite element methods [14].

The finite difference method is the basis of the proposed matrix transform method,
which may be coupled with other techniques. These approaches are used to solve a variety
of PDEs and PIDEs, including a fourth-order PIDE with a weakly singular kernel [15], frac-
tional PIDE of Volterra type [16], the PIDE that derives by financial stochastic processes [17],
the PIDE obtained from the filtration model [18], and the time fractional PIDE [19]. Other
approaches based on the matrix transform have been developed, such as Fourier–Bessel
matrix transforms [20], Bernstein operational matrix [21], etc.

The most challenging part of PIDEs with a weakly singular kernel is dealing with the
singular part of the kernel. The value of the kernel function may not be determined in some
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grid points due to the singularity. One solution to this challenge involves selecting the base
elements in such a way that eliminates the singular part of the kernel. Some of these bases
can be mentioned here, such as hybrid block-pulse functions based on Legendre polynomi-
als [22], multivariate Jacobi polynomials [23], shifted first-kind Chebyshev polynomials [24],
and transformed fractional Jacobi polynomials [25]. To overcome singularity, we employ
Lagrange interpolation for the integral part of equations and the Crank–Nicolson method
for the temporal variable. The compact finite difference method (CFDM) is one of the im-
provements of the classic finite difference method (FDM) for solving linear and nonlinear
PDEs, for example, two-dimensional Schrödinger–Boussinesq equations [26], time–space
fractional differential equations [27], nonlinear Klein–Gordon equations [28], 2D anomalous
sub-diffusion equations [29], etc.

2. Matrix Transform Technique

First, we consider the following definition.

Definition 1. The left fractional integral of function v ∈ H1([a, b]) with order α > 0 is defined as

aD−α
t v(x) =

1
Γ(α)

∫ t

a
(t− y)α−1v(y)dy. (1)

Now, in the current paper, consider the following PDEs with fractional integral
∂u(x, t)

∂t
= ∆u(x, t) +0 D−α

t ∆u(x, t) + f (x, s), x ∈ Ω, t > 0,

u(x, 0) = g(x),
u(x, t) = p(t), x ∈ ∂Ω.

(2)

The mathematical model Equation (2) can be rewritten to the following PIDE (it must

be noted that we eliminate coefficient
1

Γ(α)
)


∂u(x, t)

∂t
= ∆u(x, t) +

t∫
0

(t− s)α−1∆u(x, s) ds + f (x, s), x ∈ Ω, t > 0,

u(x, 0) = g(x),
u(x, t) = p(t), x ∈ ∂Ω,

(3)

where u ∈ C2(Ω× (0, T]) and 0 < α < 1. Some applications of the fractional PDEs can
be found in [30,31]. Also, Caputo [32] introduced the application of differential equations
with fractional derivatives for generalizing stress–strain relations of unelastic media.

Discrete Scheme of 2D Case

To discretize the space derivatives, the following sets must be defined. Let

Vx =

{
xn = nhx, hx =

L
Mx

, n = 0, 1, 2, . . . , Mx

}
,

Vy =

{
ym = mhy, hy =

L
My

, m = 0, 1, 2, . . . , My

}
.
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where hx and hy are the step sizes of spatial variables. Also, we set un,m = u(xn, ym, t). To
approximate the spatial derivatives by the fourth-order operator, we define the following
operators [33]

δ2
xun,m = un+1,m − 2un,m + un−1,m, (4)

δ2
yun,m = un,m+1 − 2un,m + un,m−1, (5)

Ixun,m = h2
x

(
1 +

1
12

δ2
x

)
un,m, (6)

Iyun,m = h2
y

(
1 +

1
12

δ2
y

)
un,m, (7)

Lemma 1 ([34]). The fourth-order compact difference operators with maintaining three-point
stencil to approximate the uxx(xn, ym, t) and uyy(xn, ym, t) are

δ2
x

h2
x

(
1 +

1
12

δ2
x

)un,m =
∂2u
∂x2

∣∣∣∣
(n,m)

− 1
240

∂4u
∂x4

∣∣∣∣
(n,m)

h4
x +O(h6

x), (8)

δ2
y

h2
y

(
1 +

1
12

δ2
y

)un,m =
∂2u
∂y2

∣∣∣∣
(n,m)

− 1
240

∂4u
∂y4

∣∣∣∣
(n,m)

h4
x +O(h6

y). (9)

Applying relations Equations (8) and (9) in Equation (3) provides

dUn,m

dt
=

δ2
x

h2
x

(
1 +

1
12

δ2
x

)Un,m +
δ2

y

h2
y

(
1 +

1
12

δ2
y

)Un,m (10)

+

t∫
0

(t− s)α−1

 δ2
x

h2
x

(
1 +

1
12

δ2
x

)Un,m +
δ2

y

h2
y

(
1 +

1
12

δ2
y

)Un,m

ds + fn,m(t),

for n = 1, . . . , Mx − 1, m = 1, . . . , My− 1, where Un,m = u(xn, ym, t) and fn,m = f (xn, ym, t).
The simplified form of Equation (10) is

dIxIyUn,m

dt
= Iyδ2

xun,m + Ixδ2
yun,m +

t∫
0

(t− s)α−1
(
Iyδ2

xun,m + Ixδ2
yun,m

)
ds + IxIy fn,m(t). (11)

Now, we can derive the following matrix form

A
dU
dt

= BU + B
t∫

0

(t− s)α−1U(s)ds + AF, (12)

or

dU
dt

= A−1BU + A−1B
t∫

0

(t− s)α−1U(s)ds + F, (13)
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where

A =
(

h2
xh2

y

)
tridiag(A2, A1, A2), (14)

A1 = tridiag
(

5
72

,
25
36

,
5

72

)
, (15)

A2 = tridiag
(

1
144

,
5
72

,
1

144

)
, (16)

B = tridiag(B2, B1, B2), (17)

B1 = tridiag
(

5
6

h2
y −

1
6

h2
x, −10

6
(h2

x + h2
y),

5
6

h2
y −

1
6

h2
x

)
, (18)

B2 = tridiag
(

1
12

h2
x +

1
12

h2
y,

5
6

h2
x −

1
6

h2
y,

1
12

h2
x +

1
12

h2
y

)
. (19)

Matrices A , B are block-Toeplitz tridiagonal (block-TT) matrices of order
(Mx − 1)(My − 1) and matrices Ai, Bi, i = 1, 2, are tridiagonal matrices of order (Mx − 1).
We can formulate each one as a sum of two Kronecker products of matrices [35]. For
example, matrix A can be written as

A =
(

h2
xh2

y

)[(
IMy−1 ⊗ A1

)
+
(

JMy−1 ⊗ A2

)]
, (20)

where IMy−1 is the identity matrix and JMy−1 = tridiag(1, 0, 1). The eigenvalues of A are
obtained from the following relation [36]

λkj =
(

h2
xh2

y

)[
λ
(A1)
k + 2λ

(A2)
k cos

jπ
My

]
, j = 1, 2, . . . , My − 1, k = 1, 2, . . . , Mx − 1, (21)

where {λ(A1)
k }Mx−1

k=1 , {λ(A2)
k }Mx−1

k=1 are the eigenvalues of the A1 and A2, respectively, calcu-
lated using the following relations

λ
(A1)
k =

25
36

+
10
72

cos
(

kπ

Mx

)
, (22)

λ
(A2)
k =

5
72

+
1

72
cos

(
kπ

Mx

)
, k = 1, 2, . . . , Mx − 1.

Note that the function f (k) = cos
(

kπ

Mx

)
is a strictly descending on set

{1, 2, . . . Mx − 1} := Λ, so we have

max
k∈Λ

f (k) = f (1) = cos
(

π

Mx

)
, min

k∈Λ
f (k) = f (Mx − 1) = cos

(
(Mx − 1)π

Mx

)
. (23)

For the eigenvalues of A matrix, let

max
k,j

λkj := λ
(A)
max, min

k,j
λkj := λ

(A)
min.

Then, from Equations (21)–(23), we can conclude
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λ
(A)
max =

(
h2

xh2
y

)[[25
36

+
10
72

cos
(

π

Mx

)]
+ 2
[

5
72

+
1
72

cos
(

π

Mx

)]
cos

(
π

My

)]
, (24)

λ
(A)
min =

(
h2

xh2
y

)[[25
36

+
10
72

cos
(
(Mx − 1)π

Mx

)]
+ 2
[

5
72

+
1

72
cos

(
(Mx − 1)π

Mx

)]
cos

(
(My − 1)π

My

)]
. (25)

The simplified forms of relations Equations (24) and (25) are

λ
(A)
max =

(
h2

xh2
y

)[ 1
36

(
5 cos

(
π

Mx

)
+ 25

)
+ 2
(

1
72

cos
(

π

Mx

)
+

5
72

)
cos
(

π

My

)]
, (26)

λ
(A)
min =

(
h2

xh2
y

)[ 1
36

(
5 cos

(
(Mx − 1)π

Mx

)
+ 25

)
+ 2
(

1
72

cos
(
(Mx − 1)π

Mx

)
+

5
72

)
cos
(
(My − 1)π

My

)]
. (27)

For the sake of simplicity, let Mx = My := M and hx = hy := h; we can rewrite
Equations (26) and (27) as

λ
(A)
max =

h4

36

(
25 + 10 cos

( π

M

)
+ cos2

( π

M

))
, (28)

λ
(A)
min =

h4

36

(
25 + 10 cos

(
(M− 1)π

M

)
+ cos2

(
(M− 1)π

M

))
. (29)

Similarly, we can indite matrix B as

B =
(

IMy ⊗ B1

)
+
(

LMy ⊗ B2

)
. (30)

The eigenvalues of matrix B are

λkj = λ
(B1)
k + 2λ

(B2)
k cos

jπ
My

, j = 1, 2, . . . , My − 1, k = 1, 2, . . . , Mx − 1, (31)

where {λ(B1)
k }Mx

k=1 and {λ(B2)
k }Mx

k=1 are calculated using the following relations

λ
(B1)
k = −10

6
(h2

x + h2
y) + 2

(
5
6

h2
y −

1
6

h2
x

)
cos

(
kπ

Mx

)
, (32)

λ
(B2)
k =

5
6

h2
x −

1
6

h2
y + 2

(
1

12
h2

x +
1
12

h2
y

)
cos

(
kπ

Mx

)
, k = 1, 2, . . . , Mx − 1. (33)

To compute the eigenvalues of B matrix, let

max
k,j

λkj := λ
(B)
max, min

k,j
λkj := λ

(B)
min.
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Then, we have

λ
(B)
max =

[
−10

6
(h2

x + h2
y) + 2

(
5
6

h2
y −

1
6

h2
x

)
cos

(
π

Mx

)]
(34)

+ 2
[

5
6

h2
x −

1
6

h2
y + 2

(
1
12

h2
x +

1
12

h2
y

)
cos

(
π

Mx

)]
cos

(
π

My

)
,

λ
(B)
min =

[
−10

6
(h2

x + h2
y) + 2

(
5
6

h2
y −

1
6

h2
x

)
cos

(
(Mx − 1)π

Mx

)]
(35)

+ 2
[

5
6

h2
x −

1
6

h2
y + 2

(
1
12

h2
x +

1
12

h2
y

)
cos

(
(Mx − 1)π

Mx

)]
cos

(
(My − 1)π

My

)
.

The simplified forms of relations Equations (34) and (35) are

λ
(B)
max =

1
3

[
−5
(

h2
x + h2

y

)
+
(

5h2
y − h2

x

)
cos
(

π

Mx

)
(36)

+

(
5h2

x +
(

h2
x + h2

y

)
cos
(

π

Mx

)
− h2

y

)
cos
(

π

My

)]
,

λ
(B)
min =

1
3

[
−5
(

h2
x + h2

y

)
+
(

5h2
y − h2

x

)
cos
(
(Mx − 1)π

Mx

)
(37)

+

(
5h2

x +
(

h2
x + h2

y

)
cos
(
(Mx − 1)π

Mx

)
− h2

y

)
cos
(
(My − 1)π

My

)]
.

For the sake of simplicity, let Mx = My := M and hx = hy := h; we can change
Equations (36) and (37) as

λ
(B)
max =

h2

3

(
−10 + 8 cos

( π

M

)
+ 2 cos2

( π

M

))
, (38)

λ
(B)
min =

h2

3

(
−10 + 8 cos

(
(M− 1)π

M

)
+ 2 cos2

(
(M− 1)π

M

))
. (39)

3. Approximating an Integral Part with Lagrange Interpolation

First, we utilize the Crank–Nicolson method to discretize temporal variables in
Equation (12). Let

tn = nτ, τ =
T
M

, n = 0, 1, . . . , M,

where T is the final time. Equaiton (12) yields

Un −Un−1

τ
=

A−1BUn + A−1BUn−1

2
+ A−1B

t
n− 1

2∫
0

(
tn− 1

2
− s
)α−1

U(s)ds + Fn− 1
2 . (40)

We used the Lagrange interpolation to eliminate the singular points of the integral
kernel. This fact is proposed in [37]. First, consider the following integral

Iα f =

t∫
0

(t− s)α−1 f (s) ds, (41)
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where 0 < α < 1. Now, Equation (40) can be written as the following expression

Iα f
∣∣∣∣
t=tn

=
n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1 f (s) ds. (42)

We want to approximate f (t) on all intervals, such as [tk, tk+1], and thus define the
notation

f k(t) = f (t)
∣∣∣∣
[tk ,tk+1]

.

Let tk = t(k)0 < t(k)1 , . . . < t(k)p−1, t(k)p = tk+1; then, utilizing the Lagrange interpolation
provides [37]

f k(t) =
p

∑
i=0

f
(

t(k)i

)
`k,i(t), (43)

where

`k,i(t) =
p

∏
j=0
j 6=i

t− t(k)j

t(k)i − t(k)j

. (44)

According to Equation (43), we have

Iα f |t=tn =
n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1

(
p

∑
i=0

f
(

t(k)i

)
`k,i(s)

)
ds

=
n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1

 p

∑
i=0

f
(

t(k)i

) p

∏
j=0
j 6=i

s− t(k)j

t(k)i − t(k)j

ds =
n−1

∑
k=0

p

∑
i=0

a(k)i,n f
(

t(k)i

)
, (45)

in which [31]

a(k)i,n =

tk+1∫
tk

(tn − s)−α`k,i(s)ds. (46)

Lemma 2. Let f ∈ Cp+1([0, T]) and p ∈ N and then we have∣∣∣Iα f |t=tn − Iα f k|t=tn

∣∣∣ ≤ Cτp+1,

where C ∈ R+.

Proof. The use of interpolation error yields
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∣∣∣Iα f |t=tn − Iα f k|t=tn

∣∣∣ ≤ n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1
∣∣∣ f (t)− f k(t)

∣∣∣ds

≤ max
t∈[0,tn ]

∣∣∣ f (p+1)(t)
∣∣∣ 1
(p + 1)!

n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1
p

∏
j=0

(
s− t(k)j

)
ds (47)

≤ max
t∈[0,tn ]

∣∣∣ f (p+1)(t)
∣∣∣ (tk+1 − tk)

p+1

(p + 1)!

n−1

∑
k=0

tk+1∫
tk

(tn − s)α−1 ds

= max
t∈[0,tn ]

∣∣∣ f (p+1)(t)
∣∣∣ tα

n
(p + 1)!(α + 1)

τp+1.

In this section, we approximate the integral part of Equation (40) by a second-order
scheme

t
n− 1

2∫
0

(
tn− 1

2
− s
)α−1

U(s) ds =
1
2

 tn∫
0

(tn − s)α−1U(s) ds +

tn−1∫
0

(tn−1 − s)α−1U(s) ds

+O(τ2). (48)

In this moment, each integral part of the relation Equation (48) can be approximated
by Equation (45), so

t
n− 1

2∫
0

(
tn− 1

2
− s
)α−1

U(s)ds =
1
2

[
n−1

∑
k=0

p

∑
i=0

a(k)i,n U
(

t(k)i

)
+

n−2

∑
k=0

p

∑
i=0

a(k)i,n−1U
(

t(k)i

)]
+O(τ2)

=
1
2

[
n−1

∑
k=0

p

∑
i=0

a(k)i,n Uk,i +
n−2

∑
k=0

p

∑
i=0

a(k)i,n−1Uk,i

]
+O(τ2), (49)

where Un−1,p = Un. Substituting relation Equation (49) into equality Equation (40) concludes

Un −Un−1

τ
=

1
2

RUn +
1
2

RUn−1 +
1
2

n−1

∑
k=0

p

∑
i=0

a(k)i,n RUk,i +
1
2

n−2

∑
k=0

p

∑
i=0

a(k)i,n−1RUk,i + Fn− 1
2 , (50)

where R = A−1B. In the end, we have

Un − τ

2

(
I + a(n−1)

p,n I
)

RUn =Un−1 +
τ

2
RUn−1 +

τ

2
a(k)p,n−1RUn−1

+
τ

2

n−2

∑
k=0

p

∑
i=0

a(k)i,n RUk,i +
τ

2

n−3

∑
k=0

p

∑
i=0

a(k)i,n−1RUk,i + τFn− 1
2 , (51)

and also(
I − τ

2

(
1 + a(n−1)

p,n

)
R
)

Un =
(

I +
τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

)
R
)

Un−1

+
τ

2

n−3

∑
k=0

p

∑
i=0

a(k)i,n RUk,i +
τ

2

n−3

∑
k=0

p

∑
i=0

a(k)i,n−1RUk,i + τFn− 1
2 . (52)

From the above relation, we can obtain

SUn = QUn−1 + Gn, (53)
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where

S = I − τ

2

(
1 + a(n−1)

p,n

)
R, (54)

Q = I +
τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

)
R, (55)

Gn =
τ

2

n−3

∑
k=0

p

∑
i=0

a(k)i,n RUk,i +
τ

2

n−3

∑
k=0

p

∑
i=0

a(k)i,n−1RUk,i + τFn− 1
2 . (56)

4. Convergence and Stability Analysis

In order to discuss the convergence and stability of the proposed new method, the
following preliminaries are necessary.

Lemma 3 ([38]). For every symmetric nonzero matrix M, the feature of the Rayleigh–Ritz (R–R)
ratio is

λmin(M) ≤ (MΛ, Λ)

(Λ, Λ)
≤ λmax(M),

where (X, Y) indicates the inner product and λmin and λmax denote smallest and largest eigen-
value, respectively.

Theorem 1. Let U be smooth, sufficiently. The full-discrete scheme Equation (53) is uncondition-
ally stable.

Proof. Taking the inner product respect to Un results

S(Un, Un) = Q
(

Un−1, Un
)
+ (Gn, Un), (57)

By utilizing the Cauchy–Schwartz inequality, we have

S(Un, Un) ≥ λmin(S)(Un, Un) = λmin(S)‖Un‖2,

∣∣Q(Un−1, Un)∣∣ ≤ (QUn, Un)
1
2 (QUn−1, Un−1)

1
2 ≤ λmax(Q)‖Un‖

∥∥Un−1
∥∥,

|(Gn, Un)| ≤ ‖Gn‖‖Un‖.

(58)

The use of Equations (57) and (59) provides

λmin(S)‖Un‖2 ≤ λmax(Q)‖Un‖
∥∥∥Un−1

∥∥∥+ ‖Gn‖‖Un‖.

Thus, we can obtain the following relation

‖Un‖ ≤ λmax(Q)

λmin(S)

∥∥∥Un−1
∥∥∥+ 1

λmin(S)
‖Gn‖

≤ λmax(Q)

λmin(S)

{
λmax(Q)

λmin(S)

∥∥∥Un−2
∥∥∥+ 1

λmin(S)

∥∥∥Gn−1
∥∥∥}+

1
λmin(S)

‖Gn‖

...

≤
(

λmax(Q)

λmin(S)

)n∥∥∥U0
∥∥∥+ 1

λmin(S)

n

∑
r=1

(
λmax(Q)

λmin(S)

)n−r
‖Gr‖. (59)

In the above relation
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λ(S) =
(

1− τ

2

(
1 + a(n−1)

p,n

))
λ(R) =

(
1− τ

2

(
1 + a(n−1)

p,n

)) λ(B)
λ(A)

, (60)

λ(Q) =
(

1 +
τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
λ(R) =

(
1 +

τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

)) λ(B)
λ(A)

. (61)

Thus, we can conclude

λmin(S) =
(

1− τ

2

(
1 + a(n−1)

p,n

))
λmin(R) =

(
1− τ

2

(
1 + a(n−1)

p,n

)) λmin(B)
λmax(A)

, (62)

λmax(Q) =
(

1 +
τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
λmax(R) =

(
1 +

τ

2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))λmax(B)
λmin(A)

. (63)

Corresponding to Equation (59), according to relations Equations (62) and (63) and

using lim
x→∞

(
1 + 1

x

)x
= e, we have

‖Un‖ ≤
(

λmax(Q)

λmin(S)

)n∥∥∥U0
∥∥∥+ 1

λmin(S)

n

∑
r=1

(
λmax(Q)

λmin(S)

)n−r
‖Gr‖

≤


(

1− τ
2

(
1 + a(n−1)

p,n

))
θ1(

1 + τ
2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
θ2

n∥∥∥U0
∥∥∥+ 1

λmin(S)

n

∑
r=1


(

1− τ
2

(
1 + a(n−1)

p,n

))
θ1(

1 + τ
2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
θ2

n−r

‖Gr‖

(64)

≤

 exp
(

1− T
2

(
1 + a(n−1)

p,n

))
θ1(

1 + T
2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
θ2

∥∥∥U0
∥∥∥+ T

 exp
(

1− T
2

(
1 + a(n−1)

p,n

))
θ1

exp
(

1 + T
2

(
1 + a(n−2)

p,n + a(n−2)
p,n−1

))
θ2

 max
1≤r≤n

‖Gr‖

≤ C1

∥∥∥U0
∥∥∥+ C2 max

1≤r≤n
‖Gr‖,

which completes the proof; i.e., the developed scheme is unconditionally stable.

Theorem 2. Let un and Un be exact and approximate solutions, respectively. The presented
numerical scheme is convergent and the following inequality holds

‖un −Un‖ ≤ C
(

τ2 + h4
)

,

where C is a positive constant.

Proof. The proof is similar to Theorem 1.

Remark 1. According to Atkinson’s book, “Theoretical Numerical Analysis A Functional
Analysis Framework”, to obtain a robust numerical method for solving the PIDEs with weakly
singular integral term based on the Lagrange interpolation, which preserves the order of accuracy,
we must use a graded mesh approach. But, if we do not want to use this idea, we will have to make
the time steps very small to obtain the order of theoretical convergence. Thus, in the current paper,
we used the uniform meshes with very small time step in the numerical results. The use of uniform
meshes isolates the singular points. It can be seen in the time-fractional PDEs, which are refined
with the Graded Meshes Approach.

5. Numerical Validations
5.1. Example 1

Here, the first considered test problem is
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∂u(x, t)
∂t

= ∆u(x, t) +
t∫

0

(t− s)α−1∆u(x, s) ds + f (x, s), x ∈ [xl , xr] = [0, 1], 0 < t ≤ T,

u(x, 0) = 0,

u(xl , t) = 0, u(xr, t) = 0,

(65)

where

f (x, t) = 2tsin(πx) + π2
(

t2 +
2Γ(α)

Γ(3 + α)
t2+α

)
sin(πx).

In this example, the exact solution is

u(x, t) = t2 sin(πx).

The current test problem is proposed to verify the theoretical topics. Table 1 demon-
strates errors and computational rates in the spatial direction with τ = h4, α = 0.8, α = 0.2,
and T = 1 for Example 1. Also, Table 2 shows errors and computational rates in the
temporal direction with τ = h2, α = 0.1, α = 0.9, and T = 1 for Example 1. On the other
hand, Tables 1 and 2 confirm the computational rates are near to the theoretical orders, i.e.,
second and fourth orders in the temporal and spatial directions, respectively.

Table 1. Errors and computational rates in spatial direction with τ = h4 for Example 1.

α = 0.8 α = 0.2

h L∞ C2-Order L∞ C2-Order

0.25 1.0078× 10−3 − 1.1779× 10−3 −
0.125 6.1334× 10−5 4.0383 6.9389× 10−5 4.0852
0.0625 3.8069× 10−6 4.0100 4.1919× 10−6 4.0490
0.03125 2.3751× 10−7 4.0026 2.5599× 10−7 4.0334
0.015625 1.4837× 10−8 4.0007 1.5724× 10−8 4.0251
0.0078125 9.1925× 10−10 4.0126 9.4757× 10−10 4.0526

Table 2. Errors and computational rates in temporal direction with τ = h2 for Example 1.

α = 0.1 α = 0.9

h L∞ C2-Order L∞ C2-Order

0.25 1.9945× 10−3 − 1.1779× 10−3 −
0.125 8.7132× 10−4 1.1947 6.9389× 10−3 1.7431
0.0625 2.5841× 10−4 1.7535 4.1919× 10−4 1.9424
0.03125 7.1229× 10−5 1.8591 2.5599× 10−4 1.9856
0.015625 1.9160× 10−5 1.8943 1.5724× 10−5 1.9962
0.0078125 5.0937× 10−6 1.9113 9.4757× 10−6 1.9989
0.0039062 1.3435× 10−6 1.9227 9.4757× 10−6 1.9997
0.0019531 3.5219× 10−7 1.9316 9.4757× 10−7 1.9999

5.2. Example 2

Now, for the 2D case, we investigate



Mathematics 2023, 11, 3786 12 of 15



∂u(x, y, t)
∂t

= ∆u(x, y, t) +
t∫

0

(t− s)α−1∆u(x, y, s) ds + f (x, y, s), x ∈ Ω, 0 < t ≤ T,

u(x, y, 0) = 0,

u(x, y, t) = tγe−β ((x−x0)
2+(y−y0)

2), (x, y) ∈ ∂Ω,

(66)

where

f (x, y, t) =
{

γtγ−1 −
(

tγ + tγ+α Γ(α)Γ(1 + γ)

Γ(α + γ + 1)

)(
β2 (2x− 2x0)

2 − 4β + β2 (2y− 2y0)
2
)}

e−β ((x−x0)
2+(y−y0)

2),

then, the exact solution is

u(x, t) = tγe−β ((x−x0)
2+(y−y0)

2).

The used parameters for Tables 3 and 4 are Ω = [0, 1]× [0, 1], x0 = y0 = 0.5, β = −100,
and γ = 2. Table 3 reports errors and computational orders in the spatial direction with
τ = h4, α = 0.1, α = 0.5, α = 0.8, and T = 1 for Example 2. Table 2 displays errors and
computational rates in the temporal direction with τ = h2, α = 0.15, α = 0.65, and T = 1 for
Example 2. Consequently, Tables 3 and 4 affirm the computational orders are converging to
the theoretical results, i.e., second and fourth orders in the temporal and spatial directions,
respectively. Figure 1 depicts graph of approximate solution with h = 1/400, τ = 10−3,
T = 1, and different values of β for Example 2.

Table 3. Errors and computational rates in spatial direction for Example 2.

h τ L2 Error C2-Order L∞ Error C2-Order

h = 0.25 τ = 0.25 2.2924× 10−3 − 3.1207× 10−3 −
α = 0.1 h = 0.125 τ = 0.015625 2.0381× 10−4 3.4916 2.7679× 10−4 3.4950

h = 0.0625 τ = 0.0009765625 1.2790× 10−5 3.9941 1.7486× 10−5 3.9845
h = 0.03125 τ = 0.00006103515625 6.9314× 10−7 4.2057 9.4800× 10−7 4.2052

h = 0.25 τ = 0.25 8.0112× 10−3 − 1.9290× 10−2 −
α = 0.5 h = 0.125 τ = 0.015625 6.3321× 10−4 3.6613 8.6222× 10−4 3.6639

h = 0.0625 τ = 0.0009765625 4.1946× 10−5 3.9160 5.7428× 10−5 3.9082
h = 0.03125 τ = 0.00006103515625 2.6601× 10−6 3.9791 3.6460× 10−6 3.9774

h = 0.25 τ = 0.25 2.4333× 10−2 − 3.3311× 10−2 −
α = 0.8 h = 0.125 τ = 0.015625 1.5717× 10−3 3.9525 2.1411× 10−3 3.9551

h = 0.0625 τ = 0.0009765625 9.8528× 10−5 3.9956 1.3492× 10−4 3.9883
h = 0.03125 τ = 0.00006103515625 6.1599× 10−6 3.9995 8.4462× 10−6 3.9976

Table 4. Errors and computational rates in temporal direction with τ = h2 for Example 2.

α = 0.65 α = 0.15

h L∞ C2-Order L∞ C2-Order

0.25 2.6407× 10−1 − 1.5778× 10−1 −
0.125 1.0110× 10−1 1.3851 4.3497× 10−2 1.8592
0.0625 2.6730× 10−2 1.9193 1.1088× 10−2 1.9720
0.03125 7.1119× 10−3 1.9101 2.7847× 10−3 1.9934
0.015625 1.7832× 10−3 1.9958 6.9696× 10−4 1.9984
0.0078125 4.4612× 10−4 1.9990 1.7429× 10−4 1.9996
0.0039062 1.1155× 10−4 1.9997 4.3576× 10−5 1.9999
0.0019531 2.7889× 10−5 1.9999 1.0894× 10−5 2.0000
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Figure 1. Graph of approximate solution with h = 1/400, τ = 10−3, and T = 1 for Example 2.

6. Conclusions

The current paper developed and analyzed a new matrix transform method to solve a
PIDE with a singular kernel. First, the derivatives in x- and y-directions are approximated
by utilizing a fourth-order operator and based upon a stencil with three points to obtain
the full-discrete scheme. The mentioned procedure constructed a system of differential
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equations related to the time variable. The eigenvalues of the coefficient matrices are
derived explicitly. Also, the integral term is approximated by a Lagrange interpolation
to overcome the singularity of the kernel. Then, a second-order difference approach is
employed to obtain a full-discrete formulation. Since the eigenvalue of target matrices
has been extracted, the Rayleigh–Ritz (R–R) ratio is engaged to prove the stability and
convergence of the new numerical technique. Finally, two examples verify the capability
and accuracy of the proposed numerical technique.
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