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Abstract: Stability and convergence analyses of the multi-symplectic variational integrator for the
nonlinear Schrödinger equation are discussed in this paper. The variational integrator is proved to be
unconditionally linearly stable using the von Neumann method. A priori error bound for the scheme
is given from the Sobolev inequality and the discrete conservation laws. Subsequently, the variational
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The numerical experimental results match our theoretical derivation.

Keywords: multi-symplectic variational integrator; stability; convergence; conservation laws; nonlinear
Schrödinger equation

MSC: 35Q55; 65M06; 65M12

1. Introduction

The nonlinear Schrödinger equation (NLSE) is an important partial differential equa-
tion that is used to describe the motion state of microscopic particles. It is the underlying
equation of quantum mechanics. Partial differential equations have a wide range of appli-
cations, which can be found in reference [1]. The NLS equation has wide applications in
several fields such as nonlinear optics [2–4], underwater acoustics [5], water waves [6–8],
plasma physics [9], quantum condensates [10,11] and bimolecular dynamics [12]. The NLS
equation is also called the Gross–Pitaevskii equation (GPE) when simulating the dynamics
of the Bose–Einstein condensate [13,14]. Reference [15] gives a detailed summary on the
mathematical theory and numerical methods for the GPE.

In this paper, the following form of the nonlinear Schrödinger equation is to be studied:

iψt + α(t)ψxx + V(x)ψ + β(t)|ψ|2ψ = 0, (1)

with the initial condition ψ(x, 0) = ψ0(x), x ∈ R, where i =
√
−1 and variable coefficients

α(t), V(x), and β(t) are bounded real functions. Moreover, α(t) is related to the second-
order dispersion coefficient, V(x) represents a potential, and β(t) describes the strength of
the local interactions between particles [12]. The solution ψ(x, t) is a complex-valued wave
function, and its modulus |ψ(x, t)|2 is a physically meaningful and measurable quantity,
which states the probability density for a particle to be located at pointed x and at time
t [12,16].

The nonlinear Schrödinger Equation (1) can be written in the form of a Euler–Lagrangian
equation as follows:

∂L
∂ψ

=
d
dt

∂L
∂ψt

+
d

dx
∂L

∂ψx
, (2)
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where L(ψ, ψt, ψx) is a Lagrangian function. The exact solution of Equation (1) not only
preserves the multi-symplectic geometric structures, whose corresponding multi-symplectic
form formula is given in Proposition 1, but it also satisfies the global conservation laws,
which are listed in Proposition 2.

Proposition 1. As per [17,18], if ψ is a solution of the Euler–Lagrangian equation, and V and W
are first variations of ψ, then for any subset U of the space of independent variables, the following
multi-symplectic form formula holds:∫

∂U
(j1ψ)∗(lj1V lj1WΩL) = 0, (3)

where j1ψ is the first jet of ψ, ∗ is a pullback operator, and ΩL is the Lagrangian multi-symplectic form.

Proposition 2. As per [19], suppose that the wave function ψ is the solution of Equation (1); then,
ψ satisfies the following three global conservation laws:

(1) Mass conservation

M =
∫
R
|ψ(x, t)|2dx =

∫
R
|ψ(x, 0)|2dx, t > 0. (4)

(2) Energy conservation
If α(t) and β(t) are independent of t, that is to say, α(t) ≡ α and β(t) ≡ β, then

E =
∫
R(α|ψx(x, t)|2 −V(x)|ψ(x, t)|2 − β

2 |ψ(x, t)|4)dx
=
∫
R(α|ψx(x, 0)|2 −V(x)|ψ(x, 0)|2 − β

2 |ψ(x, 0)|4)dx, t > 0.
(5)

(3) Momentum conservation

N =
∫
R(R(ψ(x, t))I(ψx(x, t))−R(ψx(x, t))I(ψ(x, t)))dx

=
∫
R(R(ψ(x, 0))I(ψx(x, 0))−R(ψx(x, 0))I(ψ(x, 0)))dx, t > 0,

(6)

whereR and I represent the real part and the imaginary part, respectively.

Up to now, a large number of accurate and efficient numerical methods, which can
conserve mass, energy and momentum, have been proposed to solve different types of
nonlinear Schrödinger equations. Besides visually observing the effect of the proposed
scheme from the numerical results, for example, drawing three-dimensional diagrams,
mass or energy change plots or error graphs of the solved problem, some studies analyze
theoretical properties of the proposed methods with a certain emphasis, such as on mass
or energy conservation, solvability, stability or error bounds. For the cubic nonlinear
Schrödinger equation with a wave operator, the reference [20] gives the linearized finite
element method and derives its conservation property of energy and the optimal error
estimates in the L2 norm. For solving the damped nonlinear Schrödinger equation, the leap-
frog finite element method is given in [9]. Meanwhile, the total discrete mass conservation,
energy conservation and the bound in the L∞ norm and optimal L2 error estimate of this
scheme are presented. Many numerical methods, such as the classical explicit method, the
hopscotch method, the implicit–explicit method and so on, are proposed in [21] to solve
the nonlinear Schrödinger equation. In reference [22], a compact difference scheme with
fourth-order precision in time is derived to obtain the numerical solution of the nonlinear
Schrödinger equation. The authors obtained the conclusion that the proposed scheme has
higher accuracy than the Crank–Nicholson scheme using numerical experiments. To obtain
the numerical solution of the coupled nonlinear Schrödinger equation, the scheme in [23]
is established using the Galerkin finite element method in space and the Crank–Nicolson
difference method in time. The conservation laws, unique solvability and error estimates
for the scheme are analyzed at the same time. The time-splitting Fourier spectral method
is used to solve the coupled Schrödinger–Boussinesq equation in [24], and it is proven to
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be effective and accurate by numerical results. Xu et al. use the Fourier pseudo-spectral
method to calculate the numerical solution of the space fractional nonlinear Schrödinger
equation. They prove the solution’s existence and the conservation and convergence of the
scheme in [25]. For a numerical solution of the Equation (1) to be discussed in this paper, a
temporal two-mesh compact difference method was proposed in [12]. The convergence of
the scheme was derived, and the corresponding numerical results indicate that the solution
reduces the Central Processing Unit(CPU) time without loss of accuracy compared with
the standard nonlinear implicit compact difference scheme. The cubic B-spline Galerkin
method is given in [26], and the stability of the scheme is analyzed.

In [27], the exponential cubic B-spline differential quadrature method is used to solve
NLSE numerically. The method adopts a leave-one-out cross validation strategy to improve
accuracy and efficiency. A two-grid finite element scheme is proposed for NLSE in [28].
The optimal order error estimates of the scheme in Lp and H1 norm are derived without
any time-step size. The convergence of symmetric discretization models for the nonlinear
Schrödinger equation in dark solitons’ motion is discussed in [29]. The author in [30] shows
us the application of the nonlinear Schrödinger equation to gravity-capillary waves on
deep water with constant vorticity. There are other valid schemes for solving Equation (1),
such as multi-grid methods [31], the two-grid finite volume method [32,33], the virtual
element method [34] and so on.

The work in this paper is a continuation of earlier research [19]. In the article [19], the
multi-symplectic variational integrator was developed for Schrödinger equations. Numeri-
cal methods, which are based on the Lagrangian viewpoint and variational principle [35,36],
have long-time numerical simulations and maintain the internal properties and conser-
vation laws of Hamiltonian equations. However, the stability of the schemes is judged
from numerical experiments. There is no theoretical conclusions of stability for the multi-
symplectic variational integrators. That is the main work and novelty in this paper. The
stability conditions and global convergence errors are proved. Multi-symplectic variational
integrators for nonlinear Schrödinger equations are proved to be unconditionally linearly
stable by using the Von-Neumann method. Based on the Sobolev inequality and energy
method, the global convergence errors of the scheme in solving linear equations are ana-
lyzed. The numerical results show that conclusions are also appropriate for nonlinear cases.

The paper is composed of the following parts: In Section 2, we give the multi-
symplectic variational integrator for nonlinear Schrödinger equation with variable co-
efficients from the Lagrangian viewpoint and variational principle. In Section 3, we prove
the proposed variational integrator is unconditionally linearly stable using the von Neu-
mann method. In Section 4, a priori error bound for the scheme is derived from the Sobolev
inequality, the discrete mass conservation law and the discrete energy conservation law.
Then, based on the energy method, the convergence order of the variational integrator is
O(∆x2 + ∆t2) in the discrete L2 norm, where ∆x is the mesh step and ∆t is the time step.
Numerical experiments are carried out in Section 5.

2. Multi-Symplectic Variational Integrator for Nonlinear Schrödinger Equation with
Variable Coefficients

The nonlinear Schrödinger equation with variable coefficients (1) can be rewritten into
the form of a Euler–Lagrange Equation (2) with a Lagrangian function:

L(ψ, ψt, ψx) = −
1
2

α(t)ψxψ̄x +
1
4

i(ψψ̄t − ψ̄ψt) +
1
4

β(t)(ψψ̄)2 +
1
2

V(x)ψψ̄, (7)

where ψ̄ is the conjugation of ψ.
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Supposing the regular quadrangular mesh in the base space is given, with mesh lengths
∆x and ∆t, we note the value of field ψ as ψk

j = ψ(j∆x, k∆t). The discrete Lagrangian Ld of
the Lagrangian function is discretized by a finite difference method as follows:

Ld(ψ
k
j , ψk

j+1, ψk+1
j+1 , ψk+1

j ) = ∆x∆t(−1
2

αk+ 1
2

ψ
k+ 1

2
j+1 − ψ

k+ 1
2

j

∆x

ψ̄
k+ 1

2
j+1 − ψ̄

k+ 1
2

j

∆x

+
i
4
(ψ

k+ 1
2

j+ 1
2

ψ̄k+1
j+ 1

2
− ψ̄k

j+ 1
2

∆t
− ψ̄

k+ 1
2

j+ 1
2

ψk+1
j+ 1

2
− ψk

j+ 1
2

∆t
) (8)

+
1
4

βk+ 1
2
(ψ

k+ 1
2

j+ 1
2

ψ̄
k+ 1

2
j+ 1

2
)2 +

1
2

Vj+ 1
2
ψ

k+ 1
2

j+ 1
2

ψ̄
k+ 1

2
j+ 1

2
),

where ψ
k+ 1

2
j =

ψk
j +ψk+1

j
2 , ψk

j+ 1
2
=

ψk
j +ψk

j+1
2 , ψ

k+ 1
2

j+ 1
2
=

ψk
j +ψk

j+1+ψk+1
j+1 +ψk+1

j
4 . In the same way, the de-

tailed definitions of the discrete Lagrangian Ld(ψ
k
j−1, ψk

j , ψk+1
j , ψk+1

j−1 ), Ld(ψ
k−1
j−1 , ψk−1

j , ψk
j , ψk

j−1)

and Ld(ψ
k−1
j , ψk−1

j+1 , ψk
j+1, ψk

j ) on the other three squares adjacent to ψk
j can be found in ref-

erence [19]. Based on the theories in [17,18,37], the following discrete Euler–Lagrange
equation is obtained:

D1Ld(ψ
k
j , ψk

j+1, ψk+1
j+1 , ψk+1

j ) + D2Ld(ψ
k
j−1, ψk

j , ψk+1
j , ψk+1

j−1 )

+D3Ld(ψ
k−1
j−1 , ψk−1

j , ψk
j , ψk

j−1) + D4Ld(ψ
k−1
j , ψk−1

j+1 , ψk
j+1, ψk

j ) = 0,
(9)

where Di means the derivative with respect to the i-th variable.
To obtain the numerical solution of the nonlinear Schrödinger Equation (1), based on

the discrete Euler–Lagrange Equation (9), the following scheme is derived,

i
2
(

ψk+1
j+ 1

2
− ψk−1

j+ 1
2

2∆t
+

ψk+1
j− 1

2
− ψk−1

j− 1
2

2∆t
)

+
αk+ 1

2

2

ψ
k+ 1

2
j+1 − 2ψ

k+ 1
2

j + ψ
k+ 1

2
j−1

(∆x)2 +
αk− 1

2

2

ψ
k− 1

2
j+1 − 2ψ

k− 1
2

j + ψ
k− 1

2
j−1

(∆x)2 (10)

+
1
4
(Vj+ 1

2
ψ

k+ 1
2

j+ 1
2
+ Vj− 1

2
ψ

k+ 1
2

j− 1
2
+ Vj− 1

2
ψ

k− 1
2

j− 1
2
+ Vj+ 1

2
ψ

k− 1
2

j+ 1
2
)

+
1
4
(βk+ 1

2
|ψk+ 1

2
j+ 1

2
|2ψ

k+ 1
2

j+ 1
2
+ βk+ 1

2
|ψk+ 1

2
j− 1

2
|2ψ

k+ 1
2

j− 1
2
+ βk− 1

2
|ψk− 1

2
j− 1

2
|2ψ

k− 1
2

j− 1
2
+ βk− 1

2
|ψk− 1

2
j+ 1

2
|2ψ

k− 1
2

j+ 1
2
)

= 0.

The numerical template for scheme (10) is shown in Figure 1. Since it is derived from
the discrete variational principle, the scheme (10) is naturally multi-symplectic [35,37]. In
addition, the multi-symplectic variational integrator (10) has the advantage of preserving
the discrete multi-symplectic structure. In terms of how to verify it, reference [19] can give
us an answer. In the rest of this paper, we prove the stability using the von Neumann
method in Section 3 and prove the convergence accuracy using the energy method in
Section 4 for the multi-symplectic variational integrator (10).



Mathematics 2023, 11, 3788 5 of 18

Figure 1. The numerical template for scheme (10).

Before deriving the stability and convergence of the scheme (10), it is necessary to give
a lemma, which is about the solvability of the scheme (10).

Lemma 1 ([38,39]). With the initial condition ψ(x, 0) = ψ0(x) ∈ C4(x, 0), the multi-symplectic
variational integrator (10) is solvable.

3. Stability of the Multi-Symplectic Variational Integrator

In view of the complexity of proving the stability of the nonlinear Schrödinger equation
with variable coefficients, using the von Neumann method, the stability of the multi-
symplectic variational integrator (10) for solving the following nonlinear Schrödinger
equation is investigated, where α(t) ≡ α, V(x) ≡ V, β(t) ≡ β

iψt + αψxx + Vψ + β|ψ|2ψ = 0. (11)

We have the following.

Theorem 1. The multi-symplectic variational integrator (10) is unconditionally linearly stable
when solving the Schrödinger Equation (11).

Proof. Applying the multi-symplectic numerical scheme (10) to Equation (11), we have

i
2
(

ψk+1
j+ 1

2
− ψk−1

j+ 1
2

2∆t
+

ψk+1
j− 1

2
− ψk−1

j− 1
2

2∆t
)

+
α

2
(

ψ
k+ 1

2
j+1 − 2ψ

k+ 1
2

j + ψ
k+ 1

2
j−1

(∆x)2 +
ψ

k− 1
2

j+1 − 2ψ
k− 1

2
j + ψ

k− 1
2

j−1

(∆x)2 ) (12)

+
1
4

V(ψ
k+ 1

2
j+ 1

2
+ ψ

k+ 1
2

j− 1
2
+ ψ

k− 1
2

j− 1
2
+ ψ

k− 1
2

j+ 1
2
)

+
1
4

β(|ψk+ 1
2

j+ 1
2
|2ψ

k+ 1
2

j+ 1
2
+ |ψk+ 1

2
j− 1

2
|2ψ

k+ 1
2

j− 1
2
+ |ψk− 1

2
j− 1

2
|2ψ

k− 1
2

j− 1
2
+ |ψk− 1

2
j+ 1

2
|2ψ

k− 1
2

j+ 1
2
)

= 0.

Then, the frozen coefficient method is used for the linear stability analysis. In other

words, we consider the coefficient of the nonlinear term as a constant (i.e., |ψk+ 1
2

j+ 1
2
|2 =
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|ψk+ 1
2

j− 1
2
|2 = |ψk− 1

2
j− 1

2
|2 = |ψk− 1

2
j+ 1

2
|2 , |ψk

j |2 in the Formula (12)). So, the Formula (12) has been

organized and rewritten as follows:

(
i

4∆t
+

α

4(∆x)2 +
V
16

+
β|ψk

j |2

4
)ψk+1

j−1 + (
i

2∆t
− α

2(∆x)2 +
V
8
+

β|ψk
j |2

2
)ψk+1

j

+ (
i

4∆t
+

α

4(∆x)2 +
V
16

+
β|ψk

j |2

4
)ψk+1

j+1

=(
i

4∆t
− α

4(∆x)2 −
V
16
−

β|ψk
j |2

4
)ψk−1

j−1 + (
i

2∆t
+

α

2(∆x)2 −
V
8
−

β|ψk
j |2

2
)ψk−1

j (13)

+ (
i

4∆t
− α

4(∆x)2 −
V
16
−

β|ψk
j |2

4
)ψk−1

j+1 + (− α

2(∆x)2 −
V
8
−

β|ψk
j |2

2
)ψk

j−1

+ (
α

(∆x)2 −
V
4
− β|ψk

j |2)ψk
j + (− α

2(∆x)2 −
V
8
−

β|ψk
j |2

2
)ψk

j+1.

Taking product (13) with ∆t, and letting r = ∆t
(∆x)2 , we have

(
i
4
+

rα

4
+

V
16

∆t +
β|ψk

j |2

4
∆t)ψk+1

j−1 + (
i
2
− rα

2
+

V
8

∆t +
β|ψk

j |2

2
∆t)ψk+1

j

+ (
i
4
+

rα

4
+

V
16

∆t +
β|ψk

j |2

4
∆t)ψk+1

j+1

=(
i
4
− rα

4
− V

16
∆t−

β|ψk
j |2

4
∆t)ψk−1

j−1 + (
i
2
+

rα

2
− V

8
∆t−

β|ψk
j |2

2
∆t)ψk−1

j (14)

+ (
i
4
− rα

4
− V

16
∆t−

β|ψk
j |2

4
∆t)ψk−1

j+1 + (− rα

2
− V

8
∆t−

β|ψk
j |2

2
∆t)ψk

j−1

+ (rα− V
4

∆t− β|ψk
j |2∆t)ψk

j + (− rα

2
− V

8
∆t−

β|ψk
j |2

2
∆t)ψk

j+1.

Let uk+1
j = ψk

j ; then, the expression (14) can be expressed as

( i
4 + rα

4 + V
16 ∆t +

β|ψk
j |

2

4 ∆t)(ψk+1
j−1 + ψk+1

j+1 ) + ( i
2 −

rα
2 + V

8 ∆t +
β|ψk

j |
2

2 ∆t)ψk+1
j

= ( i
4 −

rα
4 −

V
16 ∆t−

β|ψk
j |

2

4 ∆t)(uk
j−1 + uk

j+1) + ( i
2 + rα

2 −
V
8 ∆t−

β|ψk
j |

2

2 ∆t)uk
j+

(− rα
2 −

V
8 ∆t−

β|ψk
j |

2

2 ∆t)(ψk
j−1 + ψk

j+1) + (rα− V
4 ∆t− β|ψk

j |2∆t)ψk
j ,

uk+1
j = ψk

j .

Let wk
j =

(
ψk

j
uk

j

)
; then, the above equation group can be rewritten as(

i
2 −

rα
2 + V

8 ∆t +
β|ψk

j |
2

2 ∆t 0
0 1

)
wk+1

j +

(
i
4 + rα

4 + V
16 ∆t +

β|ψk
j |

2

4 ∆t 0
0 0

)
(wk+1

j−1 +wk+1
j+1 )

=

(
rα− V

4 ∆t− β|ψk
j |2∆t i

2 + rα
2 −

V
8 ∆t−

β|ψk
j |

2

2 ∆t
1 0

)
wk

j

+

(
− rα

2 −
V
8 ∆t−

β|ψk
j |

2

2 ∆t i
4 −

rα
4 −

V
16 ∆t−

β|ψk
j |

2

4 ∆t
0 0

)
(wk

j−1 + wk
j+1).

Using wk
j =

(
pk

qk

)
eimj∆x, m ∈ N in the above formula, we have
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(
i cos2 m∆x

2 + (V
4 ∆t + β|ψk

j |2∆t)cos2 m∆x
2 − rα sin2 m∆x

2 0
0 1

)(
pk+1

qk+1

)
=(

−(V
2 ∆t + 2β|ψk

j |2∆t)cos2 m∆x
2 + 2rα sin2 m∆x

2 i cos2 m∆x
2 − (V

4 ∆t + β|ψk
j |2∆t)cos2 m∆x

2 + rα sin2 m∆x
2

1 0

)(
pk

qk

)
.

In the above formula, making a = (V
4 ∆t + β|ψk

j |2∆t)cos2 m∆x
2 − rα sin2 m∆x

2 , the above
formula can be simply denoted as(

i cos2 m∆x
2 + a 0

0 1

)(
pk+1

qk+1

)
=

(
−2a i cos2 m∆x

2 − a
1 0

)(
pk

qk

)
.

Then, the amplification matrix of the numerical scheme (12) is obtained

G =

 −2a
i cos2 m∆x

2 +a
i cos2 m∆x

2 −a
i cos2 m∆x

2 +a
1 0

.

Assume that the two eigenvalues of G are λ1, λ2 . When |λ1| ≤ 1 and |λ1| ≤ 1, the
scheme (12) is stable. By calculating, we have

λ1 = −1 , λ2 =
i cos2(m∆x

2 )−a
i cos2(m∆x

2 )+a
.

Obviously,

|λ1| = |λ2| = 1.

Hence, numerical format (12) is unconditionally stable when solving the constant nonlinear
Schrödinger Equation (11).

Therefore, the proof is completed.

4. Convergence Analysis of the Multi-Symplectic Variational Integrator

In this section, we focus on deriving the convergence order of the multi-symplectic

variational integrator (10). Here, a few notations are given: δxψk
j =

ψk
j+1−ψk

j
∆x ,

∣∣∣∣ψk
∣∣∣∣21

2
=

∆x ∑j
∣∣ψk

j+ 1
2

∣∣2, δ2tψ
k
j =

ψk+1
j −ψk−1

j
2∆t .

The expression for the discrete mass for the variational integrator (10) is written
as follows:

Mk+ 1
2 = ∆x ∑

j

∣∣ψk+ 1
2

j+ 1
2

∣∣2. (15)

The expression for the discrete energy for the variational integrator (10) is given:

Ek+ 1
2 = ∆x ∑

j
(α
∣∣δxψ

k+ 1
2

j

∣∣2 −Vj+ 1
2

∣∣ψk+ 1
2

j+ 1
2

∣∣2 − β

2

∣∣ψk+ 1
2

j+ 1
2

∣∣4). (16)

And the discrete momentum expression corresponding to the variational integra-
tor (10) is:

Nk+ 1
2 = ∆x ∑

j

(
R(ψk+ 1

2
j+ 1

2
)I(δxψ

k+ 1
2

j )−R(δxψ
k+ 1

2
j )I(ψk+ 1

2
j+ 1

2
)
)
. (17)

The multi-symplectic variational integrator (10) preserves the discrete mass conserva-
tion law and the discrete energy conservation law [40] when α(t) ≡ α, β(t) ≡ β.
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Lemma 2 ([40]). The variational integrator (10) possesses the discrete mass conservation law:

Mk+ 1
2 −Mk− 1

2 = β
4 ∆t∆x ∑j

(∣∣ψk+ 1
2

j+ 1
2

∣∣2 − ∣∣ψk− 1
2

j+ 1
2

∣∣2)(ψk+ 1
2

j+ 1
2
− ψ

k− 1
2

j+ 1
2

)(
ψ̄

k+ 1
2

j+ 1
2
+ ψ̄

k− 1
2

j+ 1
2

)
− β

4 ∆t∆x ∑j
(
|ψk+ 1

2
j+ 1

2

∣∣2 − ∣∣ψk− 1
2

j+ 1
2

∣∣2)2.
(18)

In particular, when β = 0, the equality holds: Mk+ 1
2 = Mk− 1

2 = · · · = M
1
2 .

Lemma 3 ([40]). The variational integrator (10) possesses the discrete energy conservation law:

Ek+ 1
2 − Ek− 1

2 =
β

2
∆x ∑

j

(∣∣ψk+ 1
2

j+ 1
2

∣∣2 − ∣∣ψk− 1
2

j+ 1
2

∣∣2)∣∣ψk+ 1
2

j+ 1
2
− ψ

k− 1
2

j+ 1
2

∣∣2. (19)

Particularly, supposing that β = 0, the equality holds: Ek+ 1
2 = Ek− 1

2 = · · · = E
1
2 .

Given the special case of the conservation laws in the above two lemmas, the multi-
symplectic variational integrator (10) with β = 0 is considered.

Next, relying on the Sobolev inequality and the discrete conservation laws, the priori
error estimate for the scheme (10) with β = 0 is derived.

Theorem 2. The numerical solution of the multi-symplectic variational integrator (10) with β = 0
is bounded under the L2 norm and the L∞ norm, which are∣∣∣∣ψk+ 1

2
∣∣∣∣ 1

2
≤ C1,

∣∣∣∣ψk+ 1
2
∣∣∣∣

∞ ≤ C2, (20)

where C1, C2 are the positive constants.

Proof. Obviously, M
1
2 = M1+M2

2 , where M1 is the discrete mass corresponding to the initial
value ψ0. For the feature of the multi-symplectic variational integrator (10) with β = 0, we
let ψ1 = ψ0 in practice, which means M1 = M2. So, M

1
2 is bounded. That is to say, there is

a positive constant C1 satisfying M
1
2 ≤ C1. Based on the equality (18), we have Mk+ 1

2 ≤ C1,
which represents

∣∣∣∣ψk+ 1
2
∣∣∣∣ 1

2
≤ C1.

In the same manner, Ek+ 1
2 = Ek− 1

2 = · · · = E
1
2 is bounded. Because Ek+ 1

2 =

∆x ∑j(α
∣∣δxψ

k+ 1
2

j

∣∣2 − Vj+ 1
2

∣∣ψk+ 1
2

j+ 1
2

∣∣2) and V(x) are bounded real functions, the inequality

∆x ∑j |δxψ
k+ 1

2
j |2 ≤ C is obtained, where C is a positive constant. Based on the discrete

version of the Sobolev inequality [15,41],

∣∣∣∣ψk+ 1
2
∣∣∣∣2

∞ ≤
∣∣∣∣ψk+ 1

2
∣∣∣∣ 1

2
·
∣∣∣∣δxψ

k+ 1
2

j

∣∣∣∣ ≤ C1 · C , C2.

Therefore, the proof is completed.

Theorem 3. Supposing the exact solution of the equation iψt + αψxx + V(x)ψ = 0 satisfies
ψ(x, t) ∈ C4(x, t), the numerical solution of the multi-symplectic variational integrator (10) with
β = 0 converges to O(∆x2 + ∆t2).

Proof. Firstly, the local truncation error ηk+ 1
2 of the multi-symplectic variational integra-

tor (10) with β = 0 when solving equation iψt + αψxx + V(x)ψ = 0 is denoted as
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η
k+ 1

2
j+ 1

2
=

i
2
(
δ2tψ(xj− 1

2
, tk) + δ2tψ(xj− 1

2
, tk)

)
+

α

2
(
δ2

xψ(xj, tk− 1
2
) + δ2

xψ(xj, tk+ 1
2
)
)

+
1
4
[
V(xj+ 1

2
)ψ(xj+ 1

2
, tk+ 1

2
) + V(xj− 1

2
)ψ(xj− 1

2
, tk+ 1

2
) (21)

+ V(xj− 1
2
)ψ(xj− 1

2
, tk− 1

2
) + V(xj+ 1

2
)ψ(xj+ 1

2
, tk− 1

2
)
]
.

Using the Taylor expansion, we have η
k+ 1

2
j+ 1

2
= O(∆x2 + ∆t2). Thus, we obtain

∣∣∣∣ηk+ 1
2
∣∣∣∣ 1

2
≤ C(∆x2 + ∆t2), (22)

where C is a positive constant.

Assume that ψ
k+ 1

2
j+ 1

2
is the solution from the multi-symplectic variational integrator (10)

with β = 0. And we define the error function ek+ 1
2 as ek+ 1

2
j+ 1

2
= ψ(xj+ 1

2
, tk+ 1

2
)− ψ

k+ 1
2

j+ 1
2

.

In order to obtain the error function, subtract the scheme (10) with β = 0 from (21).
The result is as follows:

i
2
(

ek+1
j+ 1

2
− ek−1

j+ 1
2

2∆t
+

ek+1
j− 1

2
− ek−1

j− 1
2

2∆t
)

= −α

2
( ek+ 1

2
j+1 − 2ek+ 1

2
j + ek+ 1

2
j−1

(∆x)2 +
ek− 1

2
j+1 − 2ek− 1

2
j + ek− 1

2
j−1

(∆x)2

)
(23)

− 1
4
(Vj+ 1

2
ek+ 1

2
j+ 1

2
+ Vj− 1

2
ek+ 1

2
j− 1

2
+ Vj− 1

2
ek− 1

2
j− 1

2
+ Vj+ 1

2
ek− 1

2
j+ 1

2
) + η

k+ 1
2

j+ 1
2

.

Let both sides of (23) be multiplied by 2(ēk+ 1
2

j + ēk− 1
2

j ) = ēk+1
j + 2ēk

j + ēk−1
j . Then, sum

up for j and take the imaginary part. The item on the left is computed first.

I
{ i∆x

2 ∑
j
(

ek+1
j+ 1

2
− ek−1

j+ 1
2

2∆t
+

ek+1
j− 1

2
− ek−1

j− 1
2

2∆t
)(ēk+1

j + 2ēk
j + ēk−1

j )
}

=I
{ i∆x

4∆t ∑
j

[
(ek+1

j+ 1
2
ēk+1

j + ek+1
j− 1

2
ēk+1

j )− (ek−1
j+ 1

2
ēk−1

j + ek−1
j− 1

2
ēk−1

j ) + 2(ek+1
j+ 1

2
ēk

j + ek+1
j− 1

2
ēk

j ) (24)

− 2(ek−1
j+ 1

2
ēk

j + ek−1
j− 1

2
ēk

j ) + (ek+1
j+ 1

2
ēk−1

j + ek+1
j− 1

2
ēk−1

j )− (ek−1
j+ 1

2
ēk+1

j + ek−1
j− 1

2
ēk+1

j )
]}

.

For such terms shaped like ek+1
j− 1

2
ēk+1

j in (24), replace j with j + 1. So, (24) can be written

as the following form

I
{ i∆x

4∆t ∑j
[
(ek+1

j+ 1
2
ēk+1

j + ψk+1
j+ 1

2
ēk+1

j+1 )− (ek−1
j+ 1

2
ēk−1

j + ek−1
j+ 1

2
ēk−1

j+1 ) + 2(ek+1
j+ 1

2
ēk

j + ek+1
j+ 1

2
ēk

j+1)

−2(ek−1
j+ 1

2
ēk

j + ek−1
j+ 1

2
ēk

j+1) + (ek+1
j+ 1

2
ēk−1

j + ek+1
j+ 1

2
ēk−1

j+1 )− (ek−1
j+ 1

2
ēk+1

j + ek−1
j+ 1

2
ēk+1

j+1 )
]}

.
(25)

Then, the following formula is obtained

I
{ i∆x

2∆t ∑
j
(ek+1

j+ 1
2
ēk+1

j+ 1
2
− ek−1

j+ 1
2
ēk−1

j+ 1
2
+ 2ek+1

j+ 1
2
ēk

j+ 1
2
− 2ek−1

j+ 1
2
ēk

j+ 1
2
+ ek+1

j+ 1
2
ēk−1

j+ 1
2
− ek−1

j+ 1
2
ēk+1

j+ 1
2
)
}

. (26)

The result is obtained after simplifying the above Formula (26):

2
∆t

(
∣∣∣∣ek+ 1

2 ||21
2
− ||ek− 1

2
∣∣∣∣21

2
). (27)
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Similar to the calculation process (24)–(26), for the first term on the right side of
Equation (23), the result is

I
{
− ∆x ∑j

[ α(e
k+ 1

2
j+1 −2e

k+ 1
2

j +e
k+ 1

2
j−1 +e

k− 1
2

j+1 −2e
k− 1

2
j +e

k− 1
2

j−1 )

2(∆x)2

]
· 2
[
ēk+ 1

2
j + ēk− 1

2
j
]}

= 0.
(28)

For the second term on the right side of Equation (23), we have

I
{
− ∆x

4 ∑j
(
Vj+ 1

2
ek+ 1

2
j+ 1

2
+ Vj− 1

2
ek+ 1

2
j− 1

2
+ Vj− 1

2
ek− 1

2
j− 1

2
+ Vj+ 1

2
ek− 1

2
j+ 1

2

)
· 2
(
ēk+ 1

2
j + ēk− 1

2
j
)}

= 0.
(29)

For the third term on the right side of Equation (23), based on the inequality (22), its
range is estimated:

I{ηk+ 1
2

j+ 1
2

, 2(ēk+ 1
2

j + ēk− 1
2

j )}

≤ C′[(∆x2 + ∆t2)2 + (
∣∣∣∣ek+ 1

2 ||21
2
+ ||ek− 1

2
∣∣∣∣21

2
)],

(30)

where C′ is a positive constant. Combining Formulas (27)–(30), the following conclusion
is obtained:∣∣∣∣ek+ 1

2 ||21
2
− ||ek− 1

2
∣∣∣∣21

2
≤ C3∆t[(∆x2 + ∆t2)2 + (

∣∣∣∣ek+ 1
2 ||21

2
+ ||ek− 1

2
∣∣∣∣21

2
)], (31)

where C3 = C′
2 . Adding up the inequality (31) for k, the following inequality is obtained

∣∣∣∣ek+ 1
2 ||21

2
− ||e

1
2
∣∣∣∣21

2
≤ C3[t(∆x2 + ∆t2)2 + ∆t

k

∑
l=0

(
∣∣∣∣el+ 1

2 ||21
2
)]. (32)

Applying the discrete Gronwall inequality [41,42] and ||e 1
2
∣∣∣∣ 1

2
= 0 to (32), the final

result is ∣∣∣∣ek+ 1
2 || 1

2
≤ C3(∆x2 + ∆t2). (33)

In other words, the convergence order of the multi-symplectic variational integra-
tor (10) with β = 0 is O(∆x2 + ∆t2).

The proof process is completed.

Here is a note for Theorem 3.

Remark 1. Although the theoretical result presents that the multi-symplectic variational integra-
tor (10) with β = 0 converges to O(∆x2 + ∆t2), the numerical results in Section 5 show that the
conclusion also holds true for β 6= 0.

5. Numerical Examples

In this section, the multi-symplectic variational integrator (10) is used to solve specific
questions.

Example 1. Taking the following periodic solitary-wave solution into account,

iψt + α(t)ψxx + β(t)|ψ|2ψ = 0, (34)

with α(t) = 1
2 cos(t), β(t) = cos(t)

sin(t)+3 . And ψ(x, t) = 1√
sin(t)+3

sech( x
sin(t)+3 ) exp( i(x2−1)

2(sin(t)+3) )

is the analytical solution to the Equation (34). The numerical solution is given in Figure 2, and the evo-
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lutions of mass and momentum are shown separately in Figures 3 and 4 with ∆x = 0.1, ∆t = 0.02
during the time from t = 0 to t = 60. Observing the three pictures, there is a conclusion that the
variational integrator (10) can simulate the numerical solution stably for a long time and maintain
the conservation laws precisely.

Figure 2. Numerical periodic waveform of Equation (34) by scheme (10).

Figure 3. Evolution of mass M
1
2 of Equation (34).

Figure 4. Evolution of momentum N
1
2 of Equation (34).
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With fixed ∆t = 0.001, the following Table 1 shows that the variational integrator (10)
converges at a second order in the spatial direction.

Table 1. Errors and convergence orders of scheme (10) for Equation (34) at time t = 1.

∆x L∞ Error Order L2 Error Order

0.2 1.3696 × 10−2 − 6.4490 × 10−2 −
0.1 3.2897 × 10−3 2.0577 1.7133 × 10−2 1.9123

0.05 7.8179 × 10−4 2.0731 3.9849 × 10−3 2.1042
0.025 1.7273 × 10−4 2.1783 9.3160 × 10−4 2.0968

The L∞ error, L2 error and convergence order in Tables 1 and 2 are obtained from the follow-
ing formula:

L∞ error = maxj |ψk
j − ψ(xj, tk)|,

L2 error =
√

∆x ∑j |ψk
j − ψ(xj, tk)|2,

convergence order = ln(error(∆x1))/(error(∆x2))
ln(∆x1)/(∆x2)

.

With fixed ∆x = 0.01, the following Table 2 tells us the variational integrator (10) converges
at a second order in time.

Table 2. Errors and convergence orders of scheme (10) for Equation (34) at time t = 1.

∆t L∞ Error Order L2 Error Order

0.2 3.7257 × 10−2 − 1.1961 × 10−1 −
0.1 9.7965 × 10−3 1.9272 3.8205 × 10−2 1.6465

0.05 2.3969 × 10−3 2.0311 1.1173 × 10−2 1.7737
0.025 5.7507 × 10−4 2.0594 2.9607 × 10−3 1.9160

The log-log picture of the L2 error of the multi-symplectic variational integrator (10) for
Equation (34) is presented in Figure 5. The solid line in Figure 5 represents a straight line with a
slope of −2. Take different N, which corresponds to a space step ∆x = 80

N , and the discrete dots
represents the logarithm of the L2 error of Equation (34) at this space step. The slope of the discrete
dots is close to −2. This figure again verifies that the scheme (10) has second-order convergence in
the spatial direction.

Figure 5. Log–log plot of L2 error of Equation (34).
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Example 2. The following nonlinear Schrödinger equation with external potential [43] is explored
by the variational integrator (10).{

iψt + α(t)ψxx + V(x)ψ + β(t)|ψ|2ψ = 0, 0 < x < 2π, t > 0,
ψ(0, t) = ψ(2π, t) = 0, t ≥ 0,

(35)

where α(t) = 1
2 , V(x) = cos2(x), β(t) = 1. Its exact solution is ψ(x, t) = sin(x) exp(−3it/2).

Taking ∆x = π/32, ∆t = 0.01, the waveform variation of Equation (35) from t = 0 to t = 40 is
shown in Figure 6. During this time period, the evolution diagram of mass, energy and momentum
are presented separately in Figures 7–9. One can observe that the numerical waveform displays well.
The characteristics of mass, energy, and momentum conservation laws are preserved well by (10).

Figure 6. Numerical periodic waveform of Equation (35) by scheme (10).

Figure 7. Evolution of mass M
1
2 of Equation (35).
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Figure 8. Evolution of energy E
1
2 of Equation (35).

Figure 9. Evolution of momentum N
1
2 of Equation (35).

With fixed ∆t = 0.0001, the following Table 3 shows that the variational integrator (10)
converges at a second order in the spatial direction.

Table 3. Errors and convergence orders of scheme (10) for Equation (35) at time t = 1.

∆x L∞ Error Order L2 Error Order

π/4 5.1709 × 10−2 − 9.3577 × 10−2 −
π/8 1.3624 × 10−2 1.9243 2.6002 × 10−2 1.8475

π/16 3.2335 × 10−3 2.0750 6.6999 × 10−3 1.9564
π/32 8.2855 × 10−4 1.9644 1.7040 × 10−3 1.9752

With fixed ∆x = π/4096, the following Table 4 shows that the variational integrator (10)
converges at a second order in time direction.

Table 4. Errors and convergence orders of scheme (10) for Equation (35) at time t = 1.

∆t L∞ Error Order L2 Error Order

1/2 2.3859 × 10−1 − 4.0465 × 10−1 −
1/4 5.2724 × 10−2 2.1780 9.6632 × 10−2 2.0661
1/8 1.2813 × 10−2 2.0409 2.3913 × 10−2 2.0147

1/16 3.1921 × 10−3 2.0050 5.9685 × 10−3 2.0024
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The log-log picture of the L2 error of the multi-symplectic variational integrator (10) for
Equation (35) is shown in Figure 10. The solid line in Figure 10 represents a straight line with a
slope of −2. Take different N, which corresponds to a space step ∆x = 2π

N , and the discrete dots
represents the logarithm of the L2 error of Equation (35) at this space step. The slope of the discrete
dots is close to −2. So this figure again verifies that the scheme (10) has second-order convergence
in the spatial direction.

Figure 10. Log-log plot of L2 error of Equation (35).

Example 3. The following NLSE [44] in the interval [−32, 32] with external potential is considered,

iψt + α(t)ψxx + V(x)ψ + β(t)|ψ|2ψ = 0, (36)

with α(t) = 1
2 , V(x) = − 1

2 kx2, k = 0.1, and β(t) = −1. The initial condition is ψ0 =
1

(πσ2)1/4 exp(− x2

2σ2 ), where σ = 0.3 determines effective width of the initial distribution [43]. The
numerical solution of the Equation (36) is shown in Figure 11 with ∆x = 1/16, ∆t = 0.01 from
t = 0 to t = 40. Figures 12–14 show the evolution of mass, energy and momentum separately. One
can observe the multi-symplectic variational integrator (10) displays the long-time stability and
good numerical behaviors of structural preserving properties.

Figure 11. Numerical periodic waveform of Equation (36) by scheme (10).



Mathematics 2023, 11, 3788 16 of 18

Figure 12. Evolution of mass M
1
2 of Equation (36).

Figure 13. Evolution of energy E
1
2 of Equation (36).

Figure 14. Evolution of momentum N
1
2 of Equation (36).

6. Conclusions

In this article, the stability conditions and global convergence errors of the multi-
symplectic variational integrator for the nonlinear Schrödinger equation are derived. The
von Neumann method is used to reach the conclusion that the multi-symplectic variational
integrator is unconditionally linearly stable for solving the variable coefficients Schrödinger
equation. Based on the Sobolev inequality and the discrete conservation laws, the a priori
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error estimate for the scheme is given. Using the energy method, the scheme in the linear
case is proven to maintain the convergence order of O(∆x2 + ∆t2) in the discrete L2 norm.
Via numerical experiments, it is found that this conclusion is applicable to nonlinear
situations. The theoretical results of stability and convergence error are the main work in
this paper. They are crucial and extend our previous work.

Since the numerical scheme in this paper is derived from a discrete variational princi-
ple, the construction of the scheme is somewhat complicated and nonintuitive. This also
makes it challenging to establish stability and convergence theories in nonlinear cases.
These are the limitations of the method.
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