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Abstract: Edge detection is a technique in digital image processing that detects the contours of objects
based on changes in brightness. Edges can be used to determine the size, orientation, and properties
of the object of interest within an image. There are different techniques employed for edge detection,
one of them being phase congruency, a recently developed but still relatively unknown technique due
to its mathematical and computational complexity compared to more popular methods. Additionally,
it requires the adjustment of a greater number of parameters than traditional techniques. Recently, a
unique formulation was proposed for the mathematical description of phase congruency, leading
to a better understanding of the technique. This formulation consists of three factors, including a
quantification function, which, depending on its characteristics, allows for improved edge detection.
However, a detailed study of the characteristics had not been conducted. Therefore, this article
proposes the development of a generalized function for quantifying phase congruency, based on the
family of functions that, according to a previous study, yielded the best results in edge detection.

Keywords: phase congruency; monogenic filters; edge detection; local energy; log-Gabor filter;
Fourier transform

MSC: 68U10

1. Introduction

Image segmentation is a fundamental process of image processing wherein the back-
ground is separated from the region of interest. There are several segmentation techniques,
usually grouped into methods based on the similarity between pixels in a region, among
which thresholding techniques stand out, and methods based on edge detection [1]. The
latter include algorithms based on the use of convolution masks such as the Roberts [2],
Prewitt [3], and Sobel–Feldman [4] methods, and edge detectors such as those developed by
Canny [5] and Deriche [6]. Notwithstanding their age, the Canny edge detection algorithm
and its Deriche variant are still considered state-of-the-art filters and are widely used in
diverse applications, particularly in computer vision [7,8] and even combined with neural
networks (NNs) [9].

Furthermore, recent advancements in deep learning have given rise to methods based
on neural networks, with a predominant reliance on convolutional neural networks. Al-
though NN-based techniques claim to outperform humans on small-scale datasets, they
have significant limitations, including the requirement for large labeled datasets for train-
ing, sensitivity to noise, challenges in detecting fine edges due to convolutional layers
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emphasising more salient and larger details, high computational costs, and difficulties
in generalizing to new contexts. Additionally, the majority of improvements in current
architectures often come with a trade-off in terms of generalizability, resulting in reduced
performance when confronted with shifts in the dataset distribution, encompassing changes
in both the training and test sets. Consequently, the problem of edge detection remains far
from being fully addressed, and interpretability in decision making is lacking [10]. Phase
congruency is another technique used for edge detection, although it is less well-known.
Despite several recent works utilizing this method, such as its integration into pipelines for
image registration or edge detection in various applications [11–13], there have been no
new developments concerning the principles of this technique, except those produced by
the authors themselves [14].

Edges can be defined as significant changes in the intensity level of an image that often
occur at the boundaries of two different regions [15].

In addition, significant changes in the brightness level of an image can correspond to
ridges or valleys, and their study is important in applications such as fingerprint technolo-
gies. In this case, optimal detectors such as the Canny algorithm produce undesired results,
yielding double edges, since they were not designed to detect this type of discontinuity [16].
There are different techniques to detect edges, which, according to the domain wherein
they work, can be classified as spatial, frequency, and wavelet methods [1]. In the spatial
domain, gradient or Laplacian-based techniques are used, corresponding to techniques that
depend directly on the brightness changes in an image. In this category are the Roberts,
Prewitt, and Sobel operators and the Canny detector [17]. In the frequency domain, the
properties of the different frequency components of the image are used; for example, in
phase congruency, the coincidence of the phases of the different frequency components is
quantified to detect edges [18]. In the wavelet domain, multi-resolution images are used,
which allows noise reduction and feature analysis at different scales [19].

Phase congruency has the ability to detect different types of edges by modeling
symmetric and antisymmetric signal behaviour. The ideal symmetric edge corresponds
to a square signal, and in the antisymmetric case to a step signal. The former occurs
when the intensity value changes abruptly and then returns to the original position. The
second occurs when the intensity also changes abruptly from one value to another, but
does not return to the original position. However, in practice, the abrupt changes are not
discontinuous, and therefore the ideal boxcar-type and step-type edges correspond more
precisely to a triangular signal or a ramp, respectively [20], as illustrated in Figure 1.

(a) (b) (c)

(d) (e) (f)

Figure 1. Type of edges. (a) Ideal step. (b) Ideal ridge. (c) Ideal valley. (d) Practical approximation of
(a). (e) Practical approximation of (b). (f) Practical approximation of (c).

Phase congruency has the advantage of being able to identify the three different types
of edges by making use of the phase of the frequency components. The phase is a feature
that remains unaffected by changes in brightness or contrast, setting it apart from spatial-
domain edge detection methods. This characteristic enables the detection of contours
without being influenced by the signal magnitude at the edge. Several implementations
of phase congruency have been published [21–23], which can be grouped into two classes,



Mathematics 2023, 11, 3795 3 of 16

taking into account the type of filter used to determine the phase. The first class employs
directional filters at different scales using wavelets. The second class uses monogenic
filters to improve the efficiency of the method, reducing the computational cost [22]. Ja-
canamejoy et al. observed that phase congruency can be represented as the product of three
factors, one of them being the quantization function of the phase congruency [24]. In 2021,
the authors of [25] evaluated different quantization functions and their properties, finding
that the most efficient were the exponential and the boxcar functions, depending on the type
of edges present in the image. Therefore, in this work, a deeper study is presented, wherein
the quantization function is represented by a mathematical equation that generalizes the
exponential, Gaussian, and boxcar functions into one. Hence, we reduce the complexity of
the PC parameterization, since it is not necessary to use different quantization functions,
but simply adjust two parameters to shape the function.

This article is organized as follows: Section 2 provides a brief description of phase
congruency using monogenic filters and the importance of the quantification function for
its calculation. Section 3 presents the materials used for the evaluation of the proposed
quantification function, which is presented in Section 4. The results are presented in
Section 5, and finally, the conclusions are presented in Section 6.

2. Monogenic Phase Congruency

Phase congruency was pioneered by the Italian scientist M.C. Morrone at the Uni-
versity of Perl in 1986 [26], but it was not until 1996 that the Australian researcher Peter
Kovesi first employed it in his doctoral thesis [21]. This technique is grounded on the coin-
cidence of the Fourier component phases of a signal when an edge is present, as depicted in
Figure 2, where the approximation of a square signal, shown in blue, is observed. Notably,
the phases of the first four frequency components, represented by dotted lines, coincide in
the presence of an edge.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

−1.3

−0.6

0.1

0.8

1.5
Comp 1

Comp 2

Comp 3

Comp 4

Approx

Phase Congruency

Figure 2. Approximation to a square signal by the first four Fourier frequency components An.

One of the main advantages of this method is its capability to detect edges regardless
of the image’s gray levels. This is achieved by considering that edges manifest when there
is phase congruence among the frequency components.

This implies that, independent of contrast, if an edge is present, the phases of the
various frequency components must coincide. Morrone and Owens introduced the mathe-
matical definition of phase congruency, as shown in Equation (1) [27].

PC(x) = max
φ(x)∈[0,2π]

∑N
n=1 An cos

(
φn(x)− φ(x)

)
∑N

n=1 An
, (1)

where the function PC(x) results from maximizing the expression for the weighted average
of the local phase, φ(x), at each point x.

Equation (1) enables an effective determination of phase congruency, leading to robust
edge detection, independent of image intensity variations.
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The calculation of the amplitude of the Fourier components, An, is essential for solving
the optimization problem, especially considering that these components are closely spaced
in practice. Initially, Kovesi employed wavelet filters to calculate the PC [18]. However, this
approach demanded the use of 24 filters to extract frequency components when working
with four scales. As a consequence, the method’s inefficiency increased due to the necessity
to compute all Fourier components at four different frequencies to assess whether there
existed a phase coincidence.

Cognisant of the computational demands entailed by the utilization of wavelet filters
for PC computation, Felsberg and Sommer introduced a more efficient alternative through
the employment of monogenic filters [28]. These filters enable the concurrent assessment of
all directions using a single filter at a single scale, thereby significantly mitigating compu-
tational costs. For instance, when employing four scales, as shown in Figure 3, the filter
count diminishes from twenty-four to merely four. In light of these advancements, Kovesi
implemented a software-based PC version that incorporated these filters. Consequently,
the optimization problem posited in Equation (1) was resolved by means of the following
equation [29]:

PC(x) = W(x)b1− α|δ(x)|c bE(x)− Tc
E(x) + ε

(2)

For analytical purposes, it can be decomposed into three components that signify
frequency distribution weighting, phase congruency quantization, and noise compensa-
tion. This trichotomy not only facilitates comprehensive examination but also enables the
consolidation of various technique variations through the utilization of the equation [14]

PC(x) = W(x)PCQ(x)NC(x), (3)

where W(x) represents the weighted frequency distribution, PCQ(x) the phase congruency
quantization, and NC(x) the noise compensation. The second function, PCQ(x), maps the
mean phase deviation to a range between zero and one. These values correspond to image
pixels belonging either to the background or to an edge, respectively.

Component 1
Component 2
Component 3
Component 4

Single filter

Figure 3. Graphical depiction of wavelet and monogenic filters for frequency component extraction
in phase congruence calculation. Wavelet filters on the left and monogenic filters on the right.

Conceptually, the PCQ factor holds the highest significance, as, ideally, it should stand
alone, while the other two factors emerge due to pragmatic constraints stemming from
approximations applied to the frequency components. Consequently, research endeav-
ors have focused on the quantization function, with the aim of refining edge detection
outcomes [25].

As previously mentioned, phase congruency offers the ability to discern various types
of edges. Consequently, the consideration arose to employ synthetic images for emulat-
ing phase congruency detection in challenging scenarios. In this endeavor, recognizing
that the phase congruency quantization factor is pivotal for determining the extent of
alignment required among frequency components within a pixel, it was observed that the
segmentation outcome varies based on a mathematical function. This function, termed the
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“quantization function”, serves to quantify phase congruency, as suggested by its name.
The crucial attributes of this function encompass being centered at the origin, exhibiting
even symmetry, and possessing a global maximum value of one.

Moreover, through the manipulation of the quantization function’s structure, it be-
comes viable to enhance its edge detection capabilities. Consequently, Forero et al. un-
dertook a comprehensive exploration of a set of mathematical functions possessing the
attributes of a quantization function. The objective was to observe the impact of these
functions on edge detection via phase congruency. The experimental findings revealed
that the most favorable response was achieved when employing symmetric functions
characterized by an aperture of 0.4, a concept formally defined in Definition 2. Among the
array of functions investigated, the exponential function emerged as the top performer,
followed by the quartic and the boxcar functions, as depicted in Figure 4 [25].
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Figure 4. Mathematical functions. (a) Exponential. (b) Quartic. (c) Boxcar.

3. Materials and Methods

In order to evaluate the new quantification function introduced in this work, an image
bank was built consisting of thirty grayscale samples of different sizes, twenty of which
corresponded to photographs taken from a mobile phone and ten to synthetic images. To
facilitate the analysis, objects with straight lines including the three types of edges studied
and different levels of contrast were considered. A ground-truth image was created for
each sample, showing the edges present in each.

The methods used in this study were written in Java as plugins to the freely available
ImageJ software v1.54f. In Figure 5, the method for obtaining the edge image in three steps
is presented. Firstly, the PC of the input image was computed, adjusting the quantification
function as necessary. The result was a grayscale image with values ranging from 0 to 1
in real numbers, which was then normalized to a range between 0 and 255. Secondly, the
image was binarized using an empirically chosen global threshold of 70. Finally, in the
third step, a morphological skeletonization operation was applied to obtain the final edge
image.

Original
Image

PC Binarisation Skeletonisation
Edge
Image

Figure 5. Block diagram of the proposed method for edge detection using phase congruency.

The proposed method for applying phase congruency entailed the precise adjustment
of a single, overarching quantification function. For function adjustment, two parameters
were at play, capable of continuous variation within their valid ranges. This flexibility
greatly aided in pinpointing the optimal function to employ, aligning with the specific
characteristics of the processed image. The subsequent section elaborates on the proposed
quantification function.

4. Generalized Quantization Function of Phase Congruency

The function used to quantify the phase congruence plays an important role in edge
detection. By means of this factor, the coincidence of the frequency components of the PC
is determined and thus evaluated based on a value, whether the pixel corresponds to an
edge or not. This function is characterized by being centered at the origin and having even
symmetry and a maximum value equal to one.
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In a previous work, wherein different mathematical functions were studied for the
quantification of PC, the exponential, quartic, and boxcar functions were found to give the
best edge detection results [25]. Therefore, in order to simplify the tuning of phase congru-
ency parameters, it was necessary to develop a mathematical function that generalized the
above functions by means of a shape parameter.

The domain of the quantization functions had to be [−π, π], since, for the calculation
of the average phase deviation, the atan2 function was used, which returned values in the
abovementioned range. Thus, taking into account the characteristics that this function had
to comply with, the following definition was proposed.

Definition 1 (Features of the quantification function). Let the function PCQ(x), defined on
[−π, π], be such that it satisfies all of the following conditions:

• ∀x ∈ [−π, π], then PCQ(−x) = PCQ(x);
• PCQ(x) has a global maximum equal to 1;
• PCQ(x) is non-decreasing ∀x ∈ [−π, 0);
• PCQ(x) is non-increasing ∀x ∈ (0, π];
• PCQ(0) = 1.

In addition to the general characteristics of the quantification function, the concept of
opening was introduced to ensure accurate scaling adjustment. This property was defined
under the premise that this value corresponded to the scale of the function.

Definition 2 (Property: opening of a function). Let f (x) be an even function f (x); its opening
interval [−x0, x0] is given by x0 such that:

f (x0) = 0.1, (4)

where x0 is known as the opening of the function.

The opening enabled the comparison of results from different functions under the
same scaling condition. In conventional functions, the aperture is not explicitly present.
Hereafter, the functions that were unified into a generalized form are defined.

Definition 3 (Exponential function). Let the function

fE = exp(−k| x|) (5)

with
fE : [−π, π] −→ [0, 1].

Then, it is said that the function fE is an exponential function for this work.

Definition 4 (Gaussian function). Let the function

fG = exp
(
− x2

2σ2

)
(6)

with
fG : [−π, π] −→ [0, 1].

Then, it is said that the function fG is a Gaussian function for this work.
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Definition 5 (Boxcar function). Let the function

fB(x) =


1 if | x| < x0,
0.1 if | x| = x0,
0 if | x| > x0.

(7)

with
fB : [−π, π] −→ [0, 1].

Then, it is said that the function fB(x) is a boxcar function for this work.

The aperture parameter x0 did not directly appear in the definition of each function,
except in the case of the boxcar function. In this case, the requirement to satisfy the
opening property was directly reflected in the proposed definition. This was due to the
fact that a typical boxcar function, based on its inherent definition, cannot adhere to the
opening property.

In the generalization of the function proposed in this study, considering the case of the
boxcar function, which involves discontinuities, it became necessary to employ the concept
of pointwise convergence, as defined below.

Definition 6 (Pointwise convergence). Let X ⊂ R be a subset of real numbers, and let ( fn)n≥1
be a sequence of functions fn defined on a set of real numbers X. Furthermore, let f be a function of
X on R. It is said that the sequence ( fn)n≥1 converges to a function f on X if, for all x ∈ X, the
sequence of real numbers ( fn(x))n≥1 converges to f (x), i.e.,

lim
n−→∞

fn(x) = f (x).

Proposed Function

Definition 7. Let the function
h(x) = exp (−k|x|q) (8)

defined as
h : [−π, π] −→ [0, 1].

To obtain comparable results between the different quantization functions, a strategy
was designed to make them take the value of 0.1 at the same point in x.

It can also be observed that h(0) = 1 and h(x0) = y0.
Starting from the Function (8) shown in Definition 7 and taking y = 0, 1, it follows that

0.1 = exp (−k|x0|q),
from which the value of k was obtained in terms of x0, i.e.,

k =
ln 10
|x0|q

. (9)

Substituting Equation (9) into Equation (8) produced the function

hq(x) = 10−(|x|/x0)
q
, (10)

with q ∈ (0,+∞) ⊂ R and x0 ∈ (0, π) ⊂ R. Note that setting q = 1 in the function hq(x)
resulted in the exponential function, given in Definition 3, and setting q = 2 resulted in the
Gaussian function, given in Definition 4.

Proposition 1. Let Ω = [−π, π] ⊂ R, the sequence of functions be hq : Ω −→ [0, 1] of the form
(10), and the function fB be defined by (5). It is said that the sequence

(
hq
)

q≥3 converges pointwise
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to fB on Ω if for every x ∈ Ω and for every ε > 0, there exists a natural number N = N(x, ε)
such that |hq(x)− fB(x)| < ε whenever n ≥ N.

Proof. Consider the cases below.
Case 1: |x| = x0

lim
q→∞

(
hq(x)

)
q≥3 =

(
lim
q→∞

101
q
)−1

.

It is observed that

y = 101
q
=⇒ log y = 1q =⇒ ln (log y) = ln 1q

=⇒ ln (log y) = q(ln 1) =⇒ ln (log y) = 0

=⇒ log y = 1 =⇒ y = 10,

and so

lim
q→∞

(
hq(x)

)
q≥3 =

(
lim
q→∞

101
q
)−1

=

(
lim
q→∞

y
)−1

= 0.1.

Case 2: |x| > x0

lim
q→∞

(
hq(x)

)
q≥3 = lim

q→∞

1

���
��:∞

10(|x|/x0)
q

= 0.

Case 3: |x| < x0

lim
q→∞

(
hq(x)

)
q≥3 = lim

q→∞

1

���
��: 1

10(|x|/x0)
q

= 1.

Thus,
lim

q−→∞
hq(x) = fB(x).

Therefore, (hq)q≥3 converged point-wise to the function fB.

Figure 6 shows three examples of the function family, obtained by modifying the q
parameter, showing how effectively all three types of behavior could be obtained by the
proposed function given in (10).
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q = 100

Figure 6. Family of functions obtained by changing the value of the parameter q and keeping x0 = 1.5.
If q = 1, an exponential behavior was obtained. If q = 2, a normal distribution was obtained, and if q
has a value much larger than 1, for example q = 100, the curve approached a boxcar function.

5. Results

To evaluate the new quantization function using the constructed database, a phase
congruency code written in Java was modified for the freely available software ImageJ [30].

In addition to processing the images with the PC, they were also treated with the
Canny edge detector to compare the results obtained with both techniques. The Canny
method was chosen since it is still considered state-of-the-art among the gradient-based
edge detection techniques [31–34]. Finally, to evaluate the quality of the results, the Dice–
Sørensen metrics (DS) [35,36] and the Abdou and Pratt figure of merit method (FOM) were
used [37].

Table 1 contains the DS indices and the FOM, obtained by comparing the 30 test
images with the results obtained using the Canny edge detection and phase congruency
methods. In addition to the proposed generalized function in this study, the boxcar and
quartic functions were also employed to compute the PC values. The purpose was to
facilitate a comparison of the results obtained using these functions. An explicit column for
the exponential function was not included, since this case corresponded to the outcome
obtained with the generalized function when q = 1, as demonstrated in the example of
Image 16. The cases highlighted in green represent the best results achieved, indicating
that in the majority of the images, the proposed method produced better indices for
edge detection.

It is important to underline that in cases where crest or valley edges were present,
errors could be induced when interpreting the results obtained with the figure of merit.
This occurred because in such situations, double edges were detected in the vicinity of the
actual edge. Therefore, it was crucial to consider both metrics used in a complementary
manner. For this reason, to select the optimal outcome in each row of Table 1, the two
indices were averaged, and the case with the highest average was highlighted in green.

In Figure 7, a synthetic image composed of rectangles with varying dimensions can be
observed. The results obtained by the different methods appeared to be similar, attributed
to the absence of noise and the high contrast at the edges. However, the edge localization
in Canny’s method was imprecise, as evident in Table 1, where the Dice–Sørensen index is
low, despite the high figure of merit.

Figure 8 depicts the outcomes obtained with the evaluation metrics for different values
of the parameter q. These results, utilizing Image 29, revealed that the variation in q
significantly impacted edge detection when q was close to 2. The Dice–Sørensen index
increased in such cases due to a more precise edge localization, reaching a maximum value
of 0.705, while the figure of merit remained high, around 0.968. For Canny’s method, the
Dice–Sørensen index yielded a value of 0.403, and the figure of merit was 0.927.

Figure 9 displays the outcomes achieved by segmenting the image of a shelf using all
methods, showcasing the response to subtle variations in the grayscale. The result with the
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Canny detection method showed a loss of information at the edges that demarcated the
depth of the shelf.

(a) (b) (c)

(d) (e) (f)

Figure 7. Results obtained for Image 29. (a) Original image. (b) Ground truth. (c) Proposed method
result. (d) Canny method result. (e) Quadratic function result. (f) Boxcar function result.

Table 1. Results obtained with the Canny edge detection and phase congruence methods for the
30 images in the database.

Proposed Canny Quartic BoxcarImage q DC FOM DC FOM DC FOM DC FOM
1 19 0.629 0.872 0.367 0.76 0.592 0.662 0.594 0.877
2 2.2 0.679 0.869 0.441 0.854 0.653 0.543 0.474 0.784
3 2.2 0.858 0.954 0.823 0.949 0.706 0.772 0.677 0.96
4 19.2 0.153 0.654 0.138 0.73 0.103 0.151 0.154 0.681
5 19.6 0.251 0.648 0.293 0.777 0.168 0.26 0.257 0.685
6 18.6 0.585 0.842 0.377 0.591 0.547 0.607 0.557 0.824
7 17.4 0.096 0.523 0.086 0.491 0.048 0.086 0.097 0.541
8 0.2 0.267 0.523 0.256 0.54 0.207 0.232 0.232 0.504
9 19.8 0.547 0.725 0.422 0.898 0.57 0.562 0.528 0.743
10 18.8 0.181 0.571 0.193 0.643 0.157 0.181 0.184 0.592
11 18.6 0.304 0.268 0.23 0.172 0.188 0.297 0.305 0.277
12 17.4 0.275 0.574 0.053 0.302 0.127 0.269 0.26 0.578
13 18.4 0.312 0.59 0.024 0.671 0.309 0.308 0.317 0.603
14 3 0.46 0.655 0.082 0.636 0.45 0.402 0.334 0.475
15 2 0.686 0.798 0.522 0.88 0.639 0.577 0.553 0.784
16 1 0.758 0.873 0.485 0.763 0.758 0.459 0.363 0.421
17 1.8 0.534 0.714 0.333 0.729 0.528 0.484 0.409 0.497
18 0.4 0.713 0.812 0.451 0.851 0.675 0.26 0.195 0.209
19 0.4 0.816 0.871 0.711 0.901 0.797 0.435 0.314 0.289
20 19.8 0.606 0.766 0.46 0.893 0.499 0.61 0.586 0.78
21 2.2 0.7 0.899 0.568 0.958 0.672 0.672 0.654 0.933
22 18.8 0.493 0.604 0.495 0.559 0.512 0.494 0.481 0.61
23 19.8 0.449 0.869 0.562 0.941 0.419 0.446 0.446 0.873
24 0.4 0.578 0.949 0.469 0.881 0.566 0.564 0.567 0.926
25 0.4 0.658 0.949 0.659 0.926 0.623 0.646 0.657 0.944
26 19.6 0.557 0.906 0.683 0.966 0.575 0.532 0.582 0.913
27 19 0.623 0.825 0.722 0.969 0.607 0.632 0.597 0.826
28 0.2 0.7 0.914 0.35 0.891 0.682 0.49 0.418 0.9
29 2.2 0.705 0.968 0.403 0.927 0.608 0.612 0.607 0.962
30 20 0.518 0.858 0.087 0.592 0.522 0.542 0.491 0.876
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Figure 8. Dice–Sørensen index and Abdou and Pratt figure of merit obtained by processing Image 29
using phase congruency with varying q values.

(a) (b) (c)

(d) (e) (f)

Figure 9. Results obtained for Image 1. (a) Original image. (b) Ground truth. (c) Proposed method
result. (d) Canny method result. (e) Quadratic function result. (f) Boxcar function result.

As observed in Figure 10, the optimal edge detection occurred with the proposed
function when the parameter q = 19, indicating that the function approximated a Boxcar
shape. This yielded the highest combined values of the Dice–Sørensen index and the figure
of merit, with values of 0.629 and 0.872, respectively. In contrast, for the Canny method,
the Dice–Sørensen index was 0.367, and the figure of merit was 0.760.

Image 13 of the database, illustrated in Figure 11, had very distinctive features, because
other types of edges such as ridges and valleys were present. Canny’s method had a
disadvantage in detecting double edges parallel to the real one, because this technique was
not designed for the detection of ridges and valleys. On the other hand, the results with
phase congruency were better because this technique was designed to detect all three types
of edges. As observed in Figure 12, the optimal edge detection occurred with the Boxcar
function, closely followed by the proposed function. This happened because the proposed
function approached the Boxcar as q→ ∞, and the study was conducted only up to q = 20.
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Figure 10. Dice–Sørensen index and Abdou and Pratt figure of merit obtained by processing Image 1
using phase congruency with varying q values.

(a) (b) (c)

(d) (e) (f)

Figure 11. Results obtained for Image 13. (a) Original image. (b) Ground truth. (c) Proposed method
result. (d) Canny method result. (e) Quadratic function result. (f) Boxcar function result.
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Figure 12. Dice–Sørensen Index and Abdou and Pratt figure of merit obtained by processing Image
13 using phase congruency with varying q values.

In Image 30 of the database, as shown in Figure 13, similar edges to those seen in
Image 13 of Figure 11 were present. It was evident that the Canny method produced double
edges; however, in the results obtained with the phase congruency (PC) approach, this
disadvantage in the detection response was not observed.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Results obtained for Image 30. (a) Original image. (b) Ground truth. (c) Proposed method
result. (d) Canny method result. (e) Quadratic function result. (f) Boxcar function result.

Figure 14 reveals that the best result was achieved when q = 20, meaning the function
approached a Boxcar shape. As can be seen, indeed, the outcome obtained with the Boxcar
function was slightly worse, but the flexibility of the proposed function allowed for a
superior result. On the contrary, it was observed that the Dice–Sørensen index obtained
with Canny’s method was very low, below 0.1, due to the error caused by the double edges
in the ridges and valleys of the image. However, the figure of merit was higher, at 0.592,
though not reaching a very high value, as it was based on the calculation of the distance
between the detected edge and the real edge.

0 4 8 12 16
0

0.5

1.0

q

DS

FOM

Figure 14. Dice–Sørensen index and Abdou and Pratt figure of merit obtained by processing Image
30 using phase congruency with varying q values.

From Figures 8, 10, 12 and 14, the optimal values of q were identified as 2.2, 19, 18.4,
and 20, respectively. These results demonstrate that obtaining the best outcomes did not
strictly require using a specific exponential, Gaussian, or boxcar function, as was carried
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out in previous works. Instead, intermediate values can be considered. For instance, in
the case of Image 17, the best result occurred when q = 1.8, which lies between 1 and 2.
This clearly demonstrates the advantages of utilizing the proposed function, expanding
the possibilities for edge detection by enabling the use of non-standardized quantification
functions that have not previously been considered. Similarly, as observed in the results of
Table 1, in no case did the quartic function, which could not be obtained from the proposed
function, yield the best result. This further underscores that the inclusion of such functions
within the general proposed framework is unnecessary, reaffirming the generality of the
proposed method.

6. Conclusions

Phase congruency is a technique that can be defined as the product of three factors,
including the quantification function, which is crucial as its appropriate selection allows for
better edge detection results. In this work, a general mathematical function was introduced
that combined different families of functions into a single formula, enabling the adjustment
of the shape, amplitude, size, and displacement of this function.

To validate the function, several images were selected based on their characteristics,
aiming to include different types of edges, such as steps, crests, and valleys. The validation
process confirmed that, since phase congruency detects step, crest, and valley edges, its
results were often superior to those obtained with the Canny edge detection technique. It is
worth noting that in cases where the Canny method achieved better results, the differences
in the Dice–Sørensen index and the figure of merit between phase congruency and the
Canny method were small. Conversely, in cases where phase congruency yielded better
results, this difference was quite significant.
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