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Abstract: Deep learning has achieved great successes in performing many visual recognition tasks,
including object detection. Nevertheless, existing deep networks are computationally expensive and
memory intensive, hindering their deployment in resource-constrained environments, such as mobile
or embedded devices that are widely used by city travellers. Recently, estimating city-level travel
patterns using street imagery has been shown to be a potentially valid way according to a case study
with Google Street View (GSV), addressing a critical challenge in transport object detection. This paper
presents a compressed deep network using tensor decomposition to detect transport objects in GSV
images, which is sustainable and eco-friendly. In particular, a new dataset named Transport Mode
Share-Tokyo (TMS-Tokyo) is created to serve the public for transport object detection. This is based
on the selection and filtering of 32,555 acquired images that involve 50,827 visible transport objects
(including cars, pedestrians, buses, trucks, motors, vans, cyclists and parked bicycles) from the GSV
imagery of Tokyo. Then a compressed convolutional neural network (termed SVDet) is proposed for
street view object detection via tensor train decomposition on a given baseline detector. The method
proposed herein yields a mean average precision (mAP) of 77.6% on the newly introduced dataset,
TMS-Tokyo, necessitating just 17.29 M parameters and a computational capacity of 16.52 G FLOPs.
As such, it markedly surpasses the performance of existing state-of-the-art methods documented in
the literature.

Keywords: convolutional neural networks; street-view object detection; tensor train decomposition

MSC: 68T45

1. Introduction

Object detection is a vital branch of computer vision, aiming to locate the exact lo-
cations of target objects from complex images while determining the specific category
of every object by annotating its bounding box [1,2]. In particular, the task of transport
object detection in street view images is to determine whether a street view image contains
multiple transport objects belonging to the class of interest [3–5]. Convolutional neural
network (CNN)-based detectors can be technical enablers with significant potential for
such applications, offering a great advantage in terms of detection accuracy over tradi-
tional pattern-matching-based algorithms [6]. However, hardware implementation of deep
learning is restricted by the model size and the number of floating-point operations re-
quired [7,8]. Whilst the usual millions of parameters in a convolutional model may have a
powerful expression after training, the storage and loading of these parameters have high
requirements on memory and disk, and, furthermore, the computation of convolutional
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operations on high-resolution images is often substantial [9]. In the development of deep
learning, the usual massive model size is not considered sustainable and eco-friendly in
the long term due to its massive parameters and lengthy training, With the consideration
of sustainability and environmental impacts, how to implement the research results based
on deep learning in a cost-effective manner has emerged as an urgent challenge for the
machine vision community [10]. One of the prevailing trends is to compress the model size
by a certain percentage while ensuring model performance to attain a relatively acceptable
level of accuracy [11].

Recent studies have indicated that city transport conditions have a significant impact
upon future urban planning as well as upon public health [12]. In recognition of this point,
it would be beneficial to investigate the transportation mode share in a given city in order to
assess travel patterns and transport use. The transport mode share is an essential reference
for the urban planning domain, serving as a strategic method for the development of
smart cities [13]. In particular, street imagery has proven to be a promising data source
that provides visual information of the streets globally, typically in the form of panoramic
images [14]. Compared with traditional methods for travel surveys, street views facilitate
a more cost-effective approach for the analysis of transport mode share. Inspired by this
observation, a new dataset named Transport Mode Share-Tokyo (TMS-Tokyo) is herein
developed to provide a basis upon which to conduct transport object detection and city-
level transport mode share analysis.This is carried out in an effort to achieve improved
performance for processing street view imagery in resource-constrained environments over
existing object detection approaches, with higher accuracy and detection speed.

The main contributions of this paper are as follows: TMS-Tokyo is the largest anno-
tated transport object dataset with aimed categories to date, offering significant potential to
develop and examine detectors designed for public road users. In particular, 32,555 images
are selected and filtered that contain 50,827 visible transport objects from GSV imagery
of Tokyo. The images are manually annotated individually with bounding box annota-
tions into eight categories of target road users, which include cars, pedestrians, buses,
trucks, motors, vans, cyclists and parked bicycles. A compressed convolutional network
(SVDet) is then constructed for transport object detection based on tensor train (TT) de-
composition [15,16]. Compared with the baseline model RetinaNet [17] that represents the
state-of-the-art in the relevant literature, SVDet achieves a mAP gain of 0.9%, while saving
more than 68.8% of the parameters and 52.3% computational time.

The rest of this paper is organized as follows: Section 2 presents a brief review of the
relevant background. Section 3 introduces the novel dataset in detail. Section 4 describes
the proposed approach. Section 5 provides an experimental study and discusses the results
in comparison with the existing literature. Finally, Section 6 concludes this research and
points out interesting further work.

2. Related Work

For academic completeness, application of convolutional neural networks, as the rep-
resentative of state-of-the-art deep learning based techniques for object detection, and the
specific approach used for compression-based model decomposition, in particular, are
introduced here.

2.1. Convolutional Neural Networks

Convolutional neural networks have been proposed to implement object detection
tasks. According to previous studies [18], CNNs are widely used for providing different
solutions for a variety of scenarios of image processing and object detection problems and
have shown outstanding performance [19]. The development of CNNs has been exploited
rapidly as research studies globally frequently endeavour to implement and optimize
various algorithms.

The depth of the convolutional neural network is critical to the performance of a CNN-
based model. In 2012, Krizhevsky et al. [20] applied the concept of deep convolutional
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neural networks (DCNNs), which generally perform better than traditional hand-crafted
architecture, on ImageNet for the first time [21]. They proposed a new architecture named
AlexNet, consisting of eight neural network layers, five convolutional layers and three
fully connected layers [22]. Fundamentally, this offered a seminal approach to designing a
convolutional layer with an activation function, involving max pooling and multiplying it
to realize a deep network.

Most successful applications of DCNNs have the capability to progressively learn more
complex features. Notably, when the number of network layers is increased, the network
can obtain better results theoretically with the extraction of more sophisticated feature
patterns. However, experiments have demonstrated that, as deep convolutional networks
become deeper, a degradation problem often occurs during the training period. That
is, when the depth of the network increases, the accuracy of the network saturates or
even decreases. Such studies indicate that DCNNs commonly suffer from the problem of
gradient vanishing or gradient exploding, which makes it difficult to train models with too
many layers. Furthermore, He et al. [23] conducted an empirical experiment to demonstrate
that a maximum threshold exists for the depth of CNN models, plotting the training and
test errors of a 20-layer CNN in contrast with those of a 56-layer CNN. The outcomes of
this investigation contradict the previous theory that only overfitting would account for
the failure of training. This implies that adding extra unnecessary layers may also cause
higher training errors and test errors in the network.

2.2. Object Detection Models

A modern CNN-based object detector is usually composed of three consecutive parts:
a backbone, a neck and a head. The backbone, which is used for image feature extraction,
may often be implemented via VGG [24], ResNet [25], or DenseNet [26]. The neck is used
to exploit the features extracted from different stages by the backbone, normally consisting
of several bottom-up paths and several top-down paths. Typical neck modules include a
feature pyramid network (FPN) [27], a path aggregation network (PAN) [28], a BiFPN [29],
and a NAS-FPN [30]. The head, which is used to predict the classes and bounding boxes
of objects, is typically categorized into two types, namely, a one-stage detector and a
two-stage detector.

Deep learning methods have exhibited encouraging characterization and modelling
ability and can learn hierarchical feature representation automatically, with highly promis-
ing performance. Empowered by the outstanding feature learning and classification ability
of DCNNs, detectors based on the fast region convolutional neural networks have been
frequently applied to serve as a detection framework. Nevertheless, certain single-stage de-
tectors are also popular as they are much faster to execute and simpler to implement when
compared with two-stage methods despite their relative lower accuracy. In this paper, both
approaches are adopted to evaluate and contrast the performance of different algorithms.

The most representative two-stage detectors are those belonging to the R-CNN series
(including fast R-CNN [31], faster R-CNN [32], R-FCN [33], and Libra R-CNN [34], and the
most representative one-stage models are YOLO [35], SSD [36], and RetinaNet [17]. Most
of the two-stage methods are based on the example of Faster R-CNN [32]. The region-
based convolutional neural network R-CNN is the initial architecture that inspired the
development of Faster R-CNN, exploiting information regarding the regions of interests
and passing it to a convolutional neural network [31]. R-CNN tends to explore the areas that
may involve an object, identifying and localizing objects by combining region proposals
with CNNs. R-CNN has been used as a reference model for object detection in recent
years; however, it has the constraint of inputting fixed-sized images and the algorithm
speed is limited. To reduce, if not eliminate, these limitations, He et al. [25] proposed
a spatial pyramid pooling network (SPP-net), which enables the network to generate
fixed-sized outputs from arbitrarily sized images. Nevertheless, there are also notable
drawbacks within SPP-net since the training process remains overweighted due to it being
a multi-stage pipeline [37].
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Fast R-CNN evolved thanks to the progress of R-CNN and SSP-Net [31]. Instead
of repeatedly processing potentially interesting image regions hundreds of times, this
method passes the original image to a pretrained network just once for end-to-end training.
The procedure of selective search is retained on the basis of the output feature map of the
previous step [38]. It adopts a region-of-interest (RoI) pooling layer and multi-task loss
to estimate observed object classes by a softmax classifier and to predict the bounding
box localization by linear regression, respectively [37]. Fast R-CNN has been further
developed, resulting in a Faster R-CNN that employs a new network named the region
proposal network (RPN), which shares full-image convolutional images with it, thereby
reducing detection processing time. This is very helpful since detection processes are,
in general, extremely time-consuming, especially for generating detection frames (e.g.,
OpenCV AdaBoost deploys a sliding window and an image pyramid to produce the
required frames). Faster R-CNN abandons the traditional approach and selective search;
instead it directly deploys RPN to generate detection frames. This represents a major
advancement as Faster R-CNN significantly increases the speed of object detection.

Recently, a number of advanced algorithms have been developed which enhance Faster
R-CNN by introducing different architectures with different features [27]. For instance, the
feature pyramid network (FPN) resolves scale variance through pyramidal predictions [27],
and Cascade R-CNN extends Faster R-CNN by adding another procedure to produce a
multi-stage detector [39]. Also, Mask R-CNN reshapes the bounding box with a mask
branch by instance segmentation, becoming a classic milestone for another branch [40].
Libra R-CNN explicitly alleviates the imbalance at the objective, feature and sample levels
using an overall balanced design, which integrates three novel components [34]. Double-
Head R-CNN includes a two-head structure, dividing the classification task and bounding
box regression into a fully connected head and a convolution head [41]. These methods
have made significant progress through consideration of different challenges and scenarios.

Generally speaking, the approach taken by a so-called two-stage detector is to first
select objects by selective search [38], which is referred to as region proposal, and then
to perform object recognition on the selected objects to generate target regions. However,
as the selected size of the objects may be different, object recognition may only involve clas-
sification, or it may include feature extraction plus classification during the training period.
After that, the network passes the region proposals through the pipeline to implement object
classification and bounding box regression. Whilst such a two-stage detector can normally
obtain the highest accuracy, these methods are often slower than the one-stage method.

In contrast to two-stage methods, single-stage object detectors have become popular
due to the introduction of YOLO (you only look once) and SSD (single shot multiBox detec-
tor), which regard object detection as a simple regression task [36,42]. Such detectors take
an input image and learn both the class probabilities and the bounding box coordinates [36].
Redmon [42] designed YOLO such that only one forward propagation was required to
make predictions, providing the output of recognized objects with bounding boxes. It
can achieve high accuracy while also being able to operate in real-time. However, YOLO
performs poorly when trying to detect objects in edge areas. In further developing such
techniques, fully convolutional one-stage object detection (FCOS) has been proposed as a
classic anchor-free method which uses a simple and flexible framework [43]. It outperforms
the accuracy of both one-stage and two-stage methods, completely avoiding complicated
computation and hyper-parameter adjustment related to anchor boxes.

2.3. Low-Rank Decomposition Based Model Compression

Model compression and acceleration refer to the distillation of redundant parameters
in a neural network in order to obtain a small-scale model with fewer parameters and a
more compact structure under a certain degree of algorithm completion. Low-rank utilized
to accelerate convolution has a long history (e.g., separable 1D filters were introduced
using a dictionary learning approach [44]). Regarding deep neural network (DNN) models,
efforts have also been made for low-rank approximation, as reported in [45]. In such
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work, the speed of a single convolutional layer is increased by a factor of two, but the
classification accuracy is decreased by 1%. In [46], a different tensor decomposition scheme
was proposed, achieving a 4.5-fold speedup with the same rate of accuracy loss.

There exist a number of low-rank methods for compressing 3D convolutional layers.
For example, canonical polyadic (CP) mechanisms for kernel decomposition adopt nonlin-
ear least squares to implement expected decomposition [47]. Also, batch normalization (BN)
is employed to transform the activation of internal hidden units [48], aiming at training low-
rank constrained CNNs from scratch. Moreover, many approaches have been proposed to
exploit low-rankness in fully connected layers, including the use of such methods to reduce
the volume of dynamic parameters [49]. A specific development is for acoustic modeling,
where low-rank matrix factorization of the final weight layer is introduced [50]. To obtain
compact deep learning models for multi-tasks, truncated singular value decomposition
(SVD) has been adapted to decompose fully connected layers [51]. Of direct interest to the
present work is the attempt to adopt tensor train (TT) [52] decomposition to compress the
convolutional layers and fully connected layers in a network. This facilitates significant
compression rates with only a slight drop in accuracy.

2.4. Evaluation Metrics

Object detection models are expected to be fast with little memory and high prediction
accuracy. To evaluate whether the present research implements these objectives, the fol-
lowing commonly used performance metrics are utilized in the subsequent experimental
investigations:

Precision and Recall: These are perhaps the most common performance indices used to
assess the quality of the classification task, which are calculated as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Average Precision (AP): This criterion integrates precision and recall, representing the
area under the precision–recall curve. In the following definition of mAP, the “m” denotes
the average across different classes, meaning that mAP is the average AP value for various
classes. Its value lies within the range of [0, 1], with values closer to 1 indicating better
model performance.

Mean Average Precision (mAP): Object detection involves both localization and classifi-
cation tasks. For localization, the intersection over union (IoU) metric is commonly used
to measure accuracy. It quantifies the correlation between predicted bounding boxes and
ground truth bounding boxes, with higher IoU values indicating stronger correlation and
higher prediction accuracy. The IoU formula is given by:

IoUbbox =
bboxpd

⋂
bboxgt

bboxpd
⋃

bboxgt
(3)

Model Computational Complexity (FLOPs): The computational complexity of a model
can be represented by FLOPs (floating-point operations), which is calculated as follows:

FLOPs = (Ci × kw × kh + Ci × kw × kh)× Co × W × H (4)

This formula calculates the total sum of the multiplication and addition operations.
Similarly, the computational complexity of each fully connected layer is estimated using
the formula below.

Model Parameter Quantity (Params): This index is influenced by the number of model
parameters. The parameter quantity within each convolutional layer is calculated using the
formula:

Params = Co × (kw × kh × Ci + 1) (5)
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where +1 inside the parentheses accounts for a bias parameter, with o representing the
output, i the input, and C the number of channels. If batch normalization is used, this
term is not necessary. Similarly, the parameter quantity of each fully connected layer is
calculated as:

Params = (I + 1)× O = I × O + O (6)

3. TMS-Tokyo Dataset

Object detection is a vital task to be addressed in computer vision while large datasets
for training are instrumental in developing the relevant techniques in the subject area.
There are a variety of street-view datasets in computer vision. Indeed, many open-source
databases are available that reflect diversity and richness in terms of category types and
sample sizes and, thereby, may be utilized to support performing a range of machine vision
tasks. However, detection tasks in relation to urban mobility needs cannot be satisfied
with such datasets, mainly due to their ineligible sample categories captured with different
ratios. Hence, in order to achieve the goal of analysing travel patterns at the city level,
a specified dataset which contains limited categories of road users is required. To be more
specific, there are multiple limitations within the existing datasets:

• The sources from which a new dataset is obtained are often difficult to gain access
to in the real world. To create a dataset, it often requires knowledge engineers to
collect image data using professional digital tools running under specific conditions.
For instance, the Tsinghua–Daimler Dataset was captured by a vehicle-mounted
stereo vision camera during regular traffic conditions, which would be expensive and
time-consuming for individual researchers or non-industry partners to complete [53].
Moreover, dataset creation is often restricted by ethical issues involved in the process
of data collection. Therefore, it is essential to find an open-source big data source
which covers representative groups for applications of the data concerned.

• Most of the state-of-the-art object detectors are trained and evaluated on the basis of
the performance on a benchmark dataset (e.g., COCO [54] and VOC [55]). However,
the initial design intentions of a detector can differ significantly from the real settings
in an application under different situations, resulting in rather different algorithm
performances. Thus, it is not reliable to determine the quality of a model based on
the outcomes of performance evaluation based on the use of one benchmark dataset.
To enable a more intensive empirical study and to perform a more realistic analysis
of travel patterns, it is necessary to examine the performance of object detectors, for
example, based on Google Street View imagery.

To aid in advancing transport object detection research in street view scenes, this
section introduces a large-scale, street-view imagery dataset named the Transport Mode
Share-Tokyo Dataset (TMS-Tokyo).

3.1. Existing Datasets

There are already open-source transport object datasets, such as KITTI [56] and
Tsinghua–Daimler [53], helping move forward the development of multi-class transport
object detection. Although a large-scale, street-view dataset that covers the great variabil-
ity of transport objects is in high demand, there is no sophisticated GSV dataset of road
users available yet, except for the Cityscapes object detection benchmark, as shown in
Figure 1 [57]. Even in the Cityscape dataset, the amount of each class instance is limited [56].
For instance, the number of cyclist samples is less than 3000 in the training set, which is
not sufficient for deep network learning. Therefore, a public dataset which contains a large
quantity of multi-class samples is required to avoid underfitting and improve generaliza-
tion of the associated network training. Furthermore, existing annotated datasets, such as
CityScape, tend to involve images with a different ratio from the GSV Imagery and under
different conditions (light–dense travel patterns in European cities), but are unsuitable for
the interpretation of the complexity of street views [14]. Nevertheless, there are various
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Google Street View datasets publicly available, although few focus on transport objects or
road users of GSV images [58].

Figure 1. Examples of CityScape’s fine annotations in high-quality dense pixels [57].

3.2. Google Street View Imagery

Google gathers imagery via multiple means, such as cameras mounted on cars,
trekkers, flocks of sheep and laser beams. Collectively the imagery is gathered through
more than 1000 third-party sources worldwide. As the street view imagery is typically
static, a major concern when analysing travel patterns through such imagery is the fast
changes in the city situations due to policy and other factors. In order to keep up with the
pace of the rapid changes in street views, Google vet authoritative data sources to correct
the map for inaccuracies. Local guides and Google Maps users also help correct the map
through feedback [58].

Google Street View imagery contains visual information in the form of panoramic
images; there are more than 60,000 GSV images for Tokyo regarding different locations,
which are sourced in map grid sections [59]. There are six images from each location
corresponding to the six headings where GSV panoramas are available. The six directions
of the camera correspond to the six views observed from a car/pedestrian on the street:
right, left, front, back, top (mostly sky view), and bottom (looking at the ground), which
provide a 360 degree panoramic GSV image. Nevertheless, it is impossible to detect
transport objects from the top view and bottom view, which are towards the sky and the
ground, thus the images are filtered with respect to these two views.

Even though Tokyo is well-known for its dense transportation, there are still quite a
few images with no road users observed. Therefore, images with no instances of interest are
also filtered out while annotating, forming more informative imagery to generate the public
dataset. Whilst developed for detector training purpose, the dataset will also help speed
up the estimation of the transport mode share for machines. Additionally, the geographical
grid coordinates of each location are set such that no duplicate images are annotated and
counted. For ethical reasons, all license plates of the vehicles detected within the street
view images are blurred to protect the personal information of citizens.

Google Street View Imagery eliminates the difficulty of capturing a high-resolution
perspective view of scenes with rich colour and texture information, enabling the gathering
of accurate, timely and representative mobility data. In the preparation of the TMS-Tokyo
dataset, the bounding boxes of 32,555 Google Street View images were manually annotated
involving a total of 50,827 labelled transport objects of eight categories. Each GSV image
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is of a fixed size of 512 × 512 pixels, and contains transport objects in different scales on
the road.

This dataset consists of a massive amount of images of eight defined classes of trans-
port objects that vary widely in appearance, scale, occlusion and viewpoint. In particular,
the target categories of road users include cars, pedestrians, buses, trucks, motor, vans,
cyclists and parked cycles. This is implemented by reviewing the common transport modes
that frequently appear in Tokyo. Single instances of road users are annotated individu-
ally. An excerpt of eight transport mode samples is illustrated in Figure 2. To reflect the
complexity of this newly introduced dataset, the basic properties of TMS-Tokyo are listed
in Table 1, together with those of other more established transport datasets, including the
Tsinghua–Daimler Cyclist Benchmark [53], KITTI [56], Mapillary Vistas [60], BDD100K [61]
and CityScapes [57]. Note that, whilst TMS-Tokyo is not the largest image dataset for object
detection, it is the Google Street View dataset of the largest size which is specifically devised
for transport object detection. Please refer to Appendices A and B for further details of the
creation of the TMS-Tokyo Dataset.

Figure 2. Cont.
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Figure 2. Illustrative transport mode samples with annotations.

Table 1. Properties of datasets.

Dataset Annotation #Categories #Instances #Images

Tsinghua–Daimler Cyclist [53] Horizontal BBox 7 32,361 14,674
Cityscapes [57] Segmentation 30 NA 25,000

KITTI [56] Segmenation 5 80,256 14,999

Mapillary Vistas [60] Segmentation 66 >2 M 25,000
BDD 100K [61] Horizontal BBox 10 3.3 M 100,000

TMS-Tokyo Horizontal BBox 8 50,827 33,461

4. Proposed Approach

This section presents a novel approach for the development of decomposed CNN-
based transport object detection in street view imagery.

4.1. Data Augmentation

For street view imagery, the backgrounds of street views can be various and compli-
cated associated with different locations and scenes. Road users often appear in different
orientations, positions, scaling, and brightness. In practice, it is easy to fall into the trap of
overfitting with limited data in the face of trillions of parameters in a deep neural network.
The data augmentation technique helps increase the relevance of the data, minimizing the
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possibility of the neural networks learning irrelevant features, thereby radically improving
overall performance.

An interesting approach for data augmentation is the Mosaic method first proposed
in YOLOv4 [62], the main idea of which is to randomly crop a small number (four in a
typical implementation) of images and to stitch them onto one image as training data. This
paper adopts the Mosaic data augmentation technique on the dataset TMS-Tokyo, while
turning off this operation in a number (say, 15) of the last epochs of training to prevent
the images generated by data enhancement from interfering with the real distribution of
natural images. An instance of the use of Mosaic in TMS-Tokyo is illustrated in Figure 3.

Figure 3. Examples of Mosaic data augmentation: images (a–d) refer to four random images chosen
for Mosaic data augmentation.

4.2. Dilated Convolution

Dilated convolution, widely employed in visual tasks, addresses the significant issue of
local information loss caused by downsampling in semantic segmentation. The introduction
of the DeepLab algorithm [63] demonstrates that, while simultaneously enlarging the
receptive field, replacing pooling with dilated convolution allows each convolutional
operation to encompass a larger range of relevant information within a fixed parameter
count. The receptive field defines the size of the region in the input feature map where
convolutional computations are performed, and the results obtained from this region
correspond to a single point in the output feature map. Therefore, a larger receptive
field contains more abundant contextual information from the original image, which is
advantageous for improving model accuracy.

Dilated convolution introduces an expansion rate that indicates the spacing between
parameters in the convolutional kernel. It allows for an enlarged receptive field without
affecting the number of parameters, which remain unchanged. The calculation formula for
the receptive field is

rn = rn−1 + (k − 1)× Πn−1
I=1 Si (7)

where rn represents the receptive field of the current layer, rn−1 indicates the receptive field
of the previous layer, si denotes the stride of the convolutional or pooling layer, and k is the
kernel size.

The effectiveness of dilated convolution is manifested in two respects. The primary
means is its ability to expand the receptive field. While regular convolutions reduce
spatial resolution through downsampling, dilated convolution maintains good spatial
resolution to ensure accurate target localization, which is beneficial for detecting large
objects. The other way that dilated convolution represents an advance is its capability of
obtaining contextually relevant information at multiple scales. By adjusting the dilation
rate, different receptive field sizes can be achieved, thereby obtaining diverse information
at different scales. This method greatly aids visual tasks by providing information from
different and multiple scales.

4.3. Tensor Train Decomposition

Tensor train (TT) decomposition is based on the matrix product state (MPS) model,
which decomposes the input tensor into a series of adjacent three-dimensional and two-
dimensional tensors. Typically, TT decomposition can be achieved by (N − 1) times singular
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value decomposition. For a fourth-order tensor, for instance, the decomposition takes the
following form:

χ(i, j, k, l) = ∑
r1,r2,r3,r4

G1(i, r1) · G2(r1, j, r2) · G3(r2, k, r3) · G4(r3, l) (8)

Figure 4 depicts a schema of the TT decomposition of a fourth-order tensor. The indices
of the large tensor are denoted as s1, s2, . . . , Sn, and each subsequent decomposition involves
second- or third-order tensors with the first index corresponding to the original index
of the large tensor. New auxiliary indices a1, a2, . . . , an are introduced to facilitate the
decomposition process. Consequently, the first sub-tensor resulting from the decomposition
contains only one auxiliary index a1, while the second sub-tensor has two auxiliary indices
a2 and a3. This indicates that both ends of the decomposition are second-order tensors,
while the intermediate tensor is a third-order tensor.

Figure 4. Schematic representation of fourth-order tensor’s tensor train (TT) decomposition.

For a d-th order tensor χ, its Tucker decomposition is defined as follows: it decomposes
each dimension into three-mode tensors, referred to as factors or cores. One dimension of
the sub-tensor corresponds to the actual physical dimension, while the other two dimen-
sions connect the preceding and succeeding cores.

Mathematically, the Tucker decomposition of the tensor χ(i1, i2, . . . , id) is expressed as:

χ(i1, i2, . . . , id) = ∑ G1(i, r1)G2(r1, j, r2) · · · Gd−1(rd−1, d) (9)

The process of an algorithm implementing such a schema can be divided into four
steps, as follows:

• Step 1. Decomposing the convolutional kernel in the original neural network into a
fourth-order core tensor, producing a factor matrix by TT decomposition.

• Step 2. Completing the factor matrix of the decomposition and filling the convolutional
kernel parameters.

• Step 3. Assigning the new convolutional kernel parameters to the new convolu-
tional kernel.

• Step 4. Replacing the original convolution kernel with the new two-layer mini-
convolution.

The advantage of TT decomposition is that it is linear in relation to the number of
entries (and, hence, storage) and computation time, enabling higher-dimensional problems
to be addressed. In particular, when dealing with matrices, TT decomposition is equivalent
to the singular value decomposition.

Finding the optimal rank is a key issue when compressing the model through low
rank decomposition. Rank is the only hyperparameter that controls the computational
complexity and accuracy in compressed convolutional neural networks. An excessively
large rank clearly does not achieve maximum compression, whilst a rank that is too small
may make accuracy recovery problematic. Instead of choosing the rank by time-consuming
iterative trials, the empirical variational Bayes matrix factorization (EVBMF) [64] method is
employed to automatically compute the rank.
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In this work, a superior selection procedure is shown to be attainable for full variational
Bayes matrix factorization (VBMF). More specifically, the global optimum is a re-weighted
SVD of the observation matrix, and each weight can be obtained by solving a quadratic
equation whose coefficients are a function of the observed singular values. Therefore,
EVBMF, where the hyperparameters are learned from the data, is adopted in the present
work to achieve the global optimal solution.

4.4. Algorithm Structure
4.4.1. Algorithm Details

In this study, the SVDet architecture is adopted with ResNet-50 as the backbone,
fpn-neck, and RetinaHead. Tensor decompositions are performed separately on these
components to investigate the effectiveness of low-rank decomposition in different parts
(Algorithm 1).

Algorithm 1 Illustration of Algorithm SVDet

Start:
Original Convolutional Neural Network Model (input):

Step 1. Estimating Decomposition Rank of Hidden Layer Parameters (EVBMF).

Step 2. Tensor Train (TT) Decomposition of Hidden Layer Parameters.

Step 3. Generating New Hidden Layers and Replacing Original Hidden Layers

Fine-tune

End.

When applying low-rank decomposition to compress a model, finding the optimal
rank is crucial, as it controls the trade-off between computational complexity and accuracy
in compressed convolutional neural networks. Selecting an excessively large rank may
fail to achieve maximal compression, while choosing too small a rank can hinder accuracy
recovery. To address this, time-consuming trial-and-error approaches are avoided for
rank selection. Instead, empirical variational Bayes matrix factorization (EVBMF) [64] is
employed to compute the rank. In this work, a novel and superior alternative is used that
exploits completely positive (CP)-like decomposition with variational Bayesian matrix fac-
torization (VBMF) for the fully observed case, where the global solution can be analytically
calculated. Specifically, the global solution involves the weighted SVD of the observation
matrix, and each weight can be obtained by solving a quadratic equation with coefficients
derived from the observed singular values. The detailed procedure for rank determination
is presented in the following Section.

The TT decomposition methods are applied as described in the previous section
to decompose the convolutional layers, reducing the number of parameters and allowing
the replacement of the original tensors. To restore accuracy after model acceleration and
compression while preserving the effectiveness of the model components, fine-tuning is
performed on the dataset. This process results in a smaller yet more accurate model.

4.4.2. Rank Determination

As mentioned above, variational Bayesian matrix factorization (VBMF) is employed
to compute the ranks used in low-rank decomposition for each of the convolutional ker-
nel’s parameters.

The process of obtaining the rank for a four-order tensor, i.e., the calculation process
of EVBMF, is illustrated in Figure 5. For tensor-train decomposition, the maximum rank is
selected from r(1) and r(2), since only one rank is required as the tensor rank. Choosing the
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maximum rank ensures accuracy and recoverability. Note that opting for a rank lower than
the maximum increases the likelihood of compressing one or more dimensions excessively,
which may lead to precision loss or irrecoverable issues.

Figure 5. Process for Rank Determination of Four-Order Tensor (Flowchart).

4.5. Overall Structure of SVDet

Recall the original design intention, which is to develop a compact and high-precision
model for traffic object detection in urban areas. Considering the objective of dealing with
(and, hence, combining the metrics of) both detection accuracy and model complexity,
the RetinaNet model is chosen as the baseline detector to perform low-rank decomposi-
tion in an effort to obtain a compact model. In implementation, SVDet consists of two
steps: first decomposing and replacing the convolutional kernels (network weights) of the
backbone and head parts of RetinaNet using the TT decomposition algorithm, and then fine-
tuning the compressed model to reduce the impact of the decomposition on the resulting
model accuracy.

Table 2 presents the statistics for the computational and parametric quantities for the
backbone, neck and head parts of RetinaNet with Mosaic data augmentation. It can be
seen that the backbone, as the feature extraction part of the detection model, accounts for
a relatively large amount of computation and number of parameters, and the number of
parameters accounts for 64.2% of the entire model. The head part is detected on multiple
feature layers and its parameters are shared across these feature layers, so that the number
of parameters in it is low though involving greater computation, reaching 51.1% of the
entire model. In this paper, low-rank decomposition is performed on these two components.
The overall algorithm structure of the low-rank decomposition of the backbone network of
SVDet using the TT decomposition is shown in Figure 6.

Table 2. FLOPs and Params for different parts of baseline model.

Parts FLOPs (G) Params (M)

Baseline 53.07 36.25
Backbone 21.52 (40.6%) 23.28 (64.2%)

Neck 4.42 (8.3%) 8.0 (22%)
Head 27.13 (51.1%) 4.97 (13.7%)
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Figure 6. Algorithm structure of SVDet, where red, blue and green dotted boxes indicate backbone,
neck, and head part of SVDet, respectively.

5. Experimental Results and Analysis

The performance of SVDet was examined in comparison with other baselines on the
TMS-Tokyo Dataset in accomplishing the task of multi-class transport object detection.
The algorithm benchmarks employed are state-of-the-art deep CNN methods with proven
superior performance and popularity when applied for object detection, including ResNet-
50 and ResNet-101-based RetinaNet [17], Faster RCNN [32], Cascade RCNN [39], FCOS [43],
and Darknet-based YOLOv3 [35].

5.1. Implementation Configuration

All experiments reported in the paper were performed on a 64-bit Ubuntu 18.04
operating system. The hardware was a GTX 1080 Ti GPU with 12 GB of RAM and a 10-core
Intel(R) Xeon(R) CPUE5-2640 v4@2.40 GHz CPU with 32 GB of RAM. The entire dataset
used for the experimental investigation was divided into three sets of training, validation
and testing according to the ratio of 6:2:2. In presenting the following results, the unit of
FLOPs is GFLPOs (1 GFLOPs = 109 FLOPs) and that of Params is megabytes (M).

5.2. Comparative Results

The results of the proposed SVDet were compared with those achieved by the other
object detectors investigated on the TMS-Tokyo Dataset, as listed in Table 3. Judged by
the mean average precision (mAP), SVDet outperformed the others. Through its balanced
design, SVDet achieved 77.6% on mAP with ResNet-50. In particular, as a lightweight
single-stage object detection method, SVDet significantly outperformed both typical one-
stage and two-stage methods in terms of computational parameters. From the perspective
of overall efficiency and effectiveness, SVDet was shown to be the most promising transport
object detector.

Table 3. Numerical experimental results on TMS-Tokyo Dataset.

Methods Backbone mAP (%) FLOPs (G) Params (M)

Faster R-CNN [32] R50 76.20 63.28 41.16
R101 76.60 82.76 60.15

Cascade R-CNN [39] R50 76.80 91.07 69.95
R101 77.10 110.55 87.94
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Table 3. Cont.

Methods Backbone mAP (%) FLOPs (G) Params (M)

YOLOv3 [35] Darknet 76.10 49.66 61.56

FCOS [43] R50 74.50 50.41 31.85
R101 75.60 69.88 50.79

RetinaNet [17] R50 75.90 53.07 36.25
R101 76.30 72.55 55.24

ATSS [65] R50 75.30 51.63 31.90

SVDet R50 77.60 16.52 17.29

SVDet (shown in bold) indicates presently proposed model.

5.3. Ablation Studies

For ablation experiments, the SVDet model trained on TMS-Tokyo served as the pre-
trained model for network initialization. In so doing, all model parameters were distributed
in a performance-strong range at the beginning of training, alleviating potential overfitting
while speeding up the convergence of the underlying model. RetinaNet was taken as
the baseline due to its promising performance among classical detectors. To validate the
design of the proposed model, experiments were conducted to test the influence of different
model compression methods and that of low-rank decomposition of different modules,
regarding the model performance and the number of computational parameters involved,
respectively.

5.3.1. Comparison with Alternative Model Compression Algorithms

Comparative experimental tests were carried out against the baseline algorithm and
three other classical model compression algorithms, namely CP decomposition, Tucker
decomposition and stripe-wise pruning.

The results as given in Table 4 show that, while the other three methods experienced
accuracy loss, SVDet (with TT decomposition) gained higher accuracy instead. In par-
ticular, in terms of computational and parametric quantities, CP decomposition reduced
the maximum complexity but its accuracy significantly fell behind the rest. Furthermore,
SVDet was demonstrated to be a low-rank decomposition that could balance the accu-
racy loss and computational parametric reduction, beating all the tested existing model
compression algorithms.

Table 4. Comparison with other model compression algorithms.

Methods mAP (%) FLOPs (G) Params (M)

Baseline 76.9 53.07 36.25
Stripe-Wise Pruning 72.37 (5.9%↓) 31.31 (41.0%↓) 18.85 (48.0%↓)
CP decomposition 56.80 (26.1%↓) 11.42 (78.5%↓) 12.72 (64.9%↓)

Tucker decomposition 68.20 (11.3%↓) 15.21 (71.3%↓) 14.68 (59.5%↓)
TT decomposition 77.60 (0.9%↑) 16.52 (68.9%↓) 17.29 (52.3%↓)

5.3.2. Influence of Decompositions on Different Model Modules

To investigate the impact of the decomposition of different modules upon model
performance and computational efficiency, a number of experiments were devised to
decompose different components of the baseline algorithm using three low-rank decom-
positions. Each was initialized with the parameters of a pretrained model, noting that
SVDet simultaneously performs a low-rank TT decomposition of both backbone and head
modules for the baseline.

From the results of Table 5, it can be seen that the TT decomposition of the backbone
and head of the baseline method provided the most promising outcomes. The approach
introduced in this work only requires less than one-half of the number of parameters and
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of computation of the uncompressed model, while the accuracy gains a little over the
uncompressed model.

Table 5. Comparison with existing model compression algorithms.

Backbone Head mAP (%) FLOPs (G) Params (M)

× × 76.9 53.07 36.25
3 × 78.10 (1.6%↑) 41.43 (21.9%↓) 21.85 (39.7%↓)
× 3 77.80 (1.2%↑) 28.17 (46.9%↓) 31.69 (12.6%↓)
3 3 77.60 (0.9%↑) 16.52 (68.9%↓) 17.29 (52.3%↓)

Amongst the three components implemented for object detection, the maximum gain
is achieved when performing low-rank decomposition on both the backbone and the
head, because these components own the majority of the entire model parameters. Tucker
decomposition is better than CP decomposition, but both of them have limitations: the
former requires more storage space and lacks correlation information between any two
patterns, while the latter lacks correlation information between the tensor and the other
different patterns that Tucker decomposition can obtain. However, the tensor train (TT)
decomposition shows a strong higher-order processing capability and is well suited for the
decomposition of neural network models. This is feasible because SVDet is of a fourth-order
tensor, with TT having a great advantage for the third-order and above.

5.3.3. Discussion of Comparative Experiments

Regarding the three components of object detection, the greatest gain was achieved
when low-rank decomposition was performed simultaneously on the backbone and head.
This is because the backbone constitutes 64.2% of the model’s parameters, while the head
accounts for 51.1% of the model’s computational load. In tensor decomposition, Tucker and
CP are commonly used, but Tucker, which can capture and reflect intermodal information, is
more streamlined than CP. Therefore, the performance of Tucker decomposition is superior
to CP decomposition. However, both methods have limitations: Tucker decomposition
requires a large storage space and lacks information on the correlation between any two
modes, whereas CP decomposition lacks the tensor and intermodal correlations that can be
obtained through Tucker decomposition.

Applying generally to fourth-order tensors, tensor train (TT) decomposition exhibits
strong high-order processing capabilities, making it highly suitable for neural network
model decomposition. Indeed, TT has significant advantages for third-order tensors and
above. The experiments conducted in this study demonstrated that TT decomposition can
achieve quality model compression while maintaining a remarkable level of accuracy.

6. Conclusions

This paper has presented an innovative approach using deep learning to detect trans-
port objects from Google Street View imagery in urban areas. A GSV imagery dataset
(named TMS-Tokyo) has been introduced for the first time, involving eight categories of
road users and containing 50,827 instances and 32,555 images. It is the largest Google Street
View dataset specially designed for transport object detection. Further to the introduction
of a new dataset, low-rank tensor decomposition has been proposed to compress the street
view object detector from the perspective of compression parameters in order to tackle
the challenging problems of high computational cost and parametric volume concerning
the detection model. The resulting system SVDet applies tensor train decomposition to
both the backbone and the head of the underlying model. It is able to achieve a mAP
value of 77.6% on TMS-Tokyo, with a parametric number of 17.29 M and a computa-
tional volume of 16.52 G FLOPs, significantly outperforming state-of-the-art methods
described in the literature. Thanks to such a lightweight design based on low-rank ten-
sor decomposition, the approach developed herein helps address the important issue of
environmental sustainability.
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Whilst promising, opportunities arise for further development of the present work.
In particular, to reflect and adapt to evolving urban transport conditions, TMS-Tokyo needs
to be continuously updated and extended in both size and scope, by involving more cities
on a global scale. How this system may be further developed to cope with the dynamically
changing TMS-Tokyo dataset continues to be actively researched.
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Appendix A. TMS-Tokyo Dataset

Appendix A.1. Dataset Category

In order to present the data on travel patterns, different types of road users are
classified by observing street view images of Tokyo. When dividing the categories, parked
cycles are separated from cyclists because parked cycles in the Tokyo dataset have a
significant weight in the Google Street View Imagery of Tokyo. However, there is no
division in the category of motorcycles vs. motorcyclists. The distinction between parked
cycles and moving cycles is quite clear from the images as the location is used to differentiate
between these two categories. This approach follows previous studies and includes two
different categories for cycles as shown in Figure A1.
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Figure A1. (a) Parked cycles can be hard to label, (b) truck is occluded by another truck, (c) car
occlusion.

In contrast to Goel’s study [14], a distinction is herein made for vehicles that are
classified for commercial use; vans and trucks are defined as two different categories as
they have distinct appearances for an automatic detector. Usually, vans are significantly
larger in width and height than ordinary cars, plus there is no protruding warehouse body
before and after. However, trucks normally share protruding warehouse bodies and they
visually differ from other vehicles. In total, eight categories of road users are used for later
annotation: cars, pedestrians, buses, trucks, motors, vans, cyclists and parked bicycles.

Appendix A.2. Annotation Method

Different approaches to annotating are considered for this dataset. The commonly
used technique in computer vision is bounding box annotation, which is used to annotate
various visual concepts, such as objects and attributes [66]. A bounding box is normally
described as (x, y, w, h), where (x, y) indicates the centre location of the image, and w and
h represent the width and heights of the bounding box in the picture coordinate system,
respectively. Horizontal bounding boxes are more adequate for objects without various
orientations compared with oriented bounding boxes. For transport objects from street
view, target objects are perpendicular to the street ground from the observation, which
matches with the horizontal bounding boxes.

To facilitate image observations and the accuracy of annotations, a Cloud document is
created with eight representative images of all target objects, illustrating different samples
of target categories for later annotation work. The data annotation work is divided amongst
eight research assistants, each taught to identify and annotate images with a horizontal
bounding box by labelme through sharing Cloud documentation for reference [14]. Further,
samples are randomly picked from each resultant JSON file and are reassessed accordingly.
Using this approach, their quality is assured in terms of the accuracy of annotations and
classifications. An excerpt of the eight illustrated transport mode samples is shown in
Figure A2.

In contrast to aerial images, natural street-view images contain several instances at
most. For Google Street View imagery of Tokyo, TMS-Tokyo contains at most ten instances
per image. Therefore, it is not common to see areas densely crowded with instances
compared with dense datasets [66]. Based on the demands of transport object counting,
instances are annotated individually to distinguish them from other instances in the image.
However, there are cases where transport objects are hard to label due to occlusions or
their tiny size. Very difficult situations in noisy situations with significant occlusions are
(reasonably) filtered.
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Figure A2. Excerpt of eight illustrated transport mode samples with annotations.

Appendix B. Variation of Transport Mode Shares by Region

The establishment of transportation modes depends mainly on the size and density of
the population and that of the land, as well as the level of socio-economic development
in the city concerned [12]. Cities or regions with relatively large population size and high
population density emphasize the development of high-capacity public transportation
(including rail transit, rapid transit, and other modes of transportation). In addition,
transport policy will also influence people’s choice of transport modes.

The travel pattern is the structure of the traffic mode formed under the specific
conditions of land layout, population density, economic level and social environment. This
means a proportional distribution of the number of trips undertaken by the various modes
of transport. Hence, the transport mode share varies in different countries or regions
due to customs, culture, policies and geographic conditions [67]. Influenced by external
factors, the dataset categories introduced in this work may not be able to adequately cover
the urban transport mode shares of other countries or regions. As different cities may
share different backgrounds or detection environment, the detection results of the learning
frameworks might vary as well. Therefore, any application of the present approach to
other cities will require careful empirical analysis of the local situation and associated
detection validation.
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