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Abstract: In this paper, exact null controllability of one-dimensional wave equations in non-cylindrical
domains was discussed. It is different from past papers, as we consider boundary conditions for
more complex cases. The wave equations have a mixed Dirichlet–Neumann boundary condition.
The control is put on the fixed endpoint with a Neumann boundary condition. By using the Hilbert
Uniqueness Method, exact null controllability can be obtained.
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1. Introduction

Let T > 0. Define Q̂k
T as a non-cylindrical domain on R2:

Q̂k
T =

{
(x, t) ∈ R2; 0 < x < αk(t) f or all t ∈ (0, T)

}
,

where
αk(t) = 1 + kt k ∈ (0, 1).

In this paper, we set

V(0, αk(t)) =
{

ϕ ∈ H1(0, αk(t)); ϕ(αk(t)) = 0
}

, t ∈ [0, T].

We denote the conjugate space of V(0, αk(t)) with [V(0, αk(t))]′.
We study wave equation as follows:

utt − uxx = 0 in Q̂k
T ,

ux(0, t) = v, u(αk(t), t) = 0 on (0, T),
u(x, 0) = u0, ut(x, 0) = u1 in (0, 1),

(1)

where v ∈ [H1(0, T)]′ is the control variable and u is the state variable. (u0, u1) ∈
L2(0, 1)× [V(0, 1)]′ is an any given initial value. The physical meaning of k is called the
velocity of moving endpoint. By [1], we know that (1) has a unique wake solution u in
the transposed sense.

Applications of control problems can be found everywhere in life; for example, in
engineering practice and in science and technology. In modern mathematics, the distributed
parameter energy control theory is an important branch. Control can be divided into exact
control, null control and approximate control. In wave equations, we know that exact
controllability is equivalent to null controllability.

In cylindrical domains, there are many studies on controllability of wave equations.
However, not much work was performed on the wave equations defined in non-cylindrical
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domains ([1–14]). In [4], exact controllability was studied where the control is put on
moving endpoints. In [5], exact controllability was discussed, and the system is as follows:

utt − uyy = 0 in Q̂k
T ,

u(0, t) = v(t) u(αk(t), t) = 0 on (0, T),

u(y, 0) = u0(y) ut(y, 0) = u1(y) in (0, 1).

In [6,7], exact internal controllability was reviewed. We discuss one-dimensional
wave equations with the Dirichlet–Neumann boundaries and the control is put on a fixed
endpoint with the Neumann boundary condition. By performing the calculation directly in
non-cylindrical domains, we obtain exact null controllability by using the Hilbert Unique-
ness Method.

In Section 2, the definition of exact null controllability and some main theorems is
provided. In Section 3, the dual system of system (1) by proving Theorem 2 can be obtained.
In Section 4, by the nature of Hilbert’s Uniqueness Method, we prove controllability of
system (1) (Proof of Theorem 1).

2. Main Results and Preliminary Work

Definition 1. Equation (1) is called null controllable at the time T, if for any given initial value

(u0, u1) ∈ L2(0, 1)× [V(0, 1)]′,

one can always find a control v ∈ [H1(0, T)]′ such that solution u of (1) satisfies

u(T) = 0 , ut(T) = 0

in the transposed sense.

Remark 1. If αk(t) is a more general function that satisfies 0 < αk
′(t) < 1; then, it leads to the

same conclusion as in this paper.
We set controllability time as follows:

T∗k =
−1 + e

2k(1+k)
(1−k)3

k
.

The next theorem, Theorem 1, is the main proof of this paper (controllability).

Theorem 1. In the sense of Definition 1, (1) is called exactly controllable at time T for any given
T > T∗k .

In order to prove controllability, we prove observability of its dual system. The dual
system of system (1) is as follows:

ztt − zxx = 0 in Q̂k
T ,

zx(0, t) = 0, z(αk(t), t) = 0 on (0, T),

z(x, 0) = z0, zt(x, 0) = z1 in (0, 1),

(2)

where (z0, z1) ∈ L2(0, 1)×V(0, 1) is any given initial values. System (2) has a unique weak
solution (for details refer to [1]):

z ∈ C([0, T], L2(0, αk(t))) ∩ C1([0, T], V(0, αk(t))).

Remark 2. C is a positive constant. Its value may vary from position to position.
Next, we give two important inequalities (observability).
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Theorem 2. When T > T∗k , for any (z0, z1) ∈ L2(0, 1)×V(0, 1), there exists a constant C > 0
such that the solution of (2) satisfies

C(|z1|2L2(0,1) + |z
0|2V(0,1)) ≤

∫ T

0
αk(t)|zt(0, t)|2dt ≤ C(|z1|2L2(0,1) + |z

0|2V(0,1)) (3)

3. Observability: Proof of Theorem 2

For t ≥ 0, we give the definition of the energy equation of (2) as follows:

E(t) =
1
2

∫ αk(t)

0
[|zt(x, t)|2 + |zx(x, t)|2]dx. (4)

Meanwhile, we define

E0 , E(0) =
1
2

∫ 1

0
[
∣∣∣z0

x(x)
∣∣∣2 + ∣∣∣z1(x)

∣∣∣2]dx. (5)

Lemma 1. When t ∈ [0, T], for any (z0, z1) ∈ L2(0, 1)×V(0, 1), the solution z of (2) satisfies

E(0)− E(t) =
k(1− k2)

2

∫ t

0
|zx(αk(s), s)|2ds. (6)

Proof. For any 0 < t ≤ T, multiplying ztt − zxx = 0 by zs(x, s) and integrating on
(0, t)× (0, αk(s)), we obtain

0 =
∫ t

0

∫ αk(s)
0 zs(x, s)[zss(x, s)− zxx(x, s)]dxds

= 1
2

∫ t
0

∫ αk(s)
0 [|zs(x, s)|2 + |zx(x, s)|2]sdxds

−
∫ t

0

∫ αk(s)
0 [zx(x, s)zs(x, s)]xdxds.

(7)

Since
αk(s) = 1 + ks. (8)

it is easy to check
αk,s(s) = k. (9)

It follows from (7) that

0 = 1
2

∫ αk(t)
0 [|zx(x, t)|2 + |zt(x, t)|2]dx

− 1
2

∫ 1
0 [|zt(x, 0)|2 + |zx(x, 0)|2]dx

− k
2

∫ t
0 [||zx(αk(s), s)|2 + zs(αk(s), s)|2]ds

−
∫ t

0 zs(αk(s), s)zx(αk(s), s)ds

+
∫ t

0 zs(0, s)zx(0, s)ds.

(10)

Taking zx(0, t) = 0 f or any t ∈ [0, T], it holds that

zx(0, s) = 0 f or any s ∈ [0, t]. (11)
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Therefore, we can conclude that

0 = 1
2

∫ αk(t)
0 [|zt(x, t)|2 + |zx(x, t)|2]dx

− 1
2

∫ 1
0 [|zt(x, 0)|2 + |zx(x, 0)|2]dx

− k
2

∫ t
0 [|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds

−
∫ t

0 zx(αk(s), s)zs(αk(s), s)ds.

(12)

Due to (8) and z(αk(s), s) = 0, we have

kzx(αk(s), s) = −zs(αk(s), s). (13)

Therefore, with (4), (5), (12) and (13), we obtain

E(0)− E(t) =
k(1− k2)

2

∫ t

0
|zx(αk(s), s)|2ds.

�

Lemma 2. When t ∈ [0, T], for any (z0, z1) ∈ L2(0, 1)×V(0, 1), the solution zof (2) satisfies

(1− k2)
∫ t

0 αk(s)|zx(αk(s), s)|2ds

= 2
∫ αk(t)

0 xzt(x, t)zx(x, t)dx− 2
∫ 1

0 xzt(x, 0)zx(x, 0)dx + 2
∫ t

0 E(s)ds.
(14)

Proof. For any 0 < t ≤ T, multiplying ztt − zxx = 0 by 2xzx(x, s) and integrating on
(0, t)× (0, αk(s)), we can deduce that

0 = 2
∫ t

0

∫ αk(s)
0 xzx(x, s)[zss(x, s)− zxx(x, s)]dxds

=−
∫ t

0

∫ αk(s)
0 [x|zs(x, s)|2 + x|zx(x, s)|2]xdxds

+ 2
∫ t

0

∫ αk(s)
0 [xzs(x, s)zx(x, s)]sdxds

+
∫ t

0

∫ αk(s)
0 [|zs(x, s)|2 + |zx(x, s)|2]dxds.

(15)

Considering (4) and (9), it follows from (15) that

0 = 2
∫ t

0
∂
∂s

∫ αk(s)
0 xzs(x, s)zx(x, s)dxds

−2k
∫ t

0 zs(αk(s), s)αk(s)zx(αk(s), s)ds

−
∫ t

0 [x|zs(x, s)|2 + x|zx(x, s)|2]
∣∣∣αk(s)
0 ds + 2

∫ t
0 E(s)ds.

(16)

Further, we can derive

0 = 2
∫ αk(t)

0 zt(x, t)xzx(x, t)dx− 2
∫ 1

0 zt(x, 0)xzx(x, 0)dx

−2k
∫ t

0 zs(αk(s), s)αk(s)zx(αk(s), s)ds

−
∫ t

0 αk(s)[|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds

+ 2
∫ t

0 E(s)ds.

(17)

Combining (13), we see

(1− k2)
∫ t

0 |zx(αk(s), s)|2αk(s)ds

= 2
∫ αk(t)

0 zt(x, t)xzx(x, t)dx

−2
∫ 1

0 zt(x, 0)xzx(x, 0)dx + 2
∫ t

0 E(s)ds.

(18)
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�

Lemma 3. When t ∈ [0, T], for any (z0, z1) ∈ L2(0, 1)×V(0, 1), the solution z of (2) satisfies

k(1− k2)
∫ t

0
s|zx(αk(s), s)|2ds = −2tE(t) + 2

∫ t

0
E(s)ds.

Proof. For any 0 < t ≤ T, multiplying ztt − zxx = 0 by 2szs(x, s) and integrating on
(0, t)× (0, αk(s)), we get

0 = 2
∫ t

0

∫ αk(s)
0 szs(x, s)[ztt(x, s)− zxx(x, s)]dxds

= 2
∫ t

0

∫ αk(s)
0 [zs(x, s)szx(x, s)]xdxds

−
∫ t

0

∫ αk(s)
0 [s|zs(x, s)|2 + s|zx(x, s)|2]sdxds

+
∫ t

0

∫ αk(s)
0 [|zs(x, s)|2 + |zx(x, s)|2]dxds.

(19)

Considering (4) and (9), it is follows that

0 = 2
∫ t

0 szx(αk(s), s)zs(αk(s), s)ds− 2
∫ t

0 szx(0, s)zs(0, s)ds

−2tE(t) + k
∫ t

0 s[|zs(αk(s), s)|2 + |zx(αk(s), s)|2]ds + 2
∫ t

0 E(s)ds.
(20)

With (11) and (13), we have

k(1− k2)
∫ t

0
s|zx(αk(s), s)|2ds = −2tE(t) + 2

∫ t

0
E(s)ds. (21)

�

Lemma 4. When t ∈ [0, T], for any (z0, z1) ∈ L2(0, 1)×V(0, 1), the solution zof (2) satisfies

1− k
(1 + k)(1 + kt)

E(0) ≤ E(t) ≤ 1 + k
(1− k)(1 + kt)

E(0). (22)

Proof. According to Lemmas 2 and 3, we can conclude that

(1− k2)
∫ t

0 |zx(αk(s), s)|2ds

= 2
∫ αk(t)

0 xzx(x, t)zt(x, t)dx

−2
∫ 1

0 xzx(x, 0)zt(x, 0)dx + 2tE(t).

(23)

Combining Lemma 1, we have

2
k E(0) + 2

∫ 1
0 xzx(x, 0)zt(x, 0)dx

= 2
∫ αk(t)

0 zt(x, t)xzx(x, t)dx + 2
k E(t) + 2tE(t).

(24)

This follows from Cauchy’s inequality:∣∣∣∣∫ αk(t)

0
2zt(x, t)xzx(x, t)dx

∣∣∣∣ ≤ 2αk(t)E(t), (25)

∣∣∣∣∫ 1

0
2xzt(x, 0)zx(x, 0)dx

∣∣∣∣ ≤ 2E(0). (26)
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From (25) and (26), it follows from (24) that

−2E(0) +
2
k

E(0) ≤ 2tE(t) + 2αk(t)E(t) +
2
k

E(t), (27)

and
2E(0) +

2
k

E(0) ≥ −2αk(t)E(t) + 2tE(t) +
2
k

E(t). (28)

Therefore, we have

E(0) ≤ 1 + k
1− k

αk(t)E(t), (29)

E(0) ≥ 1− k
1 + k

αk(t)E(t). (30)

Hence, we see that (22) follows. �

Remark 3. Lemma 4 implies that

1− k
1 + k

(1 + kT)E(0) ≤ E(T) ≤ 1 + k
1− k

(1 + kT)E(0). (31)

We will give the proof of Theorem 2, which has three steps.

Proof of Theorem 2.

Step 1. Multiplying ztt − zxx = 0 by (x− αk(t))zx(x, t) and integrating on Q̂k
T , it

follows that
0 =

∫ T
0

∫ αk(t)
0 (x− αk(t))zx(x, t)ztt(x, t)dxdt

−
∫ T

0

∫ αk(t)
0 (x− αk(t))zx(x, t)zxx(x, t)dxdt

, J1 − J2.

(32)

Next, we calculate Ji(i = 1, 2) :

J1 =
∫ T

0

∫ αk(t)
0

∂
∂t [zt(x, t)(x− αk(t))zx(x, t)]dxdt

+k
∫ T

0

∫ αk(t)
0 zx(x, t)zt(x, t)dxdt

−
∫ T

0

∫ αk(t)
0 (x− αk(t))zxt(x, t)zt(x, t)dxdt.

(33)

Combining αk,t(t) = k, it follows that

J1 = [
∫ αk(t)

0 zt(x, t)zx(x, t)(x− αk(t))dx]
∣∣T
0 + k

∫ T
0

∫ αk(t)
0 zt(x, t)zx(x, t)dxdt

− 1
2

∫ T
0

∫ αk(t)
0 (x− αk(t)) ∂

∂x (|zt(x, t)|2)dxdt

= [
∫ αk(t)

0 zt(x, t)(x− αk(t))zx(x, t)dx]
∣∣T
0 +
∫ T

0

∫ αk(t)
0 kzx(x, t)zt(x, t)dxdt

− 1
2

∫ T
0 αk(t)|zt(0, t)|2dt + 1

2

∫ T
0

∫ αk(t)
0 |zt(x, t)|2dxdt.

(34)

Calculating J2, we get

J2 =
∫ T

0

∫ αk(t)
0 (x− αk(t)) ∂

∂x (
1
2 |zx(x, t)|2)dxdt

= 1
2

∫ T
0 αk(t)|zx(0, t)|2dt− 1

2

∫ T
0

∫ αk(t)
0 |zx(x, t)|2dxdt.

(35)

With zx(0, t) = 0 on (0, T), it is obvious that

J2 = −1
2

∫ T

0

∫ αk(t)

0
|zx(x, t)|2dxdt. (36)
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Therefore, with (34) and (36), we obtain

J1 − J2

= [
∫ αk(t)

0 (x− αk(t))zt(x, t)zx(x, t)dx]
∣∣T
0

+k
∫ T

0

∫ αk(t)
0 zx(x, t)zt(x, t)dxdt

− 1
2

∫ T
0 αk(t)|zt(0, t)|2dt + 1

2

∫ T
0

∫ αk(t)
0 |zt(x, t)|2dxdt

+ 1
2

∫ T
0

∫ αk(t)
0 |zx(x, t)|2dxdt

= 0.

(37)

Considering (4), it follows from (37) that

1
2

∫ T
0 αk(t)|zt(0, t)|2dt

= [
∫ αk(t)

0 zx(x, t)(x− αk(t))zt(x, t)dx]
∣∣T
0

+k
∫ T

0

∫ αk(t)
0 zx(x, t)zt(x, t)dxdt +

∫ T
0 E(t)dt.

(38)

We have ∣∣∣∫ αk(t)
0 zx(x, t)(x− αk(t))zt(x, t)dx

∣∣∣
≤ 1

2

∫ αk(t)
0 [|zt(x, t)|2 + |zx(x, t)|2](αk(t)− x)dx

≤ αk(t)E(t).

(39)

This inequality implies that∣∣∣∣[∫ αk(t)

0
zx(x, t)(x− αk(t))zt(x, t)dx]

∣∣∣T0 ∣∣∣∣ ≤ αk(T)E(T) + E(0), (40)

∣∣∣∣k∫ T

0

∫ αk(t)

0
zt(x, t)zx(x, t)dxdt

∣∣∣∣ ≤ k
∫ T

0
E(t)dt. (41)

Step 2. From (22), (31), (40) and (41), it follows from (38) that

1
2

∫ T
0 |zt(0, t)|2αk(t)dt

≥
∫ T

0 E(t)dt− E(0)− k
∫ T

0 E(t)dt− αk(T)E(T)

≥ [− 1+k
1−k − 1 + (1−k)2

(1+k)k ln(1 + kT)]E(0).

(42)

If T > T∗k = −1+e
2k(1+k)
(1−k)3

k , we have

−1 + k
1− k

− 1 +
(1− k)2

(1 + k)k
ln(1 + kT) > 0.

This implies that one can find a positive constant C to satisfy∫ T
0 |zt(0, t)|2αk(t)dt

≥ C[ln(1 + kT) (1−k)2

k(1+k) − 1− 1+k
1−k ](|z

0|2V(0,αk(t))
+ |z1|2L2(0,αk(t))

).
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Step 3. From (22), (31), (40) and (41), one concludes from (38) that

1
2

∫ T
0 αk(t)|zt(0, t)|2dt

≤ αk(T)E(T) + E(0) + k
∫ T

0 E(t)dt +
∫ T

0 E(t)dt

≤ 1+k
1−k E(0) + E(0) + (1 + k)E(0)

∫ T
0

1+k
(1−k)(1+kt)dt

≤ C[1 + k+1
−k+1 + (k+1)2

k(−k+1) ln(1 + kT)](|z0|2V(0,1) + |z
1|2L2(0,1)).

(43)

With (42) and (43), we get the desired result in Theorem 2. �

Remark 4.

T0 , lim
k→0

T∗k = lim
k→0

−1 + e
2k(k+1)
(−k+1)3

k
= lim

k→0

2k(k+1)
(−k+1)3

k
= 2.

In the non-cylindrical domain Q̂k
T , for any time T > T0, it is well known that (1) is controllable.

However, T∗k is not sharp.

4. Controllability: Proof of Theorem 1

We use Hilbert’s Uniqueness Method to prove controllability. The specific proof is
divided into three steps.

Step 1. Define linear operator Γ : V(0, 1)× L2(0, 1)→ [V(0, 1)]′ × L2(0, 1). We consider
ξtt − ξxx = 0 in Q̂k

T ,

ξx(0, t) = Gzt(0,t), ξ(αk(t), t) = 0 on (0, T),

ξ(T) = ξt(T) = 0 in (0, 1).

(44)

For any φ ∈ H1(0, T), Gzt(0,t) is defined as:

〈
Gzt(0,t), φ

〉
((H1(0,T))′ ,H1(0,T))

=
∫ T

0
zt(0, t)φt(t)dt. (45)

We set
(ξ0, ξ1) , (ξ(x, 0), ξt(x, 0)) ∈ L2(0, 1)× [V(0, 1)]′.

We can conclude that
(z0, z1)→ (−ξ0, ξ1).

Therefore, 〈
Γ(z0, z1), (z0, z1)

〉
=
∫ 1

0
(ξ1

t z0 − ξ0z1)dx.

Step 2. Multiplying ξtt − ξxx = 0 by z(x, t) and integrating on Q̂k
T , we can derive

0 =
∫ T

0

∫ αk(t)
0 z(x, t)[−ξxx(x, t) + ξtt(x, t)]dxdt

=−
∫ T

0

∫ αk(t)
0 [z(x, t)ξx(x, t)− zx(x, t)ξ(x, t)]xdxdt

+
∫ T

0

∫ αk(t)
0 [z(x, t)ξt(x, t)− zt(x, t)ξ(x, t)]tdxdt.
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From αk,t(t) = k, we get

0 = −
∫ T

0 [z(αk(t), t)ξx(αk(t), t)− zx(αk(t), t)ξ(αk(t), t)]dt

−k
∫ T

0 [z(αk(t), t)ξt(αk(t), t)− zt(αk(t), t)ξ(αk(t), t)]dt

+
∫ T

0 [z(0, t)ξx(0, t)− zx(0, t)ξ(0, t)]dt

−
∫ 1

0 z(x, 0)ξt(x, 0)− zt(x, 0)ξ(x, 0)dx

+
∫ αk(T)

0 z(x, T)ξt(x, T)− zt(x, T)ξ(x, T)dx.

(46)

Based on the conditions:

ξt(T) = zx(0, t) = ξ(T) = z(αk(t), t) = ξ(αk(t), t) = 0.

Part (46) can conclude that∫ T

0
Gzt(0,t)z(0, t)dt =

∫ 1

0
z(x, 0)ξt(x, 0)− zt(x, 0)ξ(x, 0)dt. (47)

Combining (45), we derive∫ T

0
|zt(0, t)|2dt =

∫ 1

0
[z(x, 0)ξt(x, 0)− zt(x, 0)ξ(x, 0)]dt. (48)

With Theorem 2, Γ is proved to be coercive and bounded. Further, combining with the
definition of the Lax–Milgram Theorem, we are able to obtain that Γ is an isomorphic mapping.

Step 3. For any given initial value

(u0, u1) ∈ L2(0, 1)× [V(0, 1)]′,

we can define
v(·) = Gzt(0,·) ∈ (H1(0, T))′,

where z is the solution of (2). There exists z0, z1 satisfying

(z0, z1) = Γ−1(−u0, u1).

By combining the definitions of Γ we get

Γ(z0, z1) = (−ξ0, ξ1),

where ξ is the solution of (44).
Therefore, the following equation holds:

(−ξ0, ξ1) = (−u0, u1).

Due to the uniqueness of (44) we can obtain

(u(x, T), ut(x, T)) = (0, 0).

Therefore, we complete the proof of exact null controllability of (1).
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