
Citation: Gorokhov, O.; Petrovskiy,

M.; Mashechkin, I.; Kazachuk, M.

Fuzzy CNN Autoencoder for

Unsupervised Anomaly Detection in

Log Data. Mathematics 2023, 11, 3995.

https://doi.org/10.3390/

math11183995

Academic Editors: Andrey

Gorshenin, Mikhail Posypkin and

Vladimir Titarev

Received: 8 August 2023

Revised: 7 September 2023

Accepted: 13 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fuzzy CNN Autoencoder for Unsupervised Anomaly Detection
in Log Data
Oleg Gorokhov * , Mikhail Petrovskiy * , Igor Mashechkin and Maria Kazachuk

Computer Science Department, Lomonosov Moscow State University, MSU, Moscow 119234, Russia;
mash@cs.msu.su (I.M.)
* Correspondence: gorokhov-oe@cs.msu.ru (O.G.); michael@cs.msu.ru (M.P.)

Abstract: Currently, the task of maintaining cybersecurity and reliability in various computer systems
is relevant. This problem can be solved by detecting anomalies in the log data, which are represented
as a stream of textual descriptions of events taking place. For these purposes, reduction to a One-
class classification problem is used. Standard One-class classification methods do not achieve good
results. Deep learning approaches are more effective. However, they are not robust to outliers and
require a lot of computational effort. In this paper, we propose a new robust approach based on a
convolutional autoencoder using fuzzy clustering. The proposed approach uses a parallel convolution
operation to feature extraction, which makes it more efficient than the currently popular Transformer
architecture. In the course of the experiments, the proposed approach showed the best results for
both the cybersecurity and the reliability problems compared to existing approaches. It was also
shown that the proposed approach is robust to outliers in the training set.

Keywords: machine learning; anomaly detection; convolutional neural networks; neural networks;
fuzzy logic; deep learning; log mining; computer security; reliability

MSC: 68T07

1. Introduction
1.1. Relevance of the Work

Nowadays, computer systems can play an important role in everyday social life.
At the same time, the total number of subjects (subsystems, devices, users) interacting
with a particular system is highly growing. Therefore, problems that arise during the
operation of such systems can lead to significant overhead costs. Thus, the key moments of
implementation of such systems are the requirements of cybersecurity and system reliability.

Fulfillment of these requirements can be achieved by anomalous events detection [1–3].
Information about these events is stored as a text stream in the system logs. However,
the data volume can be very large, making it impossible to manually analyze events [4].
Also, in most of the existing works, the problem of supervised anomaly detection is solved.
However, usually, we do not have access to a complete description of anomalous events,
which makes it impossible to solve the problem of anomaly detection in the supervise
mode [1].

As a rule, the existing works use classical approaches to unsupervised anomaly
detection based on the reduction to a One-class classification problem, such as One-class
SVM (Support Vector Machine) [5]. However, this approach allows building only simple
data clusters without taking into account complex dependencies between events. These
problems are corrected by a fuzzy logic approach using the Mahalanobis distance [6].
However, this approach does not take into account the order of events and their relationship
with each other, which is important in the task of detecting anomalies in system logs.
Taking into account the sequence of events can be performed by approaches based on

Mathematics 2023, 11, 3995. https://doi.org/10.3390/math11183995 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183995
https://doi.org/10.3390/math11183995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2893-3411
https://orcid.org/0000-0002-1236-398X
https://orcid.org/0000-0002-9837-585X
https://orcid.org/0000-0001-7151-7910
https://doi.org/10.3390/math11183995
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183995?type=check_update&version=1

Mathematics 2023, 11, 3995 2 of 23

Bidirectional Recurrent Neural Networks [7]. These approaches take into account long-
term dependencies between occurring events and build patterns of a system’s normal
behavior, predicting the next event based on existing patterns. If the sequence of events
does not correspond to the pattern of normal behavior, we consider such sequence as
anomalous. However, the use of target event prediction alone does not allow to encode
general patterns common to all normal sequences, which leads to the fact that the quality
of RNN (Recurrent Neural Network)-based algorithms is not high enough. This problem
is solved by approaches based on the Transformer architecture [8]. However, they use a
computationally complex self-attention mechanism that does not allow such algorithms to
be applied in real life.

As a result, this paper proposes an automated unsupervised method for detecting
anomalies in the text content of system log data based on the parallel convolutional asym-
metric autoencoder and the fuzzy clustering, which allows taking into account the advan-
tages of the existing methods and eliminating their disadvantages.

1.2. Goal of the Work

Based on the above statements, we can formulate the main goal of this work: re-
search and development of an automated method for unsupervised anomaly detection in
the textual content of log data for computer systems security and reliability tasks.

1.3. Related Work

An analysis of existing works in the area under consideration [1,4,9,10] allows us the
identification of the following steps of anomaly detection process in the log data:

1. Log collection. Software systems constantly write information about ongoing events
to special logs, which are descriptions stored either in a database or in files. Such in-
formation is represented as semi-structured data streams suitable for further analysis.

2. Log parsing. After log collection, the data are converted to a text format, which makes
them suitable for applying text mining methods.

3. Feature extraction. At this stage, text data modeling algorithms are applied.
4. Anomaly detection. Once the data model is built, various machine learning models

can be trained and applied to solve the considered problem.

A detailed description of each stage based on the analysis of the existing works is
presented below.

1.3.1. Nature of the Input Data

Before describing approaches to individual subproblem solutions, it is necessary to
pay attention to the nature of the input data that must be taken into account in the existing
solutions [4,9,11–13]:

1. The input is a stream of semi-structured descriptions of related (interconnected)
events;

2. The volume of the input data can be very large (more than 50 GB per hour);
3. Information about one event can be duplicated several times in a row;
4. The format of event descriptions is highly dependent on the particular system;
5. Often, the event descriptions are almost similar to each other and differ only in some

minimal factors (for example, identifiers of related subsystems and processes);
6. A set of patterns can be extracted from similar event descriptions. The number of

such patterns is usually small (up to 1000).

1.3.2. Log Collection

In terms of log collection, systems typically record event information in a semi-
structured form in files or databases [1]. This information is usually a stream of records
containing a timestamp, possible event parameters (type, associated system, etc.), and some

Mathematics 2023, 11, 3995 3 of 23

textual description. Due to the nature of the input data described above, it is possible to
use data filtering to reduce the data volume.

1.3.3. Log Parsing

As mentioned above, the collected data are streams of semi-structured data that can
be represented as text. To take into account the nature of the input data (large data volume,
a combination of similar events), it is necessary to parse text data [13,14]. This operation
includes both data preprocessing and event pattern creation. For these purposes, text
mining methods are used. However, as mentioned above, the format of event descriptions
depends on the particular target system. Therefore, to develop a universal approach,
an approach based on the use of regular expressions is effective [1,4]. In the parsing
process, we obtain a dictionary of event patterns (individual events), and for each event,
we specify the corresponding pattern and its parameters (for example, time and used IDs).
For example, the event “2023-02-02 20:55:54 INFO Data read by system No. 123456” can be
represented by the pattern “!TIME! INFO Data read by system No. !ID!” with parameter
values !TIME! = “2023-02-02 20:55:54”, !ID! = “123456”.

1.3.4. Feature Extraction

After parsing and receiving individual separate events, it is possible to extract features
that describe a data model. To achieve this, machine learning methods are applied [1,4].

First of all, the individual events are encoded based on the dictionary (One-hot encod-
ing; event description models are represented as text models of either a set or a sequence of
tokens) [15,16].

Second, the events are grouped into blocks (of a fixed size or by the time of the event
occurrence), and a block embedding is built. An embedding is a function (a model) that
transforms input objects (in our case, these are event blocks) into some real vectors. An
illustration of the object embedding is shown in Figure 1.

Figure 1. Illustration of the vector embedding. The Figure is taken from [17].

Therefore, this embedding can be considered as a data model. At this stage, ap-
proaches based on reducing the dimension of the feature space (NMF—Non-negative
Matrix Factorization, LDA—Linear Discriminant Analysis, etc.) are widely used [16]. Re-
cently, approaches based on deep learning (convolutional neural networks, Transformer
architectures using the self-attention mechanism) have also been used [11,16,18,19].

1.3.5. Anomaly Detection

After the data model is built, it is necessary to make and train a model that describes
the system normal behavior. It should be noted that an anomalous behavior description
criterion is needed. In the most practical problems, it is very difficult to correctly describe
the full anomalous behavior of systems in general. However, it is possible to collect
information about the normal behavior of the system.

Mathematics 2023, 11, 3995 4 of 23

Therefore, at this stage, the classical approach of reducing the problem to a One-class
classification task is used [9,10].

The most popular method used as a baseline for this purposes is the One-class
SVM [5,9]. More efficient is the method based on fuzzy clustering [6,20,21]. Currently,
methods based on deep learning are also developing, and they show good results. In par-
ticular, Transformer-type neural architectures are widely used [8,16,18].

A more detailed description of these methods is given below.
One-class SVM [5,9,22,23] is a modification of the classical support vector machine

method, allowing the building of a separating hyperplane for the training sample objects
which are implicitly mapped to a higher-dimensional space H using the kernel function
Φ : RN → H. Thus, the optimization problem is solved in this method as can be seen in (1).

min
w,ρ,ξi

[
1
2
· ||w||2 + 1

vl

l

∑
i=1

ξi − ρ

]
, (w ·Φ(xi)) ≥ ρ− ξi; i = 1, l; ξi ≥ 0, (1)

where each xi ∈ R is a feature vector, v ∈ (0, 1) is the percent of outliers, ρ is the hyperplane
shift, l is the size of the training set, ξi are penalty variables.

Then, if w and ρ are the solution of the stated optimization problem, f (x) is a decision
function as can be seen in (2).

f (x) = sign(w ·Φ(x)− ρ). (2)

One-class SVM is often used for anomaly detection for various data types (including
log data), but uses only a part of the observations (located on the boundaries of the hyper-
plane), which does not allow taking into account all dependencies in the data. In addition,
this approach does not calculate the anomality degree of an individual feature vector. These
problems are solved by methods based on fuzzy clustering described below.

Note that the complexity of the classical One-class SVM method grows quadratically
with the number of records in data [22]. Therefore, it does not allow efficient processing of
large-volume logs. Therefore, iterative SVM [22] and deep learning SVM [23] approaches
are proposed.

Fuzzy clustering methods [20,21] build a fuzzy cluster after mapping the features
into a higher-dimensional space H with the kernel function Φ : RN → H.

In this case, for each object xi of the training sample, the degree of typicality ui is
determined according to the following rule [6] described in (3).

ui =

[
1 +

(
Di(a)

µ

) 1
m−1
]−1

. (3)

Here, µ is the cluster radius where feature vectors have the degree of typicality equal
to 0.5. It is calculated based on the distance from each object in the training sample to the
center of the cluster. m > 1 is a hyperparameter, a degree of fuzziness. Di(a) is the distance
from the feature vector Φ(xi) to the constructed center a of the cluster.

Based on the existing works [6], to construct clusters of a more complex shape, it is
necessary to use the Mahalanobis distance [24]. Di(a) is calculated as can be seen in (4).

Di(a) = ||Φ(xi)− a||2C = (Φ(xi)− a)T · C−1 · (Φ(xi)− a), (4)

where C is the cluster covariance matrix.
We let {xi ∈ RN |i = 1, . . ., N} be the final sample of training data. N is the number of

samples. Therefore, the task of constructing the fuzzy cluster is reduced to the optimization
problem as can be seen in (5).

min
U,a,µ

E(U, a, µ) =
N

∑
i=1

um
i · ‖Φ(xi)− a‖2

C + µ ·
N

∑
i=1

(1− ui)
m, (5)

Mathematics 2023, 11, 3995 5 of 23

where U is the set of degrees of typicality of feature vectors.
This approach builds a more accurate cluster for normal data, and also calculates

the degree of typicality of each feature vector. However, fuzzy clustering does not take
into account the relationship of individual events, which is a key moment in the log
mining problems. Therefore, the methods based on the Transformer architecture, which are
described below, are currently more efficient.

Deep learning methods [8,16,18,19] are divided into two main groups of approaches:
Transformers and convolutional neural networks. While the first approach uses the multi-
headed attention mechanism, the second one implements specific feature extraction using
convolution with a special filter.

Transformers [8,16,18] are autoencoders that map input features x = (x1, . . ., xn) to a
new representation z = (z1, . . ., zn). Then, the decoder performs the inverse transformation
of the constructed features z into the output data y = (y1, . . ., yn) from the original space.
At every step, the model uses recurrent neural networks [25].

Within this approach, the problem of masked language modeling is solved, which
consists of skipping individual events and their predictions based on the constructed
embedding for all other events in the block [16,18].

As for the encoder, a multi-head self-attention mechanism is used. Each head ht is a
result of attention A and is described in (6).

ht = A(X jWQ
l , X jWK

l , X jWV
l),

A(Q, K, V) = so f tmax
(

QKT
√

dv

)
V,

(6)

where X j ∈ RT·d is the embedding for a block of event descriptions with the size T · d;
WQ

l , WK
l and WV

l are linear mapping weight matrices of dimension Rd·dv for head number
T; dv is a size of one head. To reduce the complexity of calculations, it is proposed to use
the scaled dot-product attention [16,18].

The multi-headed self-attention mechanism performs a concatenation of all heads
(h1, . . ., hH) and a linear mapping into some new feature space. Then, to predict the skipped
event, a fully connected layer T with an activation function ReLU is used. The classic
Transformer architecture consists of several such layers T and builds an embedding for a
single event xj

t.
To solve the problem of anomaly detection in event blocks, two tasks are independently

solved: masked modeling of missed events and building a cluster of normal events [8].
However, the considered approaches have a number of disadvantages. First of all,

most of the approaches are used within the framework of binary classification [15], which
does not allow them correct application within the framework of the considered task.
Second, the Transformer architecture uses the recurrent neural networks and the attention
mechanism that is computed at every training step to predict the embedding of every
skipped event, which leads to significant computational overheads [16]. Therefore, an alter-
native approach based on building embeddings using convolutional neural networks is
more effective.

Convolutional neural networks (CNNs) [16,19,26,27] were originally used for text classifi-
cation and are based on feature extraction operation during convolution with a given filter.
The best results were obtained using a parallel convolution [26]. This approach was used
by the authors of this paper and adapted to detect anomalies in texts [19]. The essence of
the method is as follows.

We let D be a text document embedded with a model of token (word, letter etc.)
sequences. Therefore, D = x1:N = x1

⊕
. . .
⊕

xN . Here, N is the amount of terms in
the document; xi = (x1

i , x2
i , . . ., xM

i) ∈ RM is a token embedding with fixed size M ∈ N;⊕
is a concatenation operator; in general, xi:j = xi

⊕
xi+1

⊕
. . .
⊕

xj is a subsequence of
document D limited by the term indexes i and j.

Mathematics 2023, 11, 3995 6 of 23

CNNs are based on two main operations: the convolution and the pooling. We let H
be a subsequence (window) size, a hyperparameter. Therefore, the convolution applies
some linear transformation to each window using a filter w ∈ RH,M and a bias b ∈ R,
and then applies some non-linear activation function f to the result as described in (7).

zi = f (w · xi:i+H−1 + b). (7)

Then, the filter is applied to all existing windows of size H in D. So, the feature map
ẑ = (z1, z2, . . ., zN−H+1) is made.

After convolution, the pooling is performing. Therefore, for one filter, the most
important feature zH,1 from ẑ is selected. By varying the filters randomly, several features
for one filter size are formed, zH = (zH,1, zH,2, . . ., zH,K) ∈ RK, where K is the amount of
different filter sizes H. The parallel convolution uses the concatenation of independent
such convolutional layers using filters of different sizes. Therefore, after it, the concatenated
feature vector z ∈ RS is formed. S is a total size of features from all convolution layers:
S = K1 + K2 + . . . + KF, where Ki is a filter amount for one filter size with index i, F is a
number of independent convolutional layers.

To apply CNNs to the problem of anomaly detection, the authors propose the use of a
Dropout and a radial basis function as the output layer of the network [19] as can be seen
in (8).

fout(x) = exp−||z
′−c||2 , (8)

where z′ is the feature vector z after applying the Dropout on the last layer, c is the center of
normal data distribution, a fitted parameter; ||z′ − c|| is the Euclidean distance from z′ to c.

To avoid overfitting, using l2-regularization is proposed.
The loss function is described in (9).

L = Lclust + Ll2, (9)

where Ll2 is the error for l2-regularization, Lclust is the clustering loss function computed
by (10).

Lclust = −log(fout(x)). (10)

This approach builds a distribution center of the convolutional features and helps
to achieve good results in text anomaly detection more effectively than the Transformer
method. However, it allows the building of a cluster of only a simple form. Also, the mini-
mum cluster size is not limited, which can lead to trivial solutions and bad separations of
normal and anomalous data.

In addition, this approach uses ReLU as an activation function of the convolutional
layer, which leads to the non-normalized features, degrading the quality of the final classi-
fication. For modification, the self-normalizing neural networks proposed in [28] are used.
But this architecture is considered within the framework of the image classification problem.

For clustering, the authors use an exponential RBF (Radial Basis Function), which
also affects the quality of the algorithm. Paper [29] provides an overview of alternative
activation functions and methods to implement them in the existing architectures. However,
this approach is also used for image classification.

Other approaches to anomaly detection are also considered in the existing works [7,30–35].
In particular, paper [30] describes an approach based on the Principal Component

Analysis (PCA). It can be represented as a linear autoencoder that builds a feature descrip-
tion of the event block, and then minimizes information loss during the compression stage
using a linear decoder.

Paper [31] introduces the Isolation Forest (iForest) method which is an unsupervised
anomaly detection algorithm that represents features as tree structures.

Paper [32] describes a cluster approach for detecting log anomalies.
The DeepLog method is proposed in paper [7]. This method is a recurrent neural

network adaptation to detect anomaly patterns in the log data.

Mathematics 2023, 11, 3995 7 of 23

Paper [33] describes LogAnomaly, a unified log anomaly detection system that can
detect sequential and quantitative log anomalies.

However, article [8] provides a detailed assessment of the considered approaches, as a
result of which the authors conclude that these methods do not allow the achievement
of high classification quality compared to the Transformer-based LogBERT (Bidirectional
Encoder Representations from Transformers) approach proposed in the article.

Also, paper [34] describes the approach based on GAN (Generative Adversarial
Networks) architecture. And the VAE (Variational Autoencoder) is considered in [35].
However, based on the performed local experiments, it can be concluded that they do not
allow the achievement of good results in the considered task.

2. Materials and Methods

In this paper, we propose FuzzyCNN, a new approach to log anomaly detection, which
combines the advantages of convolutional neural networks and fuzzy clustering methods
described above and eliminates all the disadvantages of the methods described above.

The proposed approach is an autoencoder method that uses parallel convolution as an
encoder and a simple decoder to minimize information loss during encoding. For anomaly
detection, a modified layer with a radial basis function is used; it is based on fuzzy clustering
using the Mahalanobis distance.

An asymmetric autoencoder with parallel convolution and a fully connected decoding
layer generate features taking into account the order of events while minimizing encoding
losses. At the same time, the calculation is performed more efficiently than in the case of
the self-attention mechanism in Transformers.

The fuzzy clustering layer limits the minimum radius of the normal data cluster,
which makes it robust (resistant to outliers in the training sample). Also, the Mahalanobis
distance is used, which builds elliptical clusters and tracks more complex interconnections
in the data.

The proposed approach uses self-normalization methods [28] to make the solution
more robust.

The full architecture of the proposed approach is shown in Figure 2.

Figure 2. Architecture of the proposed approach. Each event in the block is encoded using One-hot
encoding and event pattern dictionary. Thus, each block is One-hot representation of the event.
Then, the parallel convolutional block generates a feature map, which is transferred separately to the
decoder and fuzzy RBF layers. At the decoder stage, the cosine similarity is computed to minimize
the information loss during the parallel convolutional encoding. In the Fuzzy RBF, we cluster data
to a fuzzy cluster. At the final stage, we accumulate the decomposition error of the decoder and
normality degree from the fuzzy RBF and obtain the final anomality score of the event block.

2.1. Log Collection

As for data collection, we use files generated by various systems. These files contain
text descriptions of events as a sequence of lines. Each line has the following format:
“!TIME! !ATTR! !TEXT DESCRIPTION!”. !TIME! is a timestamp for an individual event;

Mathematics 2023, 11, 3995 8 of 23

!ATTR! is some structural event information (event type, connected system etc.), and it can
be used for further analysis; !TEXT DESCRIPTION! is some unstructured event description
represented as text.

2.2. Log Parsing

At the log parsing stage, a regular expression is used. It highlights the text description
and attributes. To implement a universal solution, the authors single out only the iden-
tifiers of related subsystems as the attributes, while the rest of the information refers to
text description.

For example, let us look at the event record: “2023.02.02 16:01:11 INFO dfs.DataNode $
PacketResponder: PacketResponder 2 for block blk_123 terminating”. Here, the !TIME! is a
string “2023.02.02 16:01:11”; !ATTRIBUTES! are “2” and “blk_123”; !TEXT DESCRIPTION!
is a pattern: “!TIME! INFO dfs.DataNode$PacketResponder: PacketResponder !ID1! for
block !ID2! terminating” with !TIME!, !ID1! and !ID2! from !ATTR!.

2.3. Data Vectorization and Grouping

At this stage, textual information from !TEXT DESCRIPTION! is converted into a
structured form. For this, approaches based on the text mining are used [16,19]. The analysis
of the existing works and datasets showed that a simple One-hot encoding can be used for
these purposes, because the volume of the dictionary of unique text descriptions is small
(up to 1000 events) [16,19,30,36].

Also, as a vectorization algorithm, we can use random encoding as well as embed-
ding models (Doc2Vec, GloVe) [16,26]. They are considered at the stage of experimental
evaluation of the algorithm.

Thus, after vectorization, a dictionary of unique event descriptions is formed. For each
event, a structured description is built, including a One-hot embedding in accordance with
the index in the dictionary, to which a list of attributes obtained as a result of parsing is
added. Also, it is possible to use random event encoding [16,19,26], Doc2Vec and GloVe
models [16].

Therefore, each event is represented as a vector xi = (x1
i , x2

i , . . ., xM
i) ∈ RM with

an additional attribute vector x̂i = (x̂i
1, x̂i

2, . . ., x̂i
M1) ∈ X̂M1 that is used for grouping.

Here, M is the dictionary size; M1 is the attributes amount; X̂ is the attribute value set.
The authors use the union as a set of attributes: X̂ = R ∪ T. R is used for ID numeric
description while T is the set of strings describing the timestamp in the given format.

Further, for each event, a set of related attributes is considered, and the events are
combined into blocks by grouping based on this set. The authors use either grouping by
the number of events, or grouping by identifiers, followed by filtering by the number of
events to obtain blocks of a fixed size.

After vectorization and grouping, all attributes are discarded and the input data are
represented as a sequence of blocks D = (D1, D2, . . ., DK) containing descriptions of the
grouped events. Here, K is the size of D; each Di = (x1, x2, . . ., xN) ∈ RN,M is the block
embedding matrix; xi ∈ RM is the event embedding; N is a fixed event amount for each
block; M is a fixed size of unique event dictionary.

2.4. Convolution Neural Networks for Feature Extraction

At this stage, it is proposed to use the approach based on the operation of parallel
convolution [19]. The classic solution described above applies to text data. This paper
proposes its modification for the log mining.

Separate event blocks are used as text documents of event descriptions that can be
considered as tokens. For convolution, three parallel convolution layers with different filter
sizes are used. The architecture of the convolution block is shown in Figure 3.

Mathematics 2023, 11, 3995 9 of 23

Figure 3. Architecture of the convolution block. The block embedding matrix is transferred to each
convolutional layer separately. Max pooling layer also follows each convolutional layer. After that,
the outputs of the each pair of layers (convolution, max-pooling) are concatenated to a feature map.
This feature map can be considered as a target event block embedding vector.

As in the base approach, for each convolutional layer, we apply the transformation
described in (7). To normalize the features, the authors propose to use SELU [28] as an
activation function that is a modification of the ReLU described in (11).

SELU(x) = λ ·
{

x, if x > 0,
α · ex − α, if x ≤ 0.

(11)

For the correct work of the convolution, the authors propose to use the LeCun initial-
izer, which is also a part of the self-normalizing networks [28].

Thus, during the transformation by each filter w with the size H for each convolutional
layer, a single feature ẑi for an event window xi:i+H−1 is formed as can be seen in (12).

ẑi = SELU(w · xi:i+H−1 + b), (12)

where w ∈ RH,M is a filter and b ∈ R is a bias for the current filter. Thus, in the process
of applying a filter of a certain size to one subsequence of events of length H, we actually
combine information about events and their relationships within the subsequence, generat-
ing a single value for each such subsequence—an informative description (embedding) of
the subsequence. Next, we apply the filter to all possible nearby subsequences of length H,
resulting in an entire feature vector. Further, in the process of pulling, we extract the most
significant information, leaving only the maximum feature.

Theoretically, the proposed function SELU provides more stable features. Also, exper-
imental estimation of these function is performed. We compare SELU and the ReLU (it is
widely used at convolutional layers in the existing works [19,26]) as an activation function
of each convolutional layer. These experiments are described below.

By setting hyperparameters F ∈ N (number of independent convolution layers),
K ∈ N (number of filters per a layer), and H = (H1, H2, . . ., HF) (a filter size array, Hi is a
filter size for layer numbered i), we can build the final parallel convolution architecture.
By combining all the features from all layers, filters and windows, we obtain the final
feature map z for a block of events, as can be seen in (13).

z = (z1, z2, . . ., zS) ∈ RS. (13)

Mathematics 2023, 11, 3995 10 of 23

Here, S ∈ N is the total feature amount and it is described by (14).

S = K ·
F

∑
i=1

(N − Hi + 1). (14)

Taking into account the requirement that the convolution is performed correctly (the
size of each filter should not exceed the total size of the event block), this expression can be
rewritten as can be seen in (15) and (16).

S = K ·
(

N · F + F−
(

F

∑
i=1

Hi

))
, (15)

∀i = 1, . . ., F =⇒ Hi ≤ N. (16)

2.5. Asymmetric Decoder to Minimize Information Loss When Extracting Features

To minimize the information loss during convolution, the authors propose to use a
decoder that restores the original block event description from convolution features while
calculating the reconstruction error. For these purposes, a cosine similarity is used because
it shows good results in the complex structured data analysis [16].

The performed experiments show that an ordinary fully connected layer demonstrates
good results. Thus, as a result of the work of the decoder for each jth block, an estimate qj
of the compression quality is formed as can be seen in (17).

qj = cos (D f
i , D̂i),

D f
i = xi

1 ⊕ xi
2 ⊕ . . .⊕ xi

N ,

D̂i = ReLU(z · wd + bd).

(17)

Here, D f
i ∈ RM·N is a flattened representation of block Di = (xi

1, xi
2, . . ., xi

N); D̂i ∈
RM·N is the flattened block Di representation reconstructed by the decoder; z is the feature
map described in (13); wd ∈ RS,M·N is the weight matrix and bd is the bias for the linear
mapping in the decoder; ReLU is the decoder activation function. The choice of one layer
of the decoder and the use of ReLU as the activation function is based on the experiments
carried out, which are described below.

Also, ⊕ is a concatenation operator and cos is a cosine such as ∀X, Y ∈ RM : X =
(X1, . . ., XM), Y = (Y1, . . ., YM) =⇒ (18).

cos (X, Y) =
X ·Y
‖X‖‖Y‖ =

∑M
i=1 Xi ·Yi

∑M
i=1 X2

i ·∑
M
i=1 Y2

i
,

X⊕Y = (X1, . . ., XM, Y1, . . ., YM) ∈ R2·M.

(18)

At the same time, the closer the value of the cosine similarity is to 1, the greater the
accuracy of the performed reconstruction. Thus, qj needs to be maximized for each event
block during the training process. This approach based on the cosine measure of similarity
is widely used in the problems of constructing an informative vector representation of text
data [16]. It is based on a vector data model and the assumption that similar texts will
be described by similar vectors. Vectors are considered similar if the angle between them
is sufficiently small, i.e., the cosine is close to 1. The lengths of vectors are not taken into
account since, as a rule, models for constructing an informative vector representation use
normalized vectors. In our task, each block is represented by a sequence of text descriptions
of events, the vector representation of which is also normalized. Therefore, this approach
can be used in our work. An illustration of this method is shown in Figure 4.

Mathematics 2023, 11, 3995 11 of 23

Figure 4. Illustration of the cosine similarity. The Figure is taken from [37].

When training in a One-class mode, the autoencoder builds embeddings for normal
data more correctly, while for anomalous data, the cosine value is close to 0.

However, this solution is not stable against outliers and requires an additional robust
layer to solve anomaly detection problems.

2.6. Fuzzy Clustering and Anomaly Detection

To solve the problem of anomaly detection, the authors propose to consider a modifi-
cation of the fuzzy clustering method for the constructed convolutional features.

Based on the existing work [6], we propose our own network layer that determines the
distribution of normal data by introducing a distribution center as a trainable parameter,
as well as a positive definite covariance matrix to calculate the Mahalanobis distance. Also,
additionally trainable is the µ parameter that controls the degree of fuzziness. Thus, in this
layer, typicality degree uj is calculated for a block numbered j with feature map z as can be
seen in (19) and (20).

uj =

1 +
(dj(a)

µ

) 1
m−1

−1

, (19)

dj(a) = ‖Φ(z(j))− a‖2
C = (Φ(z(j))− a)T · C−1 · (Φ(z(j))− a). (20)

Here, dj is the Mahalanobis distance; uj is the degree of typicality; Φ is a kernel function
for transformation of the feature space into a higher-dimensional space H, Φ : RS → H;
a ∈ H is the center of a normal data cluster; C is a covariance matrix; µ is the cluster radius
mentioned in (3); a, C > 0 and µ > 0 are trainable parameters (to achieve µ > 0, we can
assume µ = µ̂2 + ε where µ̂ ∈ R is a simple trainable parameter without any constraints,
ε ∈ R is a small constant; for example, we can use ε = 10−3; as for C > 0—a covariance
matrix—we can use a diagonal matrix with non-negative values, so we can fit vector c ∈ H
of positive real values, each of which can also be represented as the sum of the square of
the actually trained parameter and some small number ε). In the course of the experiments
carried out below, it is necessary to consider various kernel functions Φ considered in
papers [6,29]. Also, it is necessary to experimentally compare the Mahalanobis distance
and other metrics. And, finally, we need to define the initial values for trainable parameters
a, C > 0 and µ > 0.

As mentioned above, the Mahalanobis distance allows a more accurate determina-
tion of the distribution of normal data, determining not only the center of the distribution,
but also the covariance matrix. Due to this, it is possible to build elliptical clusters. An exam-
ple of clustering using Euclidean distance and Mahalanobis distance is shown in Figure 5.

Mathematics 2023, 11, 3995 12 of 23

Figure 5. Illustration of the Euclidean-distance- (on the left) and the Mahalanobis-distance (on the
right)-based clustering. The Euclidean distance allows to build only a round cluster (marked in blue)
while the Mahalanobis distance allows building a more complex elliptical cluster (marked in green).

After this stage, uj ∈ (0, 1) is formed. It is the degree of typicality for the block
numbered j. Therefore, the larger this value, the more typical the object for the training set.

Thus, we can combine this value with the value of the cosine measure of similarity,
obtaining the final estimate of the normality of the data yj as can be seen in (21).

yj = qj · uj. (21)

This value reaches its maximum at qj = 1, uj = 1 when the data are normal and
correctly transformed by the convolution. Therefore, it is necessary to maximize yj in the
network training process.

Thus, when training the proposed solution in the One-class classification mode, we
build a model of the system normal behavior that describes the patterns of normal behavior
based on the training data. At the same time, we try to bring the normality estimate yj
for each block of events from the training sample closer to the value equal to 1. When
applying the model to new data, we obtain a single number at the output of the neural
network—the normality score of this block. This score shows the ways in which the given
block of events corresponds to the normal system behavior model. The higher these values,
the more typical the block.

In order to accurately determine whether a block is normal or abnormal, it is necessary
to compare this estimate with some threshold, which is determined by the specific dataset
being used. The problem of choosing the threshold is a separate problem of the proposed
approach evaluation and is not considered in the current paper.

2.7. Regularization

To avoid overfitting, it is proposed to use n-regularization, as well as Dropout in the
input of the fuzzy layer. At the same time, to improve the stability of the self-normalizing
part, the authors use the AlphaDropout [28].

Mathematics 2023, 11, 3995 13 of 23

2.8. Training

At the network training stage, the minimization problem is solved that is described
in (22)–(24).

min
w,b,a,C,µ

L(w, b, a, C, µ), (22)

L(w, b, a, C, µ) =
F

∑
i=1

(
Li

l2

)
+ L f uzzy + Lout, (23)

C > 0 ∈ RS,S, µ > 0 ∈ R. (24)

Here, w is a matrix of all weights from the network; b is a vector of all matrix biases;
a is a normal data cluster center; C is a positive definite covariance matrix; µ is a positive
parameter of fuzzy clustering. Li

l2 is a l2-regularization loss function with convolution
layer numbered i. L f uzzy is the loss function from the fuzzy layer. Lout is the loss function
for the network output.

To solve this problem, the authors use the RMSProp (Root Mean Square Propagation)
algorithm [38] with an exponential decay.

Therefore, the network training takes place in several epochs. At the same time, at each
epoch, the initial training sample D is randomly divided into a finite set of batches as can
be seen in (25).

D = B1 ∪ B2 ∪ . . . ∪ BR,

∀i, j = 1, . . ., R =⇒ Bi ∩ Bj = {∅},
∀i = 1, . . ., R =⇒ Bi ⊆ (P(D)\{∅}),

P(D) = {X|X ⊆ D}.

(25)

For each batch Bj = (D1, D2, . . ., DV), the problem described in (22) is solved. In this
case, the functions L f uzzy and Lout from (23) are calculated as described in (26).

L f uzzy =
V

∑
i=1

(ui · di(a)),

Lout =
1
V

V

∑
i=1

(yi − 1)2.

(26)

Here, V is the batch size; ui is the typicality degree of the ith block Di from the batch
described in (19); yi is the network output for block Di as can be seen in (21).

Thus, in the process of the neural network training, the authors build the distribution
of normal data while trying to reach the final estimate of the normality of each block from
the training sample closer to the maximum value (it is equal to 1).

2.9. Evaluation Metrics

In some existing works [1,4,8], it is proposed to use as evaluation metrics such func-
tions as accuracy, precision, recall, F1-score, etc. However, these papers propose algorithms
that classify data as normal or abnormal. The decision about anomalous data is based on
comparing the obtained anomality score with a certain threshold, the value of which can
be varied depending on the task. In our paper, we propose a generalized approach that
builds only an anomality score. Thus, non-threshold methods are used to evaluate it.

To evaluate our approach, it is proposed to use the integral quality metrics ROC
AUC (Area Under Receiver-Operating-Characteristic Curve) and PR AUC (Area Under
Precision–Recall Curve), which are widely used in the existing works [6,9,19]. At the same
time, in order to obtain a reliable estimation, it is proposed to evaluate the distribution of
metrics on various subtasks.

Mathematics 2023, 11, 3995 14 of 23

2.10. Materials

During the study of the existing works, the Loghub resource was found [39]. It contains
various datasets for solving a large number of tasks related to the log data analysis. The exist-
ing works related to the detection of system log anomalies were also analyzed [1,4,6,11,40–42].
Based on the analysis, the following datasets were selected, which contain a sufficient
number of anomalies for training the proposed solution and are used in most of the consid-
ered works:

1. HDFS1 (Hadoop Distributed File System). This dataset is a file containing textual
descriptions of events occurring on more than 200 Amazon EC2 nodes. In total, it
contains about 11 million events. Each event description contains a block ID—an
associated subsystem identifier that can be used to group events. The dataset contains
the marking of blocks into anomalous and normal [30].

2. BGL (Blue Gene/L). This dataset is a file containing information about events occur-
ring in the BlueGene/L system. In total, it contains about 5 million events. At the
same time, the dataset contains information about marking each event as normal or
abnormal [36].

3. Villani. This dataset is a file containing textual descriptions of keystroke events by
individual users collected during their computer work. In total, this dataset contains
information about the order of 2 million events, which are key presses and releases for
144 different users [40–42]. For this dataset, it is necessary to build a separate model
for each user, while events from a current user are considered as normal, and events
from all other users are anomalies [6].

3. Results

To evaluate the proposed solution on the selected datasets, we need to select the
hyperparameter values of the approach and also compare the proposed solution with the
considered existing approaches based on the constructed evaluation criteria. It is also
necessary to evaluate the proposed solution in case of adding random outliers (anomalous
blocks of events) to the training sample to confirm the robustness of the solution.

3.1. Evaluation Metrics

As mentioned above, we use ROC AUC and PR AUC as evaluation metrics. At the
same time, the distribution of metrics is built dividing the task into separate subtasks. This
split is dataset dependent, as described below.

For HDFS1 and BGL datasets, it is proposed to use bootstrapping of the test sample
into separate subsamples and to calculate metrics for them.

In the Villani dataset, the anomaly criterion corresponds to a specific user. Therefore,
in this task, a separate model for each user is built. At the same time, both the data of the
current user (they are marked as normal) and the data of other users (they are marked
as anomalous) are used in validation and test samples. For each model, the considered
metrics are calculated.

3.2. Experimental Setup

This section describes the specificity of applying individual algorithms to the consid-
ered datasets.

3.2.1. Log Collection

For each dataset, the log is a text file consisting of event records sequence. Each entry
contains a timestamp and some textual description. For example:

1. HDFS1: “2023-02-02 20:55:54 INFO dfs.DataNode$DataXceiver: Receiving block
blk_5792489080791696128 src: /10.251.30.6:33145 dest: /10.251.30.6:50010”;

2. BGL: “2005-06-03-15.42.50.363779 R02-M1-N0-C:J12-U11 RAS KERNEL INFO instruc-
tion cache parity error corrected”;

Mathematics 2023, 11, 3995 15 of 23

3. Villani. This dataset is a .csv-file consisting of information about user, system, a key
code and timestamp of the key pressed and released.

3.2.2. Log Parsing

For the HDFS1 and BGL datasets, the authors use parsing by the regular expression
highlighting timestamp and text description. As for HDFS1, each event corresponds to
the block number, which is also allocated. As for BGL, some events are duplicated several
times (for reasons of reliability), so it is proposed to filter them.

In the Villani dataset, each record is divided into two events: pressing and releasing
a key, described by the key code, the event type (pressing/release), timestamp of the
corresponding event and the username. It is proposed to construct an event name using
the key code and the type of event (pressing/releasing). Thus, the final preprocessed file
contains a set of records including a timestamp, event name (made on the key code and
pressing/releasing type) and username.

3.2.3. Feature Extraction

As for feature extraction, the authors use One-hot encoding that builds a dictionary of
unique events. Next, the events are grouped as shown below.

1. HDFS1.

(a) Dictionary size: 75.
(b) As for grouping, the authors use the number of an event block. To build fixed

size groups, the first 20 events in each block are selected. For blocks smaller
than 20, a special event !EMPTY EVENT! is added the required number of
times. This event is also added to the dictionary.

2. BGL.

(a) Dictionary size: 728.
(b) Since the dataset contains information about the anomaly of individual events,

it is proposed to solve the problem of predicting the onset of an anomalous
event. Data are combined into groups of five events using a sliding window.
Then, the result of the work of the solution is the anomality degree of the
next event.

3. Villani.

(a) Dictionary size: 446 (223 separate keys with two event types for each key).
(b) Events for each username are grouped into groups of size 100 using a sliding

window. For the correct work of the network, 14 users are selected with at least
312 blocks (312 is the 90% percentile in terms of data volume for all users).

3.2.4. Anomaly Detection

As for anomaly detection, it is necessary to build an anomaly criterion for each dataset
as shown below.

1. HDFS1: blocks are considered anomalous if they are marked as anomalous in the original
dataset.

2. BGL: anomalous blocks are those that immediately precede the event marked as anomalous in
the original dataset.

3. Villani: blocks associated with users not included in the training sample are considered
abnormal.

3.3. Technical Characteristics

The authors run all experiments on a Linux server with AMD EPYC 7532 32-CPU
and 256GB DDR4 RAM, on which Ubuntu 20.04.4 with Linux kernel 5.4.0-153-generic is
running. For greater efficiency, the authors use NVIDIA RTX A6000 GPU with 48 GB RAM.

Mathematics 2023, 11, 3995 16 of 23

3.4. Evaluation

To evaluate the proposed solution, it is necessary to divide the initial datasets into
training, validation and test sets. The network is trained on the training set. At validation,
the ROC AUC and PR AUC are estimated for the selection of hyperparameter values. As for
final estimation, the specified metrics are calculated on the test set.

For the HDFS1 and BGL datasets, it is necessary to specify the number of subsamples
into which the test sample is divided to estimate the metrics distribution on a test sample.
The volumes of the indicated samples for datasets and subsample amount are indicated in
Table 1.

Table 1. Sample Size Description for HDFS1 and BGL Datasets.

Value HDFS1 BGL

Train 601,576 541,385

Validation Normal blocks 3367 4263
Anomalous blocks 3367 4263

Test
Normal blocks 13,471 17,053

Anomalous blocks 13,471 17,053
Subsample amount 10 10

As for the Villani dataset, we build an each-against-each model. For each user, Ntrain is
considered equals to 80% of the user data as a training sample, Nval is considered equal to
4% as a validation sample, and Ntest—16% of the all user data as a test sample. Next, for all
other users, Ntrain, Nval , and Ntest data samples are selected for the training, validation
and test sets. Then, for each user, hyperparameter values are tuned on the corresponding
validation set and target metrics are calculated. Thus, the final distribution of metrics for
all pairs of users is formed.

3.4.1. Evaluation of the Encoder

At the validation stage, the following hyperparameter values are tuned:

1. F—number of independent convolution layers. For all datasets, F = 3;
2. H = (H1, H2, . . ., HF) ∈ H—filter sizes for each convolution layer (Hi is a filter size

for layer numbered i). This parameter must fulfill the constraint described in (16);
3. K ∈ K—number of filters per layer. This value greatly affects the complexity of the

network, so it should not be very large. In addition, to optimize the running time of
the proposed solution on a GPU with the mixed precision, it is proposed to consider
only values that are multiples of eight, as shown in [43];

4. εL2 ∈ E—is the l2-regularization constant to compute L1
l2, L2

l2, and L3
l2 in (23).

Also, within the framework of this evaluation, an experimental study of the existing
approaches to the vectorization of individual events is carried out. One-hot encoding,
random encoding and approaches to constructing informative embeddings (Word2Vec,
GloVe) are considered.

For each dataset, we consider the next values of hyperparameters: F = 3;
K = {8, 16, 32, 64, 128}; E = {0.001, 0.01, 0.1, 0.2, 0.5, 0.9, 0.99}. The N (an event block
size) and H values are described in Table 2.

Table 2. The N and H Hyperparameter Values.

Dataset N HHH

HDFS1 20 {(3, 4, 5), (5, 10, 15), (10, 11, 12), (12, 15, 17)}
BGL 5 {(2, 3, 4)}

Villani 100 {(2, 3, 4), (10, 20, 30), (20, 30, 50), (30, 50, 70)}

Mathematics 2023, 11, 3995 17 of 23

Also, during the experimental evaluation, as mentioned above, different activation
functions of convolutional layers are evaluated. The function ReLU that is used in most
works describing similar solutions [19,26], as well as a new function SELU [28] proposed
in this paper, are considered. The experiments are carried out for the network architecture
from which the Fuzzy layer is removed. Only one layer is used as a decoder. On the
validation sample, the number of training epochs and the batch size are selected. Further,
on test subsamples, the median values of the target metrics (ROC AUC and PR AUC) are
estimated. As a result of the experiments carried out on all datasets, the best results are
obtained using the proposed function SELU.

Based on the results of the experiments, the following hyperparameter values are
chosen for the convolutional part:

1. HDFS1. F = 3, K = 16, H = (10, 11, 12), εL2 = 0.001;
2. BGL. F = 3, K = 64, H = (2, 3, 4), εL2 = 0.99;
3. Villani. F = 3, K = 64, H = (20, 50, 70), εL2 = 0.99.

We also find out that for each dataset, a small increase is offered by the GloVe-based
approach. However, this approach offers a slight increase in the value of the metrics
compared to One-hot encoding while being computationally complex (a separate model
needs to be built and applied). Therefore, as an approach to vectorization, we stopped at
the use of One-hot encoding.

3.4.2. Evaluation of the Decoder

Further, experiments to consider different types of decoders are carried out. Various
architectures used in existing works (fully connected layers, recurrent layers, convolutional
networks) are considered. Experiments are also carried out on an architecture without
a fuzzy layer; parallel convolution with the described selected parameters is used as an
encoder. Further, on test subsamples, the median values of the target metrics are estimated.
According to the results of the experiments, the best result is obtained on a conventional
fully connected decoder.

Next, an evaluation of the number of layers in the decoder is conducted. The results
of the carried out experiments are shown in Table 3.

Table 3. Comparison of the different layers amount of the fully connected decoder. The comparison
is carried out on an architecture without a fuzzy layer.

Dataset Layers
Amount ROC AUC PR AUC

Median Q1 Q3 Median Q1 Q3

HDFS1
1 0.73 0.711 0.734 0.752 0.744 0.754
2 0.734 0.713 0.735 0.753 0.749 0.755
3 0.729 0.727 0.731 0.751 0.749 0.753

BGL
1 0.684 0.681 0.687 0.697 0.695 0.713
2 0.685 0.682 0.686 0.698 0.696 0.711
3 0.683 0.682 0.685 0.695 0.694 0.696

Villani
1 0.631 0.59 0.645 0.657 0.643 0.667
2 0.655 0.631 0.671 0.678 0.666 0.682
3 0.641 0.637 0.648 0.662 0.66 0.664

As we can see, increasing the number of layers does not offer a significant increase in
accuracy on all considered datasets. Therefore, in the final architecture, it is proposed to
use only one fully connected layer.

In addition, we see that the metric values obtained only with the help of the autoen-
coder are quite low, which does not allow the use of this approach to solve the problem

Mathematics 2023, 11, 3995 18 of 23

of detecting the pre-failure state of the system. Therefore, it is necessary to improve the
proposed approach with the addition of a Fuzzy layer.

3.4.3. Evaluation of the Fuzzy Layer

To evaluate the fuzzy layer, the parameters of the fuzzy clustering layer are selected.
In particular, the following parameter values are considered:

1. Fuzziness degree m in (19): m ∈ {X|X = 1 + 0.1 · i, i = 1, 2, . . . , 10};
2. Kernel function Φ in (20). Here, various types of radial basis functions are considered

based on the review carried out in work [29]. Sigmoidal, linear and quadratic functions
are considered;

3. Distance function dj(a) in (20). The classical Euclidean distance and the Mahalanobis
distance are considered;

4. Algorithms for initializing trainable parameters µ, a and C (for Mahalanobis distance).
Initializers based on normal distribution and constant initializers are considered. They
are used in the existing works on similar topics [19,26].

The selection of parameters is based on the validation dataset. As the parameters of
the convolutional asymmetric decoder, the parameters that offer the best result based on
the experimental study carried out in the previous chapter and described earlier are used.

Based on the experiments, it is found that the following parameters are the best for
all datasets:

1. m = 2;
2. Φ(x) = x;
3. For the initial value of parameter a, the best initializer is based on a continuous

uniform distribution with mean equal to zero and variance equal to one; for the initial
value of parameter C, a constant identity diagonal matrix is used (stored as a vector of
diagonal values); for the initial value of the parameter µ, the best as the initial value is
the constant zero;

4. As a distance metric, the Mahalanobis distance shows the best results, which allows
building an elliptical-shaped normal data cluster.

3.5. Comparison with Existing Approaches

To compare the proposed solution, the authors decided to use three existing ap-
proaches: One-class SVM, Fuzzy and LogBERT (a Transformer).

We also considered architectures based on GAN and VAE, but they did not show good
results in preliminary experiments.

During the experiments, the authors found out that SVM and fuzzy methods showed
the best results when encoding blocks of events in the form of an event set model: for the
One-class SVM, the best block embedding was the sum of the One-hot representations of
individual events; for the fuzzy method, the TF-IDF (Term Frequency-Inverse Document
Frequency) representation became the best. The LogBERT approach is based on the Trans-
former architecture described above and uses the sequence model as an embedding for the
event block. In this case, an event index vectorized using a sinusoid was added to each
One-hot representation of a single event. For all algorithms, hyperparameter values were
tuned on a validation sample, as described above. The considered hyperparameter values
are presented below.

1. One-class SVM:

(a) Kernel activation function F ∈ {RBF, polynomial, linear};
(b) Parameter γ of the RBF kernel γ ∈ {X|X = 0.1 · i, i = 1, 2, . . ., 9}.

2. Fuzzy:

(a) Degree of fuzziness m ∈ {X|X = 1 + 0.1 · i, i = 1, . . ., 10};
(b) Outliers percent n ∈ {X|X = 0.05 · i, i = 1, 2, . . ., 10};
(c) Parameter γ of the RBF kernel γ ∈ {X|X = 0.1 · i, i = 1, 2, . . ., 9}.

Mathematics 2023, 11, 3995 19 of 23

3. LogBERT:

(a) The amount of Transformer layers NT ∈ {2, 3, 4};
(b) Token embedding size M ∈ {X|X = 50 · i, i = 1, 2, . . ., 5};
(c) Hidden state embedding size H ∈ {16, 32, 64, 128, 256};
(d) Masked event percent pm for each block pm ∈ {X = 0.05 · i, i = 1, 2, . . ., 15};
(e) The number of candidates g for determining the anomality degree of the

predicted event g ∈ {X = 5, 6, . . ., 17}.
According to the experimental comparison of the considered existing approaches,

the best result was shown by the LogBERT algorithm. Its comparison with the proposed
approach is shown in Table 4.

Table 4. Comparison of the Proposed Approach with the LogBERT algorithm.

Dataset Approach ROC AUC PR AUC

Median Q1 Q3 Median Q1 Q3

HDFS1 LogBERT 0.9 0.894 0.907 0.901 0.898 0.911
FuzzyCNN 0.973 0.971 0.974 0.97 0.969 0.972

BGL LogBERT 0.908 0.901 0.912 0.898 0.893 0.901
FuzzyCNN 0.939 0.934 0.94 0.921 0.916 0.926

Villani LogBERT 0.8 0.781 0.81 0.821 0.819 0.824
FuzzyCNN 0.856 0.843 0.863 0.867 0.855 0.87

As can be seen, the median values of all metrics on all datasets as well as the values
of Q1 and Q3 determining the range of metrics distribution are higher for the proposed
method than for the Transformer algorithm, which showed the best result among the
existing solutions.

In addition, we see that the range between Q1 and Q3 in all experiments is small,
which indicates that the solution allows the obtention of almost the same result on all
considered subsamples.

3.6. Robustness Estimation

To explore the robustness of the outlier approach, the authors added anomalous data
to the training set, labeling them as normal. The anomalous data were taken from the
original test set and were not used during the testing phase. As outliers, the authors
used a certain percentage (20% and 50%) of all anomalous events that were added to the
training set. Further, all experiments were carried out in the same way as described above.
The results of experiments are shown in Table 5.

Table 5. Robustness Estimation of the Proposed Approach.

Dataset Percent ROC AUC PR AUC

Median Q1 Q3 Median Q1 Q3

HDFS1 0.2 0.959 0.955 0.963 0.958 0.953 0.963
0.5 0.937 0.933 0.94 0.944 0.94 0.949

BGL 0.2 0.846 0.844 0.85 0.872 0.871 0.874
0.5 0.805 0.8 0.81 0.845 0.843 0.848

Villani 0.2 0.823 0.81 0.825 0.831 0.829 0.841
0.5 0.78 0.767 0.792 0.793 0.787 0.799

As can be seen from the experiments, the quality of the algorithm decreases with an
increase in the amount of outliers, which is logical (because they shift the distribution of
training data). However, even with a relatively large number of outliers, the quality of

Mathematics 2023, 11, 3995 20 of 23

the algorithms on the average does not significantly decrease on some considered datasets
(on the HDFS1 dataset, values of the PR AUC and ROC AUC metrics drop by 3–4%; for
Villany—by 9%). As for the BGL dataset, ROC AUC and PR AUC values drop by 15%
for 50% outliers and drop by 10% for 20% outliers. Thus, the proposed solution can be
considered as robust.

4. Discussion

This section presents an analysis of the results obtained in comparison with the existing
approaches, considering their accordance to the following criteria of scientific importance:
difference from known results and scientific novelty.

The existing classical approaches to unsupervised anomaly detection do not allow
achieving high accuracy [6,8,21]. In addition, most approaches based on building a cluster
of normal data [5] build only a simple cluster, which does not allow taking into account all
the necessary information about the collected data. In this paper, we propose to introduce
our own fuzzy layer based on [6] using the RBF kernel and the Mahalanobis distance,
which makes it possible to build elliptical clusters.

In addition, the running time of the existing approaches has a quadratic dependence
on the amount of data [22,23], which makes them inapplicable to log data, which can be
very large. More efficient are approaches based on the architecture of the Transformer [8].
However, they use the self-attention operation [16,18], which also significantly increases the
time complexity of the algorithm. The proposed solution is based on a parallel convolution
operation and an asymmetric autoencoder with a simple fully connected decoder, which
can significantly reduce the overheads [16].

Based on the results of the experimental studies, we can conclude that the proposed
solution to the unsupervised anomaly detection problem in logs for computer security
and reliability tasks allows us the obtention of better results compared to the existing
approaches [5,6,8] for all considered datasets [30,36,40–42].

The scientific novelty of the work consists in the proposed new approach for con-
structing features for descriptions of event blocks based on an asymmetric self-normalized
autoencoder with parallel convolution in the encoder and a fully connected decoder and a
proposed new approach to unsupervised anomaly detection in log data based on fuzzy
elliptic clustering of convolutional features.

Further Research

In this paper, we consider the approach that only allows estimation of the typicality
score of event blocks. As a result of the work, a certain value is obtained—the typicality
score. To make a final decision about the presence of anomalies in the considered block,
it is necessary to compare the score with a certain threshold. This threshold is highly
dependent on the specific systems under consideration and may vary depending on the
task. The study of the threshold is beyond the scope of this paper and will be considered in
future research.

In addition, this paper proposes the new approach to determining the typicality
score of system log data. Its theoretical and experimental evaluation is given. A more
detailed study of the approach, including the study of the limitations (computational
complexity, number of parameters and running time for various data volumes) and practical
implementation of the anomaly detection system, will be carried out in future research.
Also, we are planning to adapt the solution for analyzing a wider class of data, non-
structured data (texts in particular), to solve the anomaly detection problem.

5. Conclusions

In this paper, the authors propose a new approach to unsupervised anomaly detection
in system logs based on the use of the Fuzzy CNN asymmetric autoencoder. A detailed
description of the proposed approach is given, as well as its qualitative evaluation and

Mathematics 2023, 11, 3995 21 of 23

experimental comparison with the existing solutions. As a result of the experiments,
the authors obtain the following values of classification quality metrics:

1. HDFS1 dataset. Median ROC AUC = 0.973, median PR AUC = 0.97;
2. BGL dataset. Median ROC AUC = 0.939, median PR AUC = 0.921;
3. Villani dataset. Median ROC AUC = 0.856, median PR AUC = 0.867.

Stability evaluation of the approach to outliers is also presented. Based on the experi-
mental results, we can conclude that even when outliers are added to the training sample,
the proposed approach also shows good results: with the addition of 20% outliers to the
training sample, the quality of the final algorithm drops by no more than 10%.

According to the results of the experiments, it can be concluded that the proposed
solution is resistant to outliers.

Therefore, the fast parallel convolution operation and the fully connected decoder used
make it possible to obtain a more efficient solution compared to the existing Transformer
architecture and classical approaches.

Author Contributions: Conceptualization, M.P. and I.M.; methodology, O.G., M.P. and M.K.; soft-
ware, O.G. and M.K.; validation, O.G., I.M. and M.K.; formal analysis, O.G., M.P. and M.K.; inves-
tigation, M.P. and I.M.; resources, M.P. and I.M.; data curation, O.G. and M.K.; writing—original
draft preparation, O.G. and M.K.; writing—review and editing, M.P. and I.M.; visualization, O.G.;
supervision, M.P.; project administration, I.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Non-commercial Foundation for the Advancement of Science
and Education “INTELLECT”.

Data Availability Statement: Datasets which were used in this paper: HDFS1 and BGL can be
downloaded from the links https://github.com/logpai/loghub/tree/master/HDFS (accessed on
1 August 2023) and https://github.com/logpai/loghub/tree/master/BGL (accessed on 1 August
2023). The Villani dataset and the research computer code are available on request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Chen, Z.; Liu, J.; Gu, W.; Su, Y.; Lyu, M.R. Experience report: Deep learning-based system log analysis for anomaly detection.

arXiv 2021, arXiv:2107.05908.
2. Wang, B.; Hua, Q.; Zhang, H.; Tan, X.; Nan, Y.; Chen, R.; Shu, X. Research on anomaly detection and real-time reliability

evaluation with the log of cloud platform. Alex. Eng. J. 2022, 61, 7183–7193. [CrossRef]
3. Landauer, M.; Skopik, F.; Wurzenberger, M.; Rauber, A. System log clustering approaches for cyber security applications: A

survey. Comput. Secur. 2020, 92, 101739. [CrossRef]
4. He, S.; Zhu, J.; He, P.; Lyu, M.R. Experience report: System log analysis for anomaly detection. In Proceedings of the 2016

IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016;
pp. 207–218.

5. Manevitz, L.M.; Yousef, M. One-class SVMs for document classification. J. Mach. Learn. Res. 2001, 2, 139–154.
6. Kazachuk, M.; Petrovskiy, M.; Mashechkin, I.; Gorohov, O. Novelty Detection Using Elliptical Fuzzy Clustering in a Reproducing

Kernel Hilbert Space. In Proceedings of the Intelligent Data Engineering and Automated Learning–IDEAL 2018: 19th International
Conference, Madrid, Spain, 21–23 November 2018; Proceedings, Part II 19; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 221–232.

7. Du, M.; Li, F.; Zheng, G.; Srikumar, V. Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 1285–1298.

8. Guo, H.; Yuan, S.; Wu, X. Logbert: Log anomaly detection via bert. In Proceedings of the 2021 International Joint Conference on
Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8.

9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
10. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407.

https://github.com/logpai/loghub/tree/master/HDFS
https://github.com/logpai/loghub/tree/master/BGL
http://doi.org/10.1016/j.aej.2021.12.061
http://dx.doi.org/10.1016/j.cose.2020.101739
http://dx.doi.org/10.1145/1541880.1541882

Mathematics 2023, 11, 3995 22 of 23

11. Yadav, R.B.; Kumar, P.S.; Dhavale, S.V. A survey on log anomaly detection using deep learning. In Proceedings of the 2020 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,
India, 4–5 June 2020; pp. 1215–1220.

12. Mi, H.; Wang, H.; Zhou, Y.; Lyu, M.R.T.; Cai, H. Toward fine-grained, unsupervised, scalable performance diagnosis for
production cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 1245–1255. [CrossRef]

13. Liu, Y.; Zhang, X.; He, S.; Zhang, H.; Li, L.; Kang, Y.; Xu, Y.; Ma, M.; Lin, Q.; Dang, Y.; et al. Uniparser: A unified log parser for
heterogeneous log data. In Proceedings of the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 1893–1901.

14. Zhu, J.; He, S.; Liu, J.; He, P.; Xie, Q.; Zheng, Z.; Lyu, M.R. Tools and benchmarks for automated log parsing. In Proceedings
of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
Montreal, QC, Canada, 25–31 May 2019; pp. 121–130.

15. Le, V.H.; Zhang, H. Log-based anomaly detection with deep learning: How far are we? In Proceedings of the 44th International
Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 1356–1367.

16. Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021.
17. What Are Vector Embeddings. Available online: https://www.pinecone.io/learn/vector-embeddings/ (accessed on 1 Au-

gust 2023).
18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.
19. Gorokhov, O.; Petrovskiy, M.; Mashechkin, I. Convolutional neural networks for unsupervised anomaly detection in text data.

In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Guilin, China, 30
October–1 November 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 500–507.

20. Girolami, M. Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 2002, 13, 780–784. [CrossRef]
21. Petrovskiy, M. Outlier detection algorithms in data mining systems. Program. Comput. Softw. 2003, 29, 228–237. [CrossRef]
22. Liu, D.; Qian, H.; Dai, G.; Zhang, Z. An iterative SVM approach to feature selection and classification in high-dimensional

datasets. Pattern Recognit. 2013, 46, 2531–2537. [CrossRef]
23. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear

one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [CrossRef]
24. Mahalanobis, P.C. On the generalized distance in statistics. Sankhyā: Indian J. Stat. Ser. A 2018, 80, S1–S7.
25. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
26. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
27. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
28. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inf. Process. Syst. 2017, 30,

972–981.
29. Amirian, M.; Schwenker, F. Radial basis function networks for convolutional neural networks to learn similarity distance metric

and improve interpretability. IEEE Access 2020, 8, 123087–123097. [CrossRef]
30. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M.I. Detecting large-scale system problems by mining console logs. In

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, Big Sky, MT, USA, 11–14 October 2009;
pp. 117–132.

31. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

32. Lin, Q.; Zhang, H.; Lou, J.G.; Zhang, Y.; Chen, X. Log clustering based problem identification for online service systems. In
Proceedings of the 38th International Conference on Software Engineering Companion, Austin, TX, USA, 14–22 May 2016;
pp. 102–111.

33. Meng, W.; Liu, Y.; Zhu, Y.; Zhang, S.; Pei, D.; Liu, Y.; Chen, Y.; Zhang, R.; Tao, S.; Sun, P.; et al. Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs. In Proceedings of the IJCAI, Macao, China, 10–16 August
2019; Volume 19, pp. 4739–4745.

34. Duan, X.; Ying, S.; Yuan, W.; Cheng, H.; Yin, X. A Generative Adversarial Networks for Log Anomaly Detection. Comput. Syst.
Sci. Eng. 2021, 37, 135–148. [CrossRef]

35. Zhou, Y.; Liang, X.; Zhang, W.; Zhang, L.; Song, X. VAE-based deep SVDD for anomaly detection. Neurocomputing 2021,
453, 131–140. [CrossRef]

36. Oliner, A.; Stearley, J. What supercomputers say: A study of five system logs. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07), Edinburgh, UK, 25–28 June 2007; pp. 575–584.

37. Cosine Similarity. Available online: https://www.learndatasci.com/glossary/cosine-similarity/ (accessed on 1 August 2023).
38. Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent.

Cited 2012, 14, 2.
39. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A large collection of system log datasets towards automated log analytics. arXiv 2020,

arXiv:2008.06448.
40. Tappert, C.C.; Villani, M.; Cha, S.H. Keystroke biometric identification and authentication on long-text input. In Behavioral

Biometrics for Human Identification: Intelligent Applications; IGI Global: Hershey, PA, USA, 2010; pp. 342–367.

http://dx.doi.org/10.1109/TPDS.2013.21
https://www.pinecone.io/learn/vector-embeddings/
http://dx.doi.org/10.1109/TNN.2002.1000150
http://dx.doi.org/10.1023/A:1024974810270
http://dx.doi.org/10.1016/j.patcog.2013.02.007
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ACCESS.2020.3007337
http://dx.doi.org/10.32604/csse.2021.014030
http://dx.doi.org/10.1016/j.neucom.2021.04.089
https://www.learndatasci.com/glossary/cosine-similarity/

Mathematics 2023, 11, 3995 23 of 23

41. Monaco, J.V.; Bakelman, N.; Cha, S.H.; Tappert, C.C. Developing a keystroke biometric system for continual authentication of
computer users. In Proceedings of the 2012 European Intelligence and Security Informatics Conference, Odense, Denmark, 22–24
August 2012; pp. 210–216.

42. Villani, M.; Tappert, C.; Ngo, G.; Simone, J.; Fort, H.S.; Cha, S.H. Keystroke biometric recognition studies on long-text input under
ideal and application-oriented conditions. In Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW’06), New York, NY, USA, 17–22 June 2006; p. 39.

43. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.;
et al. Mixed precision training. arXiv 2017, arXiv:1710.03740.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Relevance of the Work
	Goal of the Work
	Related Work
	Nature of the Input Data
	Log Collection
	Log Parsing
	Feature Extraction
	Anomaly Detection

	Materials and Methods
	Log Collection
	Log Parsing
	Data Vectorization and Grouping
	Convolution Neural Networks for Feature Extraction
	Asymmetric Decoder to Minimize Information Loss When Extracting Features
	Fuzzy Clustering and Anomaly Detection
	Regularization
	Training
	Evaluation Metrics
	Materials

	Results
	Evaluation Metrics
	Experimental Setup
	Log Collection
	Log Parsing
	Feature Extraction
	Anomaly Detection

	Technical Characteristics
	Evaluation
	Evaluation of the Encoder
	Evaluation of the Decoder
	Evaluation of the Fuzzy Layer

	Comparison with Existing Approaches
	Robustness Estimation

	Discussion
	Conclusions
	References

