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Abstract: This paper deals with second-order differential pencils with a fixed frozen argument on a
finite interval. We obtain the trace formulae under four boundary conditions: Dirichlet–Dirichlet,
Neumann–Neumann, Dirichlet–Neumann, Neumann–Dirichlet. Although the boundary conditions
and the corresponding asymptotic behaviour of the eigenvalues are different, the trace formulae have
the same form which reveals the impact of the frozen argument.
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1. Introduction

In this paper, we consider boundary value problem generated by

−y′′(x) + [q0(x) + ρq1(x)]y(a) = ρ2y(x), 0 < x < 1, (1)

and boundary conditions
y(α)(0) = y(β)(1) = 0, (2)

where a ∈ (0, 1), qj(x), j = 0, 1 are complex-valued functions in Sobolev space W j
2[0, 1],

ρ is the spectral parameter and α, β ∈ {0, 1}. We note that (α, β) = (0, 0), (1, 1), (0, 1) or
(1, 0) represent Dirichlet–Dirichlet, Neumann–Neumann, Dirichlet–Neumann, Neumann–
Dirichlet boundary conditions correspondingly. We denote the corresponding operator
by Lα,β = L(q0, q1, α, β, a). We call Lα,β the second-order differential pencils with frozen
argument. Specifically, we deduce the trace formulae for Lα,β.

Trace is an important conserved quantity in matrix theory. In finite dimensional space,
the sum of principal diagonal elements of a matrix equals to the sum of eigenvalues which
we call the trace. While considering the differential operators in the Hilbert space, however,
a sum of infinitely many eigenvalues leads to a divergence series. In 1953, for the first time,
Gelfand and Levitan [1] introduced an interesting formula for the Sturm–Liouville operator:

∞

∑
n=0

[
λn − n2 − 1

π

∫ π

0
q(t)dt

]
=

1
4
[q(0) + q(π)]− 1

2π

∫ π

0
q(t)dt, (3)

where the operator was generated by the Neumann–Neumann-type boundary problem

−y′′(x) + q(x)y(x) = λy(x), y′(0) = y′(π) = 0,

and q(x) ∈ C1[0, π], λn are the corresponding eigenvalues. After that, many scholars put
attention to this quantity, which has many applications in integrable system theory and
the inverse problem [2–6]. Also, it turned out that regularized trace formulae had physical
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meaning, as discussed by Sadovnichii and Podol’skii [7]: “The meaning of the regularized trace
as a measure of the defect of the total energy of the system when it is perturbed in the case when the
total energy itself of the system (more precisely, of the model under consideration) is infinite · · · ”.

In physics, the interactions between colliding particles is of fundamental significance.
For example, Jaulent and Jean [8] describe this phenomenon by s-wave Schrödinger equa-
tion with a radial static potential V(x):

−y′′(x) + V(E, x)y(x) = Ey(x),

where V(E, x) is the following form for the energy dependence:

V(E, x) = Q(x) + 2
√

EP(x).

With an additional condition Q(x) = −P2(x), the above Schrödinger equation reduces
to the Klein–Gordon equation for a particle of zero mass and energy E, which could serve
as part of Lax pair in a two-component Camassa–Holm Equation [9]. Due to the nonlin-
ear dependence on the spectral parameter, the corresponding inverse spectral problem
and inverse scattering theory are difficult; we refer to papers [10–16]. With the method
of asymptotic estimation on the family of contours [17], Cao and Zhuang [18] studied
regularized traces of the Schrödinger equation with energy-dependent potential, in which
the final quantity only contains the term with P(x). Further, Yang [19–21] obtained some
new formulae related to both P(x) and Q(x).

Recently, the Sturm–Liouville equation with the frozen argument of the form

−y′′(x) + q(x)y(a) = λy(x), x ∈ (0, 1) (4)

has attracted much attention. This equation can be classified as a special case of a functional
differential equation with a deviating argument. Especially Equation (4) belongs to the
class of loaded equations [22] which arise in mathematical physics, such as groundwater
dynamics [23,24], heat conduction [25,26], system with energy feedback [27].

For the inverse spectral problem of differential operators with frozen argument,
the classical approaches like the method of spectral mappings and the Gelfand–Levian–
Marchenko method do not work. Albeverio et al. [28] and Nizhnik [29,30] studied some
special cases where the nonlocal boundary condition guarantees the self-adjointness of
the corresponding operator. Bondarenko et al. [31] studied Equation (4) with Boundary
conditions (2) where 1/a ∈ N and α, β ∈ {0, 1}. They classified two cases: degenerate and
non-degenerate, depending on the values of α, β and on the parity of k = 1/a. Moreover,
Bondarenko et al. established the unique solvability of the inverse problem. For the study
of different aspects of this operator, such as arbitrary a ∈ (0, 1), non-separated boundary
conditions, etc., we refer to [32–40]. Namely, Kuznetsova [41,42] proved the well-posedness
of the inverse spectral problem generated by (4) and (2) by a new approach, which is
effective in both the rational and irrational cases. Bondarenko [43] explained the relation be-
tween the Sturm–Liouville operators with frozen argument and the Laplace operator with
integral matching conditions on a star-shaped graph. Also, as pointed out by Buterin [44],
the frozen argument term appeared naturally in the study of a Sturm–Liouville operator
with constant delay.

However, there are few works on differential pencils with frozen argument. Equation (1)
appears, for example, after applying the Fourier method of separation of variables to the
following loaded hyperbolic equation:

∂2

∂t2 u(x, t) =
∂2

∂x2 u(x, t)− (λr(x) + q(x))u(a, t), 0 < x < 1, t > 0,

where a ∈ (0, 1), λ is a spectral parameter, r(x) is called the loss function and q(x) the
impedance function. This model arises in the study of inverse scattering in lossy layered
media [45]; moreover, we assume that the model is affected by a magnetic field exerting a
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force-per-unit mass represented by −(λr(x) + q(x))u(a, t), i.e., depending on the lateral
displacement u(a, t) at point a at time t. The author of [46] studied the inverse spectral
problem for Lα,β by using the approach suggested in [31]. Namely, Lα,β share the same
degenerate and non-degenerate conditions with boundary value problem (4) and (2).

Motivated by the works of Cao and Zhuang [18], we focus on regularized traces of Lα,β.
For the next section, we recall some basic facts from [46], i.e., the integral equation for the
characteristic functions of Lα,β and asymptotic behaviour of the corresponding eigenvalues;
then, we provide the main results. Finally, we offer a conclusion.

2. Preliminaries and Main Results

We let C(x, ρ), S(x, ρ) be the solutions of Equation (1) under the initial conditions

C(a, ρ) = S′(a, ρ) = 1, S(a, ρ) = C′(a, ρ) = 0.

It is easy to verify that

C(x, ρ) = cos ρ(x−a)+
x∫

a

q1(t) sin ρ(x−t)dt+
x∫

a

q0(t)
sin ρ(x−t)

ρ
dt, (5)

S(x, ρ) =
sin ρ(x− a)

ρ
. (6)

Integrating by parts the second term of (5), we obtain

C(x, ρ) = cos ρ(x− a) +
1
ρ
(q1(x)− q1(a) cos ρ(x− a))

− 1
ρ

x∫
a

q′1(t) cos ρ(x− t)dt +
1
ρ

x∫
a

q0(t) sin ρ(x− t)dt.
(7)

We define

∆α,β(ρ) =

∣∣∣∣∣C(α)(0, ρ) S(α)(0, ρ)

C(β)(1, ρ) S(β)(1, ρ)

∣∣∣∣∣; (8)

then, it is easy to verify that the eigenvalues of Lα,β coincide with the zeros of ∆α,β(ρ).
We note that the spectrum of the operator L(q0(1− x), q1(1− x), 1− a, α, β) coincides

with the one of L(q0(x), q1(x), a, α, β); without loss of generality, we assume 0 < a ≤ 1/2
for definiteness.

Theorem 1 ([46]). The characteristic functions ∆α,β(ρ) of the problem Lα,β have the form of

∆α,α(ρ) = ρ2α−2

ρ sin ρ−Wα,α(a, ρ) +

1∫
0

(Uα,α(t) cos ρt + Vα,α(t) sin ρt) dt

, (9)

if α = β, and

∆α,β(ρ) = ρ−1

(−1)α
(
ρ cos ρ−Wα,β(a, ρ)

)
+

1∫
0

(Uα,β(t) sin ρt + Vα,β(t) cos ρt) dt

, (10)
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if α 6= β, where

Wα,β(a, ρ) =


q1(a) sin ρ− q1(0) sin ρ(1− a)− q1(1) sin ρa, (α, β) = (0, 0),
q1(a) sin ρ, (α, β) = (1, 1),
q1(a) cos ρ− q1(0) cos ρ(1− a), (α, β) = (0, 1),
q1(a) cos ρ− q1(1) cos ρa, (α, β) = (1, 0).

Moreover, the functions Uα,β(t) and Vα,β(t) have the following form:

Uα,β(t) =
(−1)αβ

2


q0(1− a + t) + dq0(1− a− t), t ∈ (0, a),

cq0(1 + a− t) + dq0(1− a− t), t ∈ (a, 1− a),

c
(
q0(1 + a− t) + q0(t− 1 + a)

)
, t ∈ (1− a, 1)

(11)

and

Vα,β(t) =
(−1)γ

2


−q′1(1− a + t) + dq′1(1− a− t), t ∈ (0, a),

cq′1(1 + a− t) + dq′1(1− a− t), t ∈ (a, 1− a),

c
(
q′1(1 + a− t)− q′1(t− 1 + a)

)
, t ∈ (1− a, 1),

(12)

where c = (−1)1+β, d = (−1)α+β and γ = max{α, β}.

We let Z0 := Z \ {0}, Z1 := {±0,±1,±2, · · · } and Z2 := Z. From this, we stipulate
that if n denotes an index for eigenvalues, then n ∈ Z0 for (α, β) = (0, 0), n ∈ Z1 for
(α, β) = (1, 1) and n ∈ Z2 for (α, β) = (0, 1) or (α, β) = (1, 0).

Theorem 2 ([46]). The eigenvalues of Lα,β can be numbered as {ρn,α,β}, counting with their
multiplicities, such that the following asymptotics hold:

(i) For (α, β) = (0, 0),

ρn,0,0 = nπ +
q1(0) + (−1)n+1q1(1)

nπ
sin nπa +

κ0,0,n

n
, {κn,0,0} ∈ l2; (13)

(ii) For (α, β) = (1, 1),

ρn,1,1 = nπ +
κ1,1,n

n
, {κn,1,1} ∈ l2; (14)

(iii) For (α, β) = (0, 1),

ρn,0,1 =

(
n− 1

2

)
π +

q1(0)
nπ

sin
(

n− 1
2

)
πa +

κ0,1,n

n
, {κn,0,1} ∈ l2; (15)

(iv) For (α, β) = (1, 0),

ρn,1,0 =

(
n− 1

2

)
π +

(−1)n+1q1(1)
nπ

cos
(

n− 1
2

)
πa +

κ1,0,n

n
, {κn,1,0} ∈ l2. (16)

In order to obtain the trace formulae of Lα,β, we need the following lemma.

Lemma 1 ([17]). Let ω(z) and ω0(z) be two entire functions on a z−plane and have no zeros
on some closed contour Γ. Suppose that ω(z)\ω0(z) = 1 + θ(z), where |θ(z)| ≤ δ on Γ,
0 < δ < 1; then,

∑
Γ
(λσ

n − µσ
n) = −

1
2πi

∮
Γ

σzσ−1 ln
ω(z)
ω0(z)

dz, (17)

where λn and µn are zeros of ω(z) and ω0(z) inside Γ correspondingly, and σ is a positive integer.
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We let {τn,α,β} be the spectrum of L(0, 0, α, β, a), α, β ∈ {0, 1}.

Theorem 3. The following formulae hold:

∑
n∈Zj

(
ρn,α,β − τn,α,β

)
= q1(a), (18)

where j = 0, 1, 2.

Proof. We let ΓN , N = 1, 2, · · · be the counterclockwise square contours AN BNCN DN with

AN =

(
N +

3
4

)
(1− i), BN =

(
N +

3
4

)
(1 + i),

CN =

(
N +

3
4

)
(−1 + i), DN =

(
N +

3
4

)
(−1− i).

Formulae (13)–(16) imply that, for sufficiently large N, the eigenvalues ρn,α,β, |n| ≤ N
are inside ΓN , and the eigenvalues ρn,α,β with |n| > N are outside ΓN . Also, since {τn,α,β}
is the the spectrum of L(0, 0, α, β, a), we have {τn,α,β} ∩ ΓN = ∅.

Now we prove the theorem for the case (α, β) = (0, 0); the other cases are similar. We
let ∆◦0,0(ρ) = sin ρ/ρ be the characteristic function of L(0, 0, 0, 0, a). By using (9), (11) and
(12), we estimate the fraction ∆0,0(ρ)/∆◦0,0(ρ) on the contour ΓN for sufficiently large N:

∆0,0(ρ)

∆◦0,0(ρ)
= 1 +

q1(0) sin ρ(1− a) + q1(1) sin ρa
ρ sin ρ

− q1(a)
ρ

+ o
(

1
ρ

)
, ρ ∈ ΓN .

Using the Taylor series expansion, we have

ln
∆0,0(ρ)

∆◦0,0(ρ)
=

q1(0) sin ρ(1− a) + q1(1) sin ρa
ρ sin ρ

− q1(a)
ρ

+ o
(

1
ρ

)
, ρ ∈ ΓN .

Calculating the contour integral by (17) and using residue calculation, we obtain that
for sufficiently large N,

N

∑
n=−N

(ρ0,0,n−µ0,0,n) =−
1

2πi

∮
ΓN

ln
∆0,0(ρ)

∆◦0,0(ρ)
dρ

=q1(a)+q1(0)

(
2

N

∑
n=1

θn−(1−a)

)
+ q1(1)

(
2

N

∑
n=1

ζn−a

)
+ o(1),

where

θn = (−1)n+1 sin nπ(1− a)
nπ

, ζn = (−1)n+1 sin nπa
nπ

.

Together with the Fourier series

x = 2
∞

∑
n=1

(−1)n+1 sin nπx
nπ

, x ∈ (−1, 1),

we arrive at (18) for (α, β) = (0, 0) by taking N → ∞. Note that for the cases (α, β) = (0, 1)
and (α, β) = (1, 0), we need the Fourier series expansion

1
2
= 2

∞

∑
n=1

(−1)n+1 cos(n− 1
2 )πx

(n− 1
2 )π

, x ∈ (−1, 1).
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3. Conclusions

In this paper, we deduce the trace formulae of second-order differential pencils with
frozen argument. By applying the methods in complex analysis, we calculate the regular-
ized sum of infinite eigenvalues of Lα,β in the Gelfand–Levitan sense. Let us mention some
advantages of our approach:

1. Operator Lα,β is non-selfadjoint which may have complex eigenvalues with multi-
plicity; however, the method we use allows us dealing with the regularized sum of
eigenvalues in the whole meaning.

2. The regularized trace of Lα,β depends only on the value of q1(x) at the frozen point a,
regardless of the boundary conditions and the potential q0(x).

3. In the study of inverse spectral problem of Lα,β, the rationality of frozen argument a is
important. Whether a is rational leads to different approachs of inverse spectral prob-
lem. However, we do not need this distinction while calculating the trace formulae.
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