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Abstract: Advancing cutting-edge techniques to accurately classify electromyography (EMG) signals
are of paramount importance given their extensive implications and uses. While recent studies in the
literature present promising findings, a significant potential still exists for substantial enhancement.
Motivated by this need, our current paper introduces a novel ensemble neural network approach for
time series classification, specifically focusing on the classification of upper limb EMG signals. Our
proposed technique integrates long short-term memory networks (LSTM) and attention mechanisms,
leveraging their capabilities to achieve accurate classification. We provide a thorough explanation
of the architecture and methodology, considering the unique characteristics and challenges posed
by EMG signals. Furthermore, we outline the preprocessing steps employed to transform raw
EMG signals into a suitable format for classification. To evaluate the effectiveness of our proposed
technique, we compare its performance with a baseline LSTM classifier. The obtained numerical
results demonstrate the superiority of our method. Remarkably, the method we propose attains an
average accuracy of 91.5%, with all motion classifications surpassing the 90% threshold.

Keywords: EMG signals; time series classification; neural network; LSTM; attention mechanism

MSC: 68T05; 92B20; 68T45; 68U10

1. Introduction

EMG signals, which are electrical impulses produced by muscle activities, hold signifi-
cant value across various fields due to their broad scope of application [1–3]. Their pivotal
role within the healthcare arena is particularly noteworthy. Interpreted as a distinctive bio-
electrical language employed by muscles, EMG signals equip medical professionals with a
powerful tool to assess muscular function, identify anomalies, and diagnose pathologies
pertaining to the nervous system [4,5]. Rigorous analysis of these signals yields a com-
prehensive depiction of the interrelated health of the muscular and neurological systems.
This affords clinicians the ability to navigate toward optimal treatment modalities and
interventions for a myriad of neuromuscular disorders [6].

While the foundational understanding of EMG signals is well-established, there are
still gaps in effectively leveraging this knowledge, especially in the realm of myoelectric
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control. Current approaches often falter in real-time applications, especially when signal
noise and environmental factors come into play. Our research, therefore, aims to address
these challenges, shedding light on the intricate problem of myoelectric control and its
applications.

Beyond medicine, EMG signals have found practical applications in prosthetics and as-
sistive technologies. By capturing and interpreting EMG signals, researchers and engineers
have developed advanced prosthetic limbs that can be controlled by the user’s muscle
contractions, restoring mobility and independence to individuals with limb loss [7–9]. This
technology has revolutionized the lives of many, offering precise and intuitive control over
prosthetic devices [10,11]. Moreover, EMG signals play a crucial role in sports science
and rehabilitation. By monitoring muscle activation patterns through EMG recordings,
researchers and therapists can analyze movement patterns, design tailored rehabilitation
programs, optimize training regimes, and prevent injuries [12]. EMG-based biofeedback
systems provide real-time information, allowing individuals to adjust their movements and
enhance their performance [13]. Overall, EMG signals have proven to be a valuable tool in
understanding muscle function, diagnosing disorders, improving prosthetic technology,
and optimizing rehabilitation and sports performance.

The classification of EMG signals holds paramount importance due to its wide-ranging
applications and implications across various fields. Accurate and reliable classification of
EMG signals enables the precise assessment and understanding of muscle activity, aiding
in the diagnosis and monitoring of neuromuscular disorders [14–16]. This classification is
instrumental in the development of assistive technologies, such as prosthetics, allowing for
the intuitive control and restoration of mobility for individuals with limb loss. Additionally,
EMG signal classification plays a vital role in rehabilitation and physical therapy, facilitating
personalized treatment plans based on each patient’s unique muscular responses [17]. It
also contributes to sports science and biomechanics by analyzing muscle activation patterns,
enhancing athletic performance, and preventing injuries [18,19].

Neural networks offer significant benefits for the classification of time series
signals [20–22]. The inherent ability of neural networks to learn complex patterns and
relationships within data makes them well-suited for capturing the temporal dependencies
present in time series signals. Long Short-Term Memory (LSTM), a specialized type of
neural network, excels in modeling sequential data by effectively retaining and utilizing
historical context through their memory cells [23,24]. This makes them particularly effective
in handling long-term dependencies and capturing temporal dynamics. In the context of
signal classification, neural networks and LSTMs can extract meaningful features from time
series signals, automatically learn discriminative patterns, and make accurate predictions.
Their ability to handle large amounts of data and adapt to different signal characteristics
makes them invaluable for tasks such as speech recognition, gesture recognition, medical
signal analysis, and financial market forecasting [25,26].

Many approaches have been proposed for EMG signal classification, and varying
levels of accuracy have been obtained [27]. To name a few, in [28], an accuracy range
of 75–84% is reported. Similarly, in [29], an accuracy of 77.85% is documented. For a
comprehensive analysis, readers are referred to [30]. However, when comparing these
results, it is essential to note that different datasets were used, and they possess varying
levels of accuracy.

In [31], the authors designed an HMI integrating EEG and sEMG signals for controlling
lower extremity exoskeletons. Through a deep analysis of human walking, they achieved
a high level of accuracy. However, this being a preliminary study, broader validation is
needed. The simultaneous need for both EEG and sEMG signals might also pose challenges
in practical applications. In [32], a novel method was proposed that combines multiple
signals from the lower extremity. By simulating human learning processes, they managed
to reconstruct these signals to estimate joint angles. Their approach has outperformed other
techniques in terms of the error rate. However, the limited number of participants (eight)
could raise concerns about the generalizability of the results, and the complexity of multiple
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signal streams might challenge real-world applications. In [33], the potential of transient
sEMG signals for myoelectric control was investigated with both intact-limb subjects
and transhumeral amputees. The 100 ms window length has emerged as optimal for
classification. By focusing on transhumeral amputees, the study addressed a significant yet
niche group. However, its niche focus could limit its broader applicability. In essence, these
studies have highlighted the advancements and challenges in human–machine interfaces
tailored for exoskeletons and assistive devices.

Given its wide-ranging implications and applications, there is still a pressing need
to develop state-of-the-art classification techniques for accurately classifying EMG sig-
nals [34,35]. Accurate classification enables healthcare professionals to precisely diagnose
and monitor neuromuscular disorders, allowing for timely intervention and tailored treat-
ment plans. It facilitates the development of advanced prosthetics and assistive technologies
that can be controlled intuitively by EMG signals, enhancing mobility and independence for
individuals with limb loss. Furthermore, state-of-the-art classification techniques contribute
to the optimization of rehabilitation programs by accurately assessing muscle activation
patterns and designing personalized treatment strategies. Consequently, the development
of state-of-the-art classification techniques for EMG signals empowers healthcare, rehabili-
tation, and assistive technology fields, leading to improved patient outcomes, enhanced
quality of life, and advancements in human performance.

We propose an ensemble classification method for EMG signals, which offers several
significant contributions. Firstly, our approach introduces a novel ensemble architecture
specifically tailored for time series classification. This architecture combines projected
LSTM models, harnessing their complementary strengths to enhance classification accu-
racy. Secondly, our method demonstrates efficiency by achieving fast processing speeds,
enabling real-time or near-real-time applications. Thirdly, the ensemble model effectively
addresses the challenge of overfitting by leveraging the diversity among individual models,
resulting in improved robustness and generalization. Additionally, our proposed method
exhibits resilience against noise, making it suitable for real-world EMG signal classification
scenarios. Overall, the contributions of this study encompass enhanced accuracy, speed,
noise robustness, and prevention of overfitting through the novel ensemble architecture for
EMG signal classification.

The structure of the remainder of this study unfolds as follows: Section 2 provides
an overview of RNN, delves into LSTM neural networks, and explores the advantages
of Attention LSTM (ALSTM). Following this, in Section 3, we introduce and elaborate
on our proposed ensemble technique. Section 4 details the handling of EMG time-series
data and the preprocessing stages required for classification. In Section 5, we apply our
proposed ensemble ALSTM and compare its performance with the conventional LSTM.
In Section 6, we provide an in-depth analysis of the results obtained. Finally, Section 7
furnishes concluding remarks and future research recommendations.

2. RNN for Classification

RNN serves as a powerful tool for classification tasks due to its unique ability to
process sequential data, making it particularly effective in situations where the temporal
dynamics of the input carry crucial information [36,37]. RNNs, with their inherent ability
to process and remember sequential data, are particularly beneficial for time series classifi-
cations. As a result, RNNs have been increasingly adopted for EMG signal classification to
capture the temporal dynamics of muscle activations [38,39]. Unlike traditional feedforward
networks, RNNs are designed with feedback connections that allow information to cycle
through the network over time, providing the capacity for memory of past inputs [40,41].
This characteristic allows RNNs to exploit temporal dependencies, making them adept at
tasks such as speech recognition, sentiment analysis, and time-series prediction. By training
an RNN on the appropriate labeled data, we can classify new unseen sequences based on
learned patterns, demonstrating its utility in diverse classification contexts.
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2.1. LSTM

LSTM is a type of RNN architecture that has gained significant popularity in the field
of time series classification. Unlike traditional RNNs, LSTM networks are designed to
effectively capture long-term dependencies and temporal dynamics in sequential data [42].
This is achieved through the use of memory cells, which can retain and update information
over extended sequences. The gating mechanisms within LSTM allow for the selective
retention and utilization of relevant contextual information, making it highly suitable for
modeling complex patterns in time series data.

LSTM networks offer several advantages for time series classification tasks [43]. Firstly,
they can handle long-term dependencies, which is crucial for accurately capturing temporal
patterns that may span across extended periods. This makes LSTM particularly effective in
scenarios where the context and history of the data play a significant role. Secondly, LSTM
networks are capable of learning and retaining information over time, allowing them to
effectively model and adapt to changing patterns in the time series data. This adaptability
is essential in dynamic environments where the characteristics of the data may vary. Lastly,
LSTM networks are able to automatically extract relevant features from the input time
series, alleviating the need for manual feature engineering and reducing the risk of missing
important information.

The application of LSTM networks in the classification of EMG signals brings several
advantages. LSTM’s ability to capture temporal dependencies makes it well-suited for this
task. LSTM networks can effectively model the complex dynamics of muscle contractions
and relaxations, enabling accurate classification of EMG signals. The adaptability of
LSTM allows it to handle variations in signal characteristics and capture subtle changes
in muscle activation patterns over time. This makes LSTM a valuable tool for diagnosing
neuromuscular disorders, designing prosthetics, and optimizing rehabilitation programs in
the field of EMG signal analysis.

Figure 1 shows an LSTM cell. As depicted in this figure, an incoming series of data
points represented as i =

[
i1, i2, . . . , iT] is fed into the network. This then results in a

hidden sequence denoted by h =
[
h1, h2, . . . , hT]. This transformation occurs as each

network activation unit processes the sequence in an iterative manner over time, adhering
to the following equations:

gt = σ
(

Wgiit + Wghht−1 + bg

)
(1)

mt = σ(Wmimt + Wmhht−1 + bm) (2)

J̃t = tanh
(

Wjiit + Wjhht−1 + bj

)
(3)

nt = σ(Wniit + Wnhht−1 + bn) (4)

jt = (gt � jt−1) +
(

mt � J̃t

)
(5)

ht = nt � tanh(jt) (6)

In this context, ht refers to the present time step’s hidden state output. Also, the forget,
input, and output gates are represented by g, m, and n, correspondingly. The candidate cell
vector is illustrated by J̃t, while j symbolizes the cell activation vector. The weight matrices
and bias vector are designated by the W and b terms, respectively. The symbol � is used
to signify the Hadamard product. The activation functions for sigmoid and hyperbolic
tangent are expressed through the use of σ and tanh, respectively.
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As shown in the abovementioned formulations and Figure 1, within the architecture
of an LSTM cell, there exist multiple gates, and each is necessitated to employ a specific
activation function. The Sigmoid (or Logistic) function is one such function, proffering
outputs that range between 0 and 1. It is predominantly utilized for the forget, input, and
output gates within an LSTM cell, facilitating meticulous control over the dissemination
of information. Another prevalent activation function is the Hyperbolic Tangent (tanh)
function, producing outputs that span between −1 and 1. Within the context of LSTMs,
the tanh function is commonly employed for the input modulation gate, governing the
potential values that may be incorporated into the cell state. A less conventional function
used in certain neural network paradigms, though less so in LSTMs, is the Rectified Linear
Unit (ReLU). This function relays the input directly if it is positive, and otherwise, it yields
zero. Its computational expediency is noteworthy. Additionally, there is the Leaky ReLU,
a derivative of the ReLU, which permits a minimal gradient even in the absence of unit
activation, thereby facilitating the preservation of gradient flow during the backpropagation
process (see reference [44] for detailed information on the activations functions for LSTM).

In our study, we have elected to utilize the tanh function as our primary activation
function, attributing to its superior properties. The tanh function’s zero-centered output
can expedite convergence, and its adeptness in processing negative values is of signif-
icance. Its inherent squashing mechanism, which maps values between −1 and 1, is
instrumental in curtailing the challenges posed by the exploding gradient phenomenon.
Furthermore, the uninterrupted gradient of the tanh function ensures that the LSTM mod-
ules sustain their learning trajectory across elongated sequences, thereby adeptly capturing
long-term dependencies.

2.2. ALSTM

ALSTM is a potent combination of two crucial concepts in the realm of deep learning
and natural language processing. The addition of the attention mechanism allows the
model to dynamically focus on different parts of the input sequence for making predictions,
essentially learning what to “pay attention to” based on the task at hand [45,46]. This
imbues the model with the ability to create context-sensitive representations, providing
significant improvements in performance across many tasks, including machine translation,
speech recognition, and time series analyses.

As portrayed in Figure 2, the ALSTM cell generates two distinct outputs: the cell
state jt, which serves as the repository for long-term memory, and the hidden state ht,
that handles short-term memory storage. In this study, we incorporated a projected layer
following the output gate nt to shrink the size of the hidden state output. Suppose ‘p’
and ‘m’ represent the projected and hidden sizes of the ALSTM, respectively. The output
size of the hidden state is then represented as ht in the space of Rp×1, and the cell state is
expressed as jt in the space of Rm×1. At each time step t, the ALSTM cell accepts a vector
corresponding to an input feature. The hidden and cell states from the prior time step
(t − 1) are used as additional inputs. In this proposed architecture, the key components,
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which are the four gates—the forget gate gt, the input gate mt, the candidate cell gate
J̃t ∈ Rm×1, and the output gate nt ∈ Rm×1, operate in a manner identical to the tradi-
tional LSTM.
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In addition to the input gate, mt governs the information flow into the memory cell,
while the forget gate gt determines how this information is updated within the memory
cell. The output gate nt then controls the information that will be carried forward to the
next time step. The output information from the input gate mt and the candidate cell gate J̃t
often lack the necessary focus, which could result in missing out on key information related
to the cell gate memory jt. To overcome this, we introduce an attention gate designed to
hold onto important information for the cell gate memory. This gate aims to discover the
correlation between the previous hidden state output ht−1 and the Hadamard product
of the input gate mt and candidate cell gate J̃t. The mathematical representation of the
proposed attention gate is given below:

ϕt = RT
ϕtanh

(
Wϕ

(
mt � J̃t

)
+ Yϕht−1

)
(7)

Ĵt = softmax(ϕt)�WĴ

(
mt � J̃t

)
. (8)

In Equations (7) and (8), RT
ϕ, Ws, Yϕ, and WĈ represent trainable parameters, with

ϕt acting as the attention-scoring function. The transformation formulas defined for the
proposed ALSTM model are provided below:

gt = σ
(
Wgit + Ught−1 + bg

)
(9)

mt = σ(Wmit + Umht−1 + bm) (10)

ãt = tanh(Wãit + Uãht−1 + ba) (11)

jt = (gt � jt−1) + Ĵt (12)

lt = nt � tanh(jt) (13)

ht = Whlt. (14)

As per the given formulas, the input gate mt dictates the nature of the information
that will enter the cell state. The attention gate is utilized to process the transformations
in Equations (7) and (8). This approach significantly enhances the predictive capabilities
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of the traditional LSTM, and it achieves high accuracy when handling complex datasets
characterized by noise and a broader spectrum of operational conditions.

3. Ensemble Architecture and Proposed Ensemble Technique

In this section, we first delve into the concept of ensemble neural networks. Sub-
sequently, we introduce our proposed ensemble architecture. Lastly, we highlight the
advantages of this ensemble approach, particularly for EMG signal classification.

3.1. Ensemble Architecture for Classification

An ensemble method in machine learning involves the combination of several models
to solve a single prediction problem [47]. It operates by constructing a set of classifiers
and then classifying new data points by taking a (weighted) vote on their predictions.
The underlying principle behind ensemble methods is that different algorithms may have
varied misclassification rates in different regions of the input space. By strategically
combining these models, we aim to produce a more robust model with better generalization
performance.

3.2. Proposed Ensemble Technique

Ensemble architecture, involving the orchestration of multiple neural networks, is
pivotal in enhancing the effectiveness of classification systems, with its application playing
a paramount role in a diverse range of classification tasks. This architecture amalgamates
predictions from numerous individual models—commonly known as base learners or weak
classifiers—which are trained independently. The final classification verdict results from
this collective decision-making process.

In the method we propose, the outputs of individual classifiers undergo one-hot
encoding, are subsequently integrated with the raw time-series signal, and are finally
utilized in the ultimate classifier, which is the LSTM with an attention mechanism. Figure 3
visually presents the structure of the proposed classifier for EMG signal classification.
The core philosophy behind our ensemble architecture is that the innate diversity among
the individual models contributes to a substantial improvement in the system’s accuracy,
robustness, and generalization.
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It should be highlighted that within our established framework, we have incorporated
four individual classifiers. Although the architecture permits the integration of a greater
number of classifiers, it is imperative to weigh the computational implications against the
potential enhancements in classification accuracy when considering such augmentations.
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3.3. Benefits of the Proposed Approach for EMG Classification

The application of the proposed ensemble architecture in time series classification,
specifically in EMG signal analysis, brings specific advantages. EMG signals are time-
varying and complex, representing muscle activation patterns. Ensemble architecture helps
address the challenges associated with the inherent variability and noise in EMG signals. By
combining the predictions of multiple models, the ensemble model can capture a broader
range of patterns and better adapt to the diverse characteristics of EMG signals. This en-
hances the accuracy of EMG signal classification, aiding in the diagnosis of neuromuscular
disorders, optimizing prosthetic control, and improving rehabilitation outcomes. Moreover,
ensemble architecture provides robustness against noisy EMG signals, enabling reliable
analysis and reducing the impact of signal artifacts on the classification results.

Here we list the key advantages that emerge from using an ensemble approach for
EMG signal classification:

(1) Diversity of Model Predictions: EMG signals are complex time-series data that can
vary greatly across different muscles, individuals, and activities. No single model might
be optimal for all scenarios. An ensemble approach allows us to harness the strengths of
diverse models, ensuring a more comprehensive understanding of the signals.

(2) Robustness to Noise: EMG signals are notoriously noisy. An ensemble, by virtue of
aggregating predictions, can provide a form of noise regularization, potentially filtering
out erroneous predictions from individual models.

(3) Mitigation of Overfitting: Single models, especially deep learning architectures like
LSTMs, might sometimes overfit to the training data. Ensemble methods, by averaging
out the outputs of various models, can mitigate the risk of overfitting, ensuring that the
classifier performs well on unseen data.

(4) Better Handling of Nonlinearities: EMG signals can display nonlinear behaviors,
especially when considering dynamic muscle activities. An ensemble architecture, com-
bining the predictions of multiple models, can better capture these nonlinear patterns,
improving the classification accuracy.

(5) Increased Confidence in Predictions: With multiple models “agreeing” on a clas-
sification, there is higher confidence in the decision made by the ensemble. This can be
particularly beneficial in applications where the cost of misclassification is high.

4. Data and Preprocessing

The dataset used in this study is identical to the dataset utilized in [48]. It consists
of data collected from a cohort of 30 subjects. EMG signals were recorded from seven
predetermined sites on the forearm and one site on the bicep. High-quality Duo-trode
Ag-AgCl electrodes (Myotronics, 6140) were employed for signal acquisition. To maintain a
standardized reference point, an Ag-AgCl Red-Dot electrode (3M, 2237) was placed on the
wrist. The acquired signals were amplified using a Model 15 amplifier (Grass Telefactor)
with a gain of 1000 and a bandwidth of 1 Hz to 1 kHz. A sampling rate of 3 kHz was
used, facilitated by an analog-to-digital converter board (National Instruments, PCI-6071E).
Subsequently, the EMG data were downsampled to 1 kHz before conducting the pattern
classification analysis, following established protocols.

Figure 4 presents a visualization of all eight channels of one EMG signal, effectively
showcasing the muscle activity during a single test trial. Each trial has consisted of the
subject repeating each limb motion four times, with each motion being sustained for a
duration of three seconds per repetition. The order of the limb motions was randomized to
ensure unbiased data collection. To prevent any data cutoff during the recording process,
a five-second rest period was introduced at the beginning and end of each trial. As a
result, each trial was a duration of 94 s. A total of six trials were completed during each
session, and the study encompassed four sessions conducted on separate days, ensuring a
comprehensive dataset was gathered for analysis.
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Figure 4. Eight channels of one EMG signal (sample).

In this research, a systematic process was followed to preprocess our dataset. First,
we excluded extended periods of rest from both the start and end of each signal, ensuring
the focus on the active portions of data. Second, we omitted the pronation and supination
movements. This decision was based on the fact that the EMG did not record from the
core muscles contributing to forearm pronation, and only one of the muscles involved in
supination was recorded. Third, we systematically removed any remaining periods of
inactivity. Fourth, we employed a bandpass filter on the signal, applying a lower cutoff
frequency of 10 Hz and an upper cutoff frequency of 400 Hz. This aimed to improve
the signal clarity. Fifth, we downsampled the signal and label data to a frequency of
1000 Hz to streamline the data processing. Sixth, we developed a signal mask for regions
of interest (motions) and generated corresponding labels. This enabled a sequence-to-
sequence classification, where each signal sample was matched with a label. Finally, in the
seventh step, we divided the signals into shorter segments, each containing 12,000 samples,
allowing for easier analysis.

Remark 1. It is noteworthy that, in our methodology, we employed a bandpass filter with an
upper cutoff frequency of 400 Hz, indicating our focus on signals up to this frequency. As dictated
by the Nyquist theorem [49], for adequate sampling of a signal, the rate should be a minimum
of twice the highest frequency present in the signal. Consequently, a signal with a frequency of
400 Hz necessitates a minimum sampling rate of 800 Hz. Subsequently, we opted to downsample
to 1000 Hz, which aligns with the Nyquist theorem and is a valid approach. While this decision is
not directly contradictory, there might be perceived redundancy, as filtering out frequencies up to
400 Hz and then downsampling to 1000 Hz would naturally confine us to discerning frequencies
up to 500 Hz. However, this combination provides an advantage: the additional 100 Hz buffer
above our bandpass filter’s upper limit ensures a safeguard against potential aliasing or marginal
frequency components, thereby preserving the integrity and fidelity of our signal.

In this research, our attention was centered on four specific movements: the hand
opening, hand closing, wrist flexing, and wrist extending. Our primary aim was to cate-
gorize the data in accordance with these particular actions. After the preprocessing was
completed, Figure 5 shows the tagged motion areas for the first channel of the initial signal,
providing a graphical depiction of the manipulated data.
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5. Simulation Results

We divided the data into training and testing subsets, which are crucial for training
the network and evaluating its performance, respectively. More specifically, we assigned
80% of the data to train the network, a step essential for adjusting the model parameters.
The remaining 20% of the data was utilized for testing the network, enabling the evaluation
of the model’s effectiveness on data it had not encountered before.

In our proposed ensemble configuration, we employed a quartet of unique classifiers,
each exhibiting a distinctive structure. The first individual classifier had an eight-node
sequence input layer, a layer normalization layer, an 80-node BiLSTM layer operating in
“sequence” output mode, a four-node fully connected layer, a softmax layer, and concluded
with a classification layer. The second classifier mirrored the first but incorporated an
LSTM projected layer with 100 hidden units, 30 cell units, and 16 output units instead of
the BiLSTM layer. The third classifier echoed the previous architectures but featured a
GRU (Gated Recurrent Unit) layer with 80 units in place of the LSTM projected layer. The
fourth classifier replicated the first’s structure but enhanced the BiLSTM layer to 120 nodes
while maintaining the “sequence” output mode. For the collective ensemble network,
we orchestrated a structure that commenced with a sequence input layer accommodating
24 inputs, proceeded with a layer normalization layer, an 80-node LSTM layer with attention
mechanism, a four-node fully connected layer, a softmax layer, and culminated with a
classification layer. This ensemble structure was tailored to leverage the advantages of each
individual classifier, thus enhancing the overall model’s performance.

The individual classifiers in the ensemble were strategically designed to harness the
strengths of the distinct recurrent architectures: the bidirectional nature of BiLSTM for
capturing forward and backward sequence information, the compactness of the projected
LSTM for efficiency, and the streamlined GRU for balancing performance with fewer pa-
rameters. The variations in node configurations, like the 80- versus 120-node BiLSTM,
offer differentiated modeling capacities, catering to potential sequence intricacies. In the
ensemble structure, a 24-input sequence layer likely amalgamates the diverse outputs of
individual classifiers. The inclusion of an 80-node LSTM with attention ensures that the
ensemble concentrates on pivotal sequence segments while maintaining computational
parsimony. Importantly, one of the salient benefits of our ensemble method is its resilience
against architectural sensitivities; by deploying four classifiers, we are granted the flexibility
to experiment with various architectures, thereby reducing the risk of over-reliance on a
singular structure. This collective approach integrates the individual classifiers’ advan-
tages and boosts overall performance, while also offering a safeguard against potential
architectural pitfalls.
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We employed the Adam optimizer, a popular choice for training deep learning models,
along with a mini-batch size of 32 to streamline the learning process. The initial learning
rate was set at 0.001, providing a balanced starting point between the learning speed
and model accuracy. We further capped the maximum number of epochs at 100 to avoid
overfitting while ensuring sufficient training iterations. Additionally, to enhance the
model’s robustness and ability to generalize, we shuffled the data in each epoch.

5.1. Results of Individual Classifier and the Proposed Ensemble Technique

To illustrate the superior performance of our ensemble mechanism, we present the
results of each individual classifier alongside the ensemble’s output. Each of our classifiers
employed state-of-the-art techniques. Thus, by evaluating the outcomes of the proposed
ensemble structure, we juxtapose them with four state-of-the-art methods.

Figures 6–10 offer graphical illustrations of the training progression for each individual
classifier as well as the ensemble model, charting the evolution of both the loss function and
accuracy. These figures showcase both the training and validation loss and accuracy metrics.
We set the batch size at 32, resulting in a total of 69 batches per epoch. The total number
of epochs was set to 100. The x-axis represents the number of iterations, calculated as the
product of the total number of batches and epochs. Every 20 epochs, we evaluated the
improvements in accuracy for the validation data. If there was no observed improvement in
the validation data accuracy over 20 consecutive epochs, we would terminate the learning
process. Nonetheless, as evidenced by our figures, this condition was not met for any of
the models, and the training continued up to the 100th epoch, which was the maximum
number set.
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Figure 6. The loss function and accuracy of individual classifier 1 during training.

Remark 2. In machine learning, one of the primary concerns when training a model is overfitting,
where the model performs exceptionally well on the training data but poorly on unseen data. One
way to ascertain whether a model is overfitting is to compare its performance on the training data
versus a separate validation set. In our case, the accuracy and loss function values for the validation
data closely match those of the training set (see Figures 6–15). This congruence in performance is a
robust indication that our model is generalizing effectively to new unseen data. Therefore, based on
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this evidence, we confidently assert that our model does not suffer from overfitting. In addition, to
mitigate overfitting, we instituted a check every 20 epochs to monitor accuracy improvements in
the validation data. If no discernible enhancement in the validation data accuracy was noticed over
these 20 consecutive epochs, the learning process was halted.
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Figure 8. The loss function and accuracy of individual classifier 3 during training.
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Figure 9. The loss function and accuracy of individual classifier 4 during training.
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Figure 10. The loss function and accuracy of the ensemble classifier during training.
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Figure 15. The classification results on the testing data using the proposed technique.

Figures 11–15 offer a comprehensive visual representation, showcasing the classifica-
tion outcomes for each individual classifier as well as the proposed ensemble model, all
benchmarked against the testing dataset.

5.2. Using More Data for Training

To evaluate the significance of the provided data and verify the sufficiency of the
training dataset, we opted not to set aside 10 percent of the data for validation. Instead, we
used those samples for training, effectively utilizing 10 percent more data than was used in
the simulations for Figures 11–15. Here, we only report the results of the ensemble structure.
Figure 16 displays the classification results for different motions within the testing dataset
using our proposed method.
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5.3. Comparison with an LSTM with Optimized Structure

To ensure a rigorous comparison in this paper, we juxtaposed our proposed method
with an optimized LSTM. To determine the optimal structure for the LSTM, we employed
Bayesian optimization. Bayesian optimization is a global optimization technique tailored
for optimizing intricate, costly, and potentially noisy objective functions. It functions by
creating a probabilistic model of the objective function and then leverages this model to
identify the most promising evaluation candidates based on a chosen acquisition function.
Gaussian Processes (GPs) are frequently adopted as models due to their adaptability and
resilience in modeling unfamiliar functions. The acquisition function plays a critical role
in this method, striking a balance between exploring uncharted areas of the domain and
capitalizing on well-understood promising regions. For an in-depth discussion on Bayesian
optimization and its framework, readers can refer to [50,51]. For finding optimal structure
in neural networks like LSTM, Bayesian optimization provide substantial advantages over
traditional methods like grid or random search. Bayesian optimization adopts a more
structured approach, enabling the discovery of optimal or near-optimal solutions with
fewer evaluations—a boon in the realm of deep learning where model training can be both
computationally intensive and time-consuming.

We utilized Bayesian optimization to determine the optimal values for several hyper-
parameters: the number of hidden layers in the LSTM, the initial learning rate, mini-batch
size, and the number of epochs. The objective function for this optimization is defined
as the negative of the accuracy achieved across all class classifications. To evaluate the
performance, we set aside 10 percent of the training data. In each iteration of Bayesian
optimization, the model was trained on 90 percent of the training data. Subsequently,
the accuracy was assessed based on predictions for the remaining 10%. Thus, the aim of
Bayesian optimization is to maximize this accuracy, which is equivalent to minimizing its
negative value. We utilized the ‘expected improvement’ as the acquisition function, and
the chosen kernel function was ‘Matern52’. We capped the Bayesian optimization process
at 25 iterations. Figure 17 displays the progression of the objective function. As illustrated
in Figure 17, the minimum objective value remained unchanged after the eighth iteration.
This suggests that the Bayesian optimization identified the optimal structure within these
initial eight iterations and did not find a superior structure thereafter.
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Figure 17. The objective function of Bayesian optimization for finding the optimized structure of
the LSTM.

The resulting optimal structure defined by Bayesian optimization was as follows:
123 epochs, 62 hidden layers in the LSTM, a mini-batch size of 26, and an initial learning
rate of 0.002713. Utilizing this optimized LSTM structure, we trained our model. The
subsequent figure presents the results of the optimized LSTM on this dataset (Figure 18).
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The average accuracy across all classes stands at 86.15%, which is considerably lower
than that achieved by our proposed ensemble, as shown in Figure 16 with the same training
and testing data sets. This result illustrates that our proposed method surpasses the
performance of an optimized LSTM classifier.

6. Discussion

Figures 6–10 illustrate that the accuracy and loss function values for the validation data
closely align with those of the training set, providing a strong indication that overfitting
did not occurred.

Figures 11–15 illustrate the nuanced performance of various classifiers; while some
demonstrate proficiency in certain tasks, they fall short in others, indicating the varied
strengths and weaknesses across different scenarios. As previously mentioned at the outset
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of the simulation section, all classifiers utilize powerful and state-of-the-art architectures.
However, they do not always yield satisfactory results. For instance:

• In Individual Classifier 1, the accuracy for all positions is below 90%. Notably, for the
wrist extension position in the hand, the accuracy drops to 77.2%.

• Individual Classifier 2 performs better in detecting wrist extensions, yet its average
accuracy remains at 84.67%.

• In Individual Classifier 3, only wrist flexion exceeds 90% accuracy, with all other
measurements falling below this mark.

• Individual Classifier 4 detects an open hand with an accuracy of 77.9%, and its average
accuracy stands at 85.92%.

Figures 11–15 reveal that while some classifiers excel in specific tasks, they under-
perform in others. This inconsistency underscores the advantages of our architecture: it
harnesses the strengths of each classifier to yield superior results. Figure 15 substantiates
this claim, with only the wrist extension position falling below 90% accuracy. All other
positions, when evaluated using our proposed ensemble technique, have an accuracy
exceeding 90%. The ensemble’s average accuracy is 91.28%, whereas, for all individual
classifiers, the average accuracy remains below 90%.

Figure 16 showcases the results of the classification process when there is an additional
10% of data available in the training process. When directly comparing the results in
Figure 16 to the results in Figure 15, where we had 10% less training data, it is evident
that having more training data significantly improves the detection of wrist expansion.
The wrist expansion task is particularly challenging as the wrist expansion and hand open
motion share the involvement of the same muscle.

In Figure 16, the average accuracy of the proposed method stands at 91.5%, with
accuracies for all motions exceeding 90%. In comparison, when we allocated 10% of the
data for validation, resulting in 10% less data for training, the ensemble’s average accuracy
was slightly reduced to 91.28%, with wrist extension accuracy being the only one below 90%
at 87.2%. Hence, a close examination of both figures reveals that our approach consistently
delivers commendable results under both conditions. In addition, in Section 5.3, we
compared our method to an optimized LSTM. Figure 16 shows the results, with an average
accuracy of 86.15% across all classes. This performance indicates our method’s superiority
over the optimized LSTM classifier.

7. Conclusions

We presented an innovative ensemble neural network methodology tailored for the
classification of upper limb EMG signals. Our approach integrated LSTM and attention
mechanisms, harnessing their respective strengths to accomplish precise classification. We
provided a comprehensive description of the architecture and methodology, taking into
careful consideration the distinctive attributes and obstacles associated with EMG signals.
Furthermore, we outlined the preprocessing steps employed to transform the raw EMG
signals into a suitable format for classification. To evaluate the effectiveness of our proposed
technique, we compared its performance with a baseline LSTM classifier. The obtained
numerical results demonstrated the superiority of our method in terms of accuracy and
robustness, reinforcing its efficacy for EMG signal classification. The average accuracy of
our proposed method surpasses the 90% threshold. In contrast, the individual classifiers
tend to lag behind, with their average accuracy falling below 90%. For some specific motion
detections, their performance even approaches a lower boundary near 75%. As a future
suggestion, the proposed technique could be integrated and investigated in a probabilistic
manner to further enhance accuracy and reliability. This direction of research holds promise
for advancing EMG signal classification.
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