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Abstract: Let S = (s1, . . . , sn) be a finite sequence of integers. Then, S is a Gilbreath sequence of
length n, S ∈ Gn, iff s1 is even or odd and s2, . . . , sn are, respectively, odd or even and minK(s1,...,sm) ≤
sm+1 ≤ maxK(s1,...,sm), ∀m ∈ [1, n). This, applied to the order sequence of prime number P, defines
Gilbreath polynomials and two integer sequences, A347924 and A347925, which are used to prove
that Gilbreath conjecture GC is implied by pn − 2n−1 6 Pn−1(1), where Pn−1(1) is the n − 1-th
Gilbreath polynomial at 1.
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1. Introduction to GC

Let the ordered sequence P = (2, 3, 5, 7, 11, 13, 17, . . .) = (p1, . . . , pn) be formed by
prime numbers, and set

pb
a =

{
pa+1 − pa, if b = 1;
|pb−1

a+1 − pb−1
a |, otherwise

(1)

where b ∈ [1, n). N. L. Gilbreath conjectured that pb
1 = 1. It is likely that this conjecture

is satisfied by many other sequences of integers, so it is necessary to define the general
properties of all sequences that satisfy this conjecture. In particular, H. Croft and others
have suggested that any sequence starting with 2 followed by odd numbers which does not
increase too fast or too slow (does not have too large gaps) satisfies this conjecture [1]. We
equally suggest that the same may be true for any sequence starting with 1 followed by even
numbers which does not increase too fast or too slow. Thus, in general, we suggest that any
sequence starting with an even or odd number followed by odd or even numbers which
does not increase too fast or too slow satisfies this conjecture. In the following sections, we
shall call a Gilbreath sequence any sequence that satisfies the Gilbreath conjecture and the
upper and lower bounds that satisfy the Gilbreath conjecture for a given sequence.

Let GC(n) denote the GC proved for the ordered sequence of the first n prime numbers
(p1, . . . , pn); then, there are some interesting computational proofs of GC(n). R. B. Killgrove
and K. E. Ralston showed GC(63419) in 1959 [2] and A. M. Odlyzko showed GC

(
1013) in

1993 [3].

2. Properties of Gilbreath Sequence

Definition 1. Let S = (s1, s2, s3, . . . , sn) be a finite sequence of integers and

sb
a =

{
sa+1 − sa, if b = 1;
|sb−1

a+1 − sb−1
a |, otherwise

(2)

where b ∈ [1, n); then, S is called a Gilbreath sequence iff sb
1 = 1, ∀b.
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For example, let S = (2, 3, 5, 9, 11, 13, 17) be a sequence of length n = 7 and Gilbreath
triangle of S:

s1 s2 s3 s4 . . . sn−3 sn−2 sn−1 sn
s1

1 s1
2 s1

3 s1
4 . . . s1

n−3 s1
n−2 s1

n−1
. . .
sn−2

1 sn−2
2

sn−1
1

Replacing these values gives

2 3 5 9 11 13 17
1 2 4 2 2 4
1 2 2 0 2
1 0 2 2
1 2 0
1 2
1
Let Gn denote the set of all Gilbreath sequences of length n and G be the set of all

Gilbreath sequences. In the previous example, the first term of every sequence (except for
the original sequence S) is equal to 1; then, S ∈ G7.

Lemma 1. Let S = (s1, . . . , sn) ∈ Gn and S′ = (s1, . . . , sn−1) be finite sequences of integers;
then, S′ ∈ Gn−1.

Proof. Consider the Gilbreath triangle of S

s1 s2 s3 s4 . . . sn−3 sn−2 sn−1 sn
s1

1 s1
2 s1

3 s1
4 . . . s1

n−3 s1
n−2 s1

n−1
. . .
sn−2

1 sn−2
2

sn−1
1

where s1
1 = . . . = sn−2

1 = sn−1
1 = 1 as a consequence of S ∈ Gn. Removing the last element

of each sequence gives

s1 s2 s3 s4 . . . sn−3 sn−2 sn−1
s1

1 s1
2 s1

3 s1
4 . . . s1

n−3 s1
n−2

. . .
sn−2

1

which is a Gilbreath triangle of S′, s1
1 = . . . = sn−2

1 = 1 as a consequence of S ∈ Gn; then,
S′ ∈ Gn−1.

Definition 2. Let S = (s1, . . . , sn) ∈ Gn and S′ = (s1, . . . , sn, k) be finite sequences of integers.
Denote with KS the set of integers k such that S′ ∈ Gn+1.

The Gilbreath triangle of S is

s1 s2 s3 s4 . . . sn−3 sn−2 sn−1 sn
s1

1 s1
2 s1

3 s1
4 . . . s1

n−3 s1
n−2 s1

n−1
. . .
sn−2

1 sn−2
2

sn−1
1

where s1
1 = . . . = sn−2

1 = sn−1
1 = 1 as a consequence of S ∈ Gn. The Gilbreath triangle of

S′ is

s1 s2 s3 s4 . . . sn−3 sn−2 sn−1 sn k
s1

1 s1
2 s1

3 s1
4 . . . s1

n−3 s1
n−2 s1

n−1 |sn − k|
. . .
sn−2

1 sn−2
2 |sn−3

3 − |sn−4
4 − | . . .− |s1

n−1 − |sn − k|| . . . |||
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sn−1
1 |sn−2

2 − |sn−3
3 − |sn−4

4 − | . . .− |s1
n−1 − |sn − k|| . . . ||||

|sn−1
1 − |sn−2

2 − |sn−3
3 − |sn−4

4 − | . . .− |s1
n−1 − |sn − k|| . . . |||||

where s1
1 = . . . = sn−2

1 = sn−1
1 = 1 as a consequence of S ∈ Gn. If sn

1 = |sn−1
1 − |sn−2

2 −
|sn−3

3 − |sn−4
4 − | . . .− |s1

n−1 − |sn − k|| . . . ||||| = 1, then S′ ∈ Gn+1.
Consider the equation

|sn−1
1 − |sn−2

2 − |sn−3
3 − |sn−4

4 − | . . .− |s1
n−1 − |sn − k|| . . . ||||| = 1 (3)

We will refer to Equation (3) as a Gilbreath equation of S. There are 2n values of k that
satisfy (3); then, KS = {k1, . . . , k2n} is the set of all solutions for k:

k1,...,2n = ±sn−1
1 ± sn−2

2 ± sn−3
3 ± sn−4

4 ± . . .± s1
n−1 + sn ± 1 (4)

The largest value of k that solves (3) is maxKS = sn−1
1 + sn−2

2 + sn−3
3 + sn−4

4 + . . . + s1
n−1 +

sn + 1, and the smallest value is minKS = −sn−1
1 − sn−2

2 − sn−3
3 − sn−4

4 − . . .− s1
n−1 + sn −

1 = 2sn −maxKS. A remarkable relation is

maxKS + minKS = 2sn (5)

Lemma 2. Let S = (s1, . . . , sn) ∈ Gn be a finite sequence of integers where s1 ∈ 2Z; then,
s2, . . . , sn ∈ 2Z+ 1.

Proof. Let S1 = (s1), where s1 ∈ 2Z. From Definition 2, S2 = (s1, k) ∈ G2 if k =
s1 ± 1 ∈ 2Z+ 1. Let now the sequence S3 = (s1, s1 ± 1, k), from Definition 2, S3 ∈ G3
if k = | ± 1|+ (s1 ± 1)± 1 = 1 + s1 ± 1± 1. From the previous step, s1 ± 1 ∈ 2Z+ 1. Then,
1 + s1 ± 1 ∈ 2Z and 1 + s1 ± 1± 1 ∈ 2Z+ 1. By induction, this can be proved for every
element of S. If S ∈ Gn and the first element of S is an even number, then all the other
numbers of the sequence will be odd.

Lemma 3. Let S = (s1, . . . , sn) ∈ Gn be a finite sequence of integers where s1 ∈ 2Z+ 1; then
s2, . . . , sn ∈ 2Z.

Proof. This argument is the same argument as Lemma 2.

Lemma 4. Let 2Z+
(

1
2 ±

1
2

)
denote the sets 2Z and 2Z+ 1 and let a finite sequence of integers

S = (s1, . . . , sn) ∈ Gn where s1 ∈ 2Z+
(

1
2 ±

1
2

)
. Then, s2, . . . , sn ∈ 2Z+

(
1
2 ∓

1
2

)
.

Proof. See Lemmas 2 and 3.

Lemma 5. Let S = (s1, . . . , sn) ∈ Gn and S′ = (s1, . . . , sn, k) ∈ Gn+1 be finite sequences of
integers where s1 ∈ 2Z+

(
1
2 ±

1
2

)
. Then,

k ∈ KS = {x ∈ [minKS, maxKS] ∧ x ∈ 2Z+

(
1
2
∓ 1

2

)
}.

Proof. See Definition 2 and Lemma 4, where the symbol ∧ is used to denote the truth-
functional operator of logical conjunction AND [4].

An important result regarding Equation (4) follows from Lemma 5. Equation (4)
generates 2n solutions for a finite sequence (s1, . . . , sn, k) ∈ Gn+1, where (s1, . . . , sn) ∈ Gn.
From Lemma 5, these solutions are only even or only odd if s1 is odd or even, respectively.
Therefore, the number of distinct solutions generated by (4) is 2n−1 since solutions are
divided between even and odd.
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Theorem 1. Let S = (s1, . . . , sn) ∈ Gn and S′ = (s1, . . . , sn, k) be finite sequences of integers;
then, k ∈ KS ⇔ S′ ∈ Gn+1.

Proof. Suppose that s1 ∈ 2Z+
(

1
2 ±

1
2

)
. Prove the right implication first. From Definition 2,

k ∈ [minKS, maxKS] and from Lemma 5, k ∈ 2Z+
(

1
2 ∓

1
2

)
. Then, k ∈ KS ⇒ S′ ∈ Gn+1.

Prove the left implication by contradiction. Suppose that S′ ∈ Gn+1 but k /∈ KS. Then,
k ∈ {x /∈ [minKS, maxKS] ∨ x /∈ 2Z+

(
1
2 ∓

1
2

)
}. The symbol ∨ is used to denote the

truth-functional operator of logical disjunction OR [4]. From Definition 2 and Lemma 5, it
is not possible to have S′ ∈ Gn+1 if k > maxKS ∨ k < minKS ∨ k /∈ 2Z+

(
1
2 ∓

1
2

)
. Then,

it is true that k ∈ KS ⇐ S′ ∈ Gn+1.

Corollary 1. Let S = (s1, . . . , sn) be a finite sequence of integers; then, S ∈ Gn ⇔ minK(s1,...,sm) ≤
sm+1 ≤ maxK(s1,...,sm), ∀m ∈ [1, n).

Proof. As a consequence of Definition 2 and Equation (4), each m-th element of a sequence
S must be within the range between the upper and the lower sequences calculated on all
the elements prior to the m-th ones. From Definition 2 and according to the solution of
Gilbreath Equation (4), there cannot exist a Gilbreath sequence in which the m-th element
is larger than maxK(s1,...,sm−1)

, since maxK(s1,...,sm−1)
is the maximum value for the m-th

element. The same goes for minK(s1,...,sm−1)
, since it is the smallest value for the m-th

element.

3. Upper and Lower Bound Sequences

Let us now introduce the definition of two notable Gilbreath sequences. Let
S = (s1, . . . , sn) ∈ Gn be a finite sequence of integers; from (4), any solutions of the Gilbreath
equation cannot be greater than maxKS, so the sequence (s1, . . . , sn, maxKS) ∈ Gn+1 is the
upper bound sequence for S. Let the new sequence now be S′ = (s1, . . . , sn, maxKS) and
its upper bound sequence be

(
s1, . . . , sn, maxKS, maxK(s1,...,sn ,maxKS)

)
∈ Gn+2, and so on.

Equally, let a finite sequence of integers be S = (s1, . . . , sn); from (4), any value of k cannot
be smaller than minKS and the new sequence S′ = (s1, . . . , sn, minKS, k) will have a lower
limit for k = minK(s1,...,sn ,minKS)

, and so on. Then, it is possible to introduce the definition of
the upper bound Gilbreath sequence and the lower bound Gilbreath sequence.

Definition 3. Let S = (s1, . . . , sn) ∈ Gn be a finite sequence of integers. Let us denote with US
the upper bound Gilbreath sequence for S and with LS the lower bound Gilbreath sequence for S:

US = (u1, . . .) =
(

s1, . . . , sn, maxK(s1,...,sn), maxK(
s1,...,sn ,maxK(s1,...,sn)

), . . .
)

LS = (l1, . . .) =
(

s1, . . . , sn, minK(s1,...,sn), minK(
s1,...,sn ,minK(s1,...,sn)

), . . .
)

The following recursive definition holds:

ui =

{
si, if i ≤ n;
maxK(u1,...,ui−1)

, otherwise

and

li =

{
si, if i ≤ n;
minK(u1,...,ui−1)

, otherwise

It is also useful to define a notable sub sequence of US and LS.
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Definition 4. Let S ∈ Gn be a finite sequence of integers and its US and LS. Let us define ŨS and
L̃S as follows:

ŨS = (ũ1, . . .) =
(

maxKS, maxK(S,maxKS)
, . . .

)
L̃S =

(
l̃1, . . .

)
=
(

minKS, minK(S,minKS)
, . . .

)
The following recursive definition holds:

ũi =

{
maxKS, if i = 1;
maxK(S,ũ1,...,ũi−1)

, otherwise

l̃i =

{
minKS, if i = 1;
minK(S,l̃1,...,l̃i−1)

, otherwise

From Theorem 1, US ∈ G and LS ∈ G, while elements of ŨS and L̃S are all even or all
odd; then, ŨS /∈ G and L̃S /∈ G.

From Definition 3, let S = (s1); then, US = (s1, s1 + 1, s1 + 3, . . . , s1 + 2n − 1), ŨS =
(s1 + 1, s1 + 3, . . . , s1 + 2n − 1), LS = (s1, s1 − 1, s1 − 3, . . . , s1 − 2n + 1), and L̃S = (s1 − 1,
s1− 3, . . . , s1− 2n + 1). Table 1 shows some examples of Gilbreath sequences and the closed
form for ũn.

Table 1. Some examples of Gilbreath sequences and their closed form for ũn.

m S ∈ Gm ũn

2 (44, 45) 2n+1 + 43

3 (21, 20, 18) 2n+2 + 14

4 (38, 39, 39, 39) 2n+3 − n2 − 5n + 31

4 (6, 7, 5, 3) 2n+3 − n2 − 3n− 5

5 (28, 29, 27, 25, 21) 2n+4 − n2 − 5n + 5

6 (7, 8, 10, 6, 6, 6) 2n+5 − 4n2 − 20n− 26

6 (13, 14, 14, 14, 12, 10) 2n+5 − n4

12 −
5n3

6 −
71n2

12 −
115n

6 − 22

7 (93, 94, 94, 94, 92, 92, 94) 2n+6 − n4

6 −
7n3

3 −
77n2

6 −
122n

3 + 30

4. Gilbreath Polynomials

Definition 5. Let P = (p1, . . . , pm) be the ordered sequence of the first m prime numbers and
let Pm(n) be a function such that ũn = 2m+n−1 + Pm(n), where Pm(n) = am,0 + am,1n + . . . +
am,knk; then, Pm is called m-th Gilbreath polynomial.

Through simple algebra, one can prove that for the ordered sequence of the first m
prime numbers, Pm(n) are represented in Table 2. This provides important information
about sequence A347924 [5], which is the triangle read by rows, where row m is the m-th
Gilbreath polynomial and column n is the numerator of the coefficient of the k-th degree
term. According to Table 2, this sequence contains the integer term of every m-th Gilbreath
polynomial. The related sequence A347925 [6] contains the lowest common denominator
of m-th Gilbreath polynomial. It is the sequence of denominators of the polynomials in
Table 2.
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Table 2. Gilbreath polynomials for m ≤ 16.

m Pm(n)

1, 2, 3 1

4 −n2 − 3n− 1

5 −n2 − 5n− 5

6 − 2n3

3 − 5n2 − 55n
3 − 19

7 − n4

6 −
7n3

3 −
77n2

6 −
116n

3 − 47

8 − n5

30 −
2n4

3 −
35n3

6 −
85n2

3 −
1277n

15 − 109

9 − n6

180 −
3n5

20 −
65n4

36 −
155n3

12 −
5327n2

90 − 2579n
15 − 233

10 − n7

1260 −
n6

36 −
79n5

180 −
151n4

36 −
2441n3

90 − 1087n2

9 − 36481n
105 − 483

11 − n9

181440 −
n8

4032 −
169n7

30240 −
41n6

480 −
8389n5

8640 −
1597n4

192 −
599441n3

11340
− 1202527n2

5040 − 177197n
252 − 993

12 − n10

1814400 −
13n9

362880 −
31n8

30240 −
1123n7

60480 −
20833n6

86400 −
41497n5

17280
− 3375899n4

181440 −
10094093n3

90720 − 12276223n2

25200 − 355399n
252 − 2011

13 − n11

19958400 −
n10

259200 −
5n9

36288 −
13n8

4320 −
27841n7

604800 −
46711n6

86400
− 46133n5

9072 −
991007n4

25920 −
50938267n3

226800 − 3525203n2

3600 − 7851061n
2772 − 4055

14 − n12

239500800 −
n11

2661120 −
49n10

3110400 −
299n9

725760 −
54871n8

7257600 −
5093n7

48384
− 25465669n6

21772800 −
854669n5

80640 −
60581657n4

777600 − 82179283n3

181440 − 102126421n2

51975
− 15729347n

2772 − 8149

15 − n13

3113510400 −
n12

29937600 −
389n11

239500800 −
269n10

5443200 −
7727n9

7257600 −
15781n8

907200
− 4919917n7

21772800 −
13119557n6

5443200 −
58181479n5

2721600 −
424785041n4

2721600 − 4521951163n3

4989600
− 3269429687n2

831600 − 292152089n
25740 − 16337

16 − n14

43589145600 −
17n13

6227020800 −
73n12

479001600 −
2557n11

479001600 −
5777n10

43545600 −
4051n9

1612800
− 11564263n8

304819200 −
20564861n7

43545600 −
107393969n6

21772800 −
471325651n5

10886400 −
18807572041n4

59875200
− 2266391933n3

1247400 − 595484981809n2

75675600 − 818209547n
36036 − 32715

Relation between Gilbreath Polynomials and GC

Gilbreath polynomials are closely related to prime numbers and GC. Let a finite
sequence of integers S = (s1, . . . , sn), Theorem 1 and the following. The relationship
s2 = s1 ± 1 must be true; otherwise, it would not be true that s1

1 = 1. As a consequence
of Lemma 5, for all elements subsequent to s1, the absolute difference of two successive
elements must be an integer multiple of 2 so as to maintain the absolute difference of two
successive elements as an even value. So, if the first element in the sequence is even, the
subsequent elements must be odd, and if the first element is odd, the subsequent elements
must be even.

Let P = (p1, p2) = (2, 3) ∈ G2 be a Gilbreath sequence formed by the first two prime num-
bers. From (5), minK(p1,p2) ≤ p2 ≤ maxK(p1,p2) and from Theorem 1, (p1, p2, p2) ∈ G3. By
definition of P, pn > pn−1. Since minK(p1,p2) ≤ p2, it is certainly true that minK(p1,p2) ≤ p3.
The left inequality is proved for n = 3 and it is easy to prove for every n. The proof of
minK(p1,...,pn−1)

≤ pn is trivial and holds for all prime numbers, hence pn 6 maxK(p1,...,pn−1)
⇒

GC(n). Given Gilbreath polynomials in Definition 5, maxK(p1,...,pn−1)
= 2n−1 + Pn−1(1), then

pn − 2n−1 6 Pn−1(1)⇒ GC(n) (6)
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The left side of (6)
pn − 2n−1 6 Pn−1(1) (7)

consists of a Gilbreath polynomial conjecture whose solution implies GC. Unfortunately,
bounds for pn are not enough good to prove (7); however, this opens the way for a new
approach to the GC [7–10].

5. Conclusions and Future Work

Theorem 1, about properties of a Gilbreath sequence, states that if and only if the first
element of a finite sequence of integers (s1, . . . , sn) ∈ Gn is even or odd, then for any odd
or even integer maxKS ≤ k ≤ minKS, respectively, the sequence is (s1, . . . , sn, k) ∈ Gn+1.

Theorem 1 proves Equation (6) involving Gilbreath polynomials, and Equation (7)
implies GC. The Gilbreath polynomials defined in Definition 5 introduce a new interesting
tool for the study of the properties of prime numbers; in particular, we are interested in the
matrix of coefficients of Gilbreath polynomials defined as G = am,k, and a paper on G will
be published in the future.
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