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Abstract: In machine learning and data mining applications, an imbalanced distribution of classes in
the training dataset can drastically affect the performance of learning models. The class imbalance
problem is frequently observed during classification tasks in real-world scenarios when the available
instances of one class are much fewer than the amount of data available in other classes. Machine
learning algorithms that do not consider the class imbalance could introduce a strong bias towards
the majority class, while the minority class is usually despised. Thus, sampling techniques have
been extensively used in various studies to overcome class imbalances, mainly based on random
undersampling and oversampling methods. However, there is still no final solution, especially in
the domain of multi-class problems. A strategy that combines density-based clustering algorithms
with random undersampling and oversampling techniques is studied in this work. To analyze
the performance of the studied method, an experimental validation was achieved on a collection
of hyperspectral remote sensing images, and a deep learning neural network was utilized as the
classifier. This data bank contains six datasets with different imbalance ratios, from slight to severe.
The experimental results outperform the classification measured by the geometric mean of the
precision compared with other state-of-the-art methods, mainly for highly imbalanced datasets.

Keywords: density-based clustering algorithms; sampling methods; deep neural networks

MSC: 68-xx; 62-xx

1. Introduction

Many machine learning and data mining applications require working with unbal-
anced datasets [1]. Although it is not a new topic, the results in diverse applications
where this problem occurs indicate that it is still a current challenge for the data science
community [2], especially in new Big Data scenarios [3].

An unbalanced dataset refers to a situation in which there exists a substantial disparity
in the distribution of instances belonging to specific classes when compared to the sample
sizes of one or more other classes. This imbalance can have profound implications for
various data-driven tasks, especially in the realm of machine learning. The imbalance
causes a bias in the results of classical classifiers, leading to a misinterpreted efficiency,
even in the most recent cases, such as those based on deep learning [2]. Unbalanced data
usually imply the misrecognition of the less represented classes, while the more populated
classes are well recognized [4]. The trouble of class imbalance is present in many real-life
problems: fraud detection, medical diagnosis, and anomaly identification, among others [5].
For example, in diagnosing some illnesses, a class of particular interest could have only a
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few patients with a rare cancer, while another class has numerous healthy patients, leading
to a tricky identification of the little-represented class. In data mining, the interest class
with few representative instances is named minority class, or positive class [4,6].

Various methods to address the class imbalance problem can be documented in the
literature [7]. They could be grouped into three categories: (a) data-level (or external),
(b) algorithm-level (or internal), and (c) methods that consider the prediction errors (cost-
sensitive) [8]. The strategies applied at the data level involve manipulating the original
dataset. This manipulation can include either augmenting the minority class by introducing
synthetic instances (oversampling) or reducing the number of instances in the majority
class (undersampling) [9]. Also, the hybrid methods combine both oversampling and
undersampling; for example, the undersampling clustering method [10] or the combination
of oversampling and heuristics (Tomek Links) [11]. Most of the oversampling methods
generate synthetic instances of the minority class until a relative balance in the dataset is
achieved; they are based on the Synthetic Minority Over-Sampling Technique (SMOTE) [12],
as it occurs in Borderline-SMOTE (B-SMOTE) [13], or the adaptative approach ADASYN
(Adaptive Synthetic) [14]. In contrast, the clustering techniques are being popular because
of their effectiveness to address class imbalance; for example, the Fast Clustering-Based
Undersampling method (Fast-CBUS) [15], the Clustering Based Oversampling (CBOS) [16],
or the SMOTE and Clustered Undersampling Technique (SCUT) [17]. Those methods use
clustering to reduce the loss or distortion by eliminating instances from the majority classes
or creating instances in the minority classes.

The relevance of clustering techniques has been studied, and some authors have
demonstrated advancements in density-based clustering techniques for diverse data types
and applications, emphasizing improved performance in terms of cluster quality, robust-
ness against noise, and computational efficiency. For example, in a specific application,
ref. [18] introduces the MDPC-AD algorithm (Mixture Distance-Based Improved Density
Peaks Clustering), designed for gearbox fault diagnosis. It combines density-based and
distance-based clustering techniques to handle mixed data types (numerical and categor-
ical). Likewise, ref. [19] introduces an uncertain data object clustering method based on
distribution similarity, using measures like KL-divergence and J-divergence along with
k-medoids and modified DBSCAN. It is applied to PDF file databases and evaluated on real
and synthetic datasets. While it may not be directly applicable to all databases, it provides
an interesting alternative for assessing DBSCAN and related algorithms.

In relation to advanced clustering-based approaches, ref. [20] presents the DCSNE
(Density-based Clustering using Graph Shared Neighbors and Entropy) algorithm. DCSNE
excels in cluster quality, noise handling, and computational efficiency. It comprises four
steps: similarity graph construction, density calculation, outlier detection, and merging
density regions. It outperforms other clustering methods on synthetic, gene expression,
and real datasets. In another example, ref. [21] presents an entropy-based density peak
clustering technique for gene expression datasets. It leverages entropy and the Extreme
Clustering algorithm to tackle high dimensionality and noise in gene expression data. This
technique excels in cluster quality, noise robustness, and biological significance.

In this paper, four heuristics to face the data imbalance in multi-class problems are
studied; they consist of a combination of clustering and sampling techniques. The general
idea is to eliminate some instances of the majority classes using density-based clustering
algorithms to avoid the loss of relevant information, and then SMOTE to add instances to
the minority classes and reduce the imbalance. Hyperspectral images with multiple classes
and high imbalance were used as datasets to validate the proposed method, and a deep
neural network (DNN) was used as a classifier. The mean geometric value was used to
quantify the efficiency of the method, and Friedman’s test was used to rank the different
approaches. The main contribution of this research lies in the study of density-based
clustering methods to deal with the problem of class imbalance in multiple classes and in
scenarios with severe imbalance, which have been little studied in the recent literature. The
main findings and highlights of this work can be summarized as follows:
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• We introduce a new density-based undersampling technique (based on SMBD, Spa-
tially Motivated Balancing by Density) which leverages the DBSCAN and HDBSCAN
clustering algorithms.

• An improved version of the SCUT algorithm is presented, enhancing its performance
and versatility.

• Our proposed method underwent testing on a database consisting of highly imbal-
anced and multi-class hyperspectral remote sensing images.

• To assess the effectiveness of our approach, we employed the geometric mean value
as a quantitative measure. Additionally, we applied Friedman’s test to rank various
methodologies, comparing SMBD against conventional algorithms typically used for
addressing class imbalance.

• The results obtained not only surpassed those achieved with unbalanced images
but also outperformed classical approaches, emphasizing the efficacy of our pro-
posed method.

2. Related Literature

There is a relatively large number of publications on class imbalance, mainly on data-
level approaches [22]. The solutions presented primarily lie in changing the distribution of
classes in the dataset, either through undersampling or oversampling. The undersampling
techniques reduce the size of the majority classes, randomly eliminating some of their
instances. In contrast, the oversampling methods add instances to the minority classes
by duplicating or interpolating existing ones. Random undersampling methods have
demonstrated promising results in terms of the computational cost [23] because they use
small groups of the majority classes in the training stage, favoring a fast and efficient
learning process [9]. However, information loss can occur [11], so more sophisticated
techniques have been proposed to remove instances of the majority classes more selectively:
examples of this include neighborhood-based algorithms [24,25] and clustering-based
techniques [16].

2.1. Neighborhood-Based Methods

Several variants of neighborhood-based methods are currently in use [23,26]. The
condensed nearest neighbor (CNN) method, also known as Hart algorithm [27], eliminates
instances far from the decision borders determined by the nearest neighbor technique
because they are considered irrelevant for the learning process. Opposite to the Hart
algorithm, the Tomek Links (TL) method eliminates the instances from the majority or
minority classes that lie close together, i.e., close to the decision border [28]. In [24],
the One-Sided Selection (OSS) methodology is proposed; first, the CNN eliminates the
redundant instances; then, other instances considered as noise are deleted by TL. In [25],
the Wilson Editing method [29] is used to eliminate instances that were misclassified by the
nearest neighbor technique. In [30], the Neighborhood Cleaning Rule (NCL), which is an
adaptation of the Wilson Editing method, where only the instances from the majority class
can be deleted, is used.

2.2. Clustering-Based Techniques

Clustering algorithms are the new approach to using subsampling methods but avoid-
ing information loss [10]. Ofek et al. [15] propose the Fast-CBUS, where the K-means
algorithm [31] groups the instances from the minority class. The same number of instances
from the majority class are selected for each group within the minority class. The selected
samples from minority and majority classes are used to train a classifier. In [32], the Clus-
tering Large Applications (CLARA) algorithm [31] is used to group instances from the
majority class. The Silhouette index estimates the optimal number of groups, and instances
from each group are randomly selected, thus reducing the size of the majority class. The
C4.5 classifier was utilized to test the proposed methodology, and the Area Under the Curve
(AUC) was used to evaluate the overall efficiency. In [16], the method CBOS is proposed
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to classify binary class (two classes); this method uses the K-means algorithm to group
instances from the minority class. Synthetic instances between the centroid and the group
instances are created for each group. In [17], the SCUT algorithm is proposed to balance
multiple-class datasets. The class balancing is achieved depending on the mean size of
the classes, P (number of instances per class). Then, the Expectation-Maximization [33]
algorithm is applied for majority classes with a size greater or equal than P, while SMOTE
is used to generate synthetic instances in the minority classes with a size less than P.

2.3. Density-Based Clustering Algorithms

Density-based clustering algorithms are extensively used in data mining applications:
mainly geo-localization and medical imaging segmentation [34]. The success of these
algorithms is because they can group the data into different sizes, shapes, and densities [31].
The groups are based in dense regions of data separated by low-density regions, which
are considered noise or atypical data, which could be eliminated from the dataset [35].
Clustering algorithms can also be used to reduce the size of the majority class [32]. Although
a relatively large variety of heuristics to perform clustering exists, this work uses only
density-based algorithms; specifically, the Density-Based Spatial Clustering of Applications
with Noise, namely DBSCAN [36], and the Hierarchical DBSCAN, or HDBSCAN [37].

DBSCAN is one of the most relevant density-based clustering methods. Proposed by
Ester et al. [36], this algorithm introduces the concept of core-point, noise-point (or outlier),
and border-point. It requires two input parameters to create a cluster: the maximum radius
of the neighborhood (rv) and the minimum number of data points within the radius of a
neighborhood (minPts). The following definitions help to understand the DBSCAN process,
which is summarized by Algorithm 1.

Definition 1 (Core-point). An object p ∈ D, related to rv and minPts, is a core-point if
‖Nrv(p)‖ ≥ minPts, where ‖Nrv(p)‖ are neighbor objects within rv from p.

Definition 2 (Density-reachable point). An object q ∈ D, related to rv and minPts, is density-
reachable from p ∈ D (directly or transiently) if a catenation of objects p1, p2, ..., pn in D exists,
with p1 = p, pn = q so that pi+1 ∈ Nrv(pi), with pi being a core-point.

Definition 3 (Density-connectivity). An object p ∈ D is connected by density to q ∈ D, related
to rv and minPts, if an object v ∈ D exists so that p and q are density-reachable from v.

Definition 4 (Density-based clustering). A density-based group C, related to rv and minPts,
is a nonempty subset of D, which satisfies, first, that ∀p, q ∈ D : if p ∈ C and q is density-
reachable from p, related to rv and minPts. Consequently, q ∈ C; second, that ∀p, q ∈ C : p is
density-connected to q related to rv and minPts.

Algorithm 1 Summary of the DBSCAN algorithm.
Input: D, rv, minPts; // D collection of objects, rv maximum radius of the neighborhood, minPts
minimum number of datapoints within rv.
Output: C // Identified clusters

1: A random object p is selected. If p belongs to a group, then another object is selected
until the selected object is not in a group.

2: If p is a core-point, then a group with all the points reachable from p within rv exists.
3: If p is a border-point (or an outlier), then another object is chosen.
4: If all objects have been visited, the process ends, and all grouped objects C are returned;

otherwise, the process is repeated from step 2.
5: return C;
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HDBSCAN was proposed in [37] as an improved version of DBSCAN, which only
requires minPts as an input parameter. It can use different values of rv, resulting in groups
of distinct densities. The following definitions are useful to understand HDBSCAN, which
is summarized by Algorithm 2.

Definition 5 (Core-distance). The distance to the core dcore(p) of an object p ∈ D is the separation
from p to its nearest neighbors (minPts, p included).

Definition 6 (rv-core). An object p ∈ D is an rv-core for each value of rv greater than or equal to
the core distance of p, related to minPts, i.e., if dcore(p) ≤ rv.

Definition 7 (Mutual reachability distance). The distance beween two objects p ∈ D and q ∈ D,
related to minPts, defined as dmreach(p, q) = max{dcore(p), dcore(q), d(p, q)}.

Definition 8 (Graph of mutual reachability). A complete graph GminPts is formed by the objects
in D as the vertices and the mutual reachability distance as the weight of each object, related to
minPts, between the respective pairs of objects.

Algorithm 2 Summary of the HDBSCAN algorithm.
Input: D, rv, minPts; // D collection of objects, minPts minimum number of objects.
Output: C // Identified groups

1: Calculate the core-distance, related to minPts, for all objects in D.
2: Calculate a Minimum Spanning Tree (MST) of GminPts [38].
3: Extend the MST to obtain MSText, by adding an edge with the rv-core distance as a

weight for each vertice.
4: Extract the hierarchy as a dendrogram of MSText:
5: repeat
6: Assign the same label to all objects (unique group) for the tree’s root.
7: Iteratively eliminate all edges of MSText in descending order of weights. If a tie

occurs, the edges are simultaneously eliminated.
8: repeat
9: Before an elimination, establish the weight of the edges to be removed as equivalent

to the value of the current hierarchical level dendrogram.
10: Next to an elimination, assign labels to the connected components containing the

final vertices of deleted edges to obtain the next hierarchical level. Assign a new
group label to an element if at least an edge exists; otherwise, assign a null label
(noise).

11: until all edges has been removed;
12: until all MSText nodes are analyzed;
13: return C;

3. Methodology

The studied strategy is derived from the SCUT method exhibited in [17]. Our ap-
proach balances the multiple-class dataset by performing undersampling and oversam-
pling with respect to the average number of samples in each class of the dataset. D is a
dataset with C0,...,Cn classes (D = C0 ∪ C1 ∪ ...∪ Cn) and t0,..., tn is the number of samples
per class (‖D‖ = ∑n

i=0 ti = ∑n
i=0 ‖Ci‖); M is the average number of samples per class

(M = ∑n
i=0 ti/n). If ti > M, an undersampling procedure is performed upon density-based

techniques, DBSCAN or HDBSCAN, (in the original work [17], the method Expectation-
Maximization (EM) is used). In contrast, if ti < M, SMOTE is applied. In Algorithm 3, the
steps of the studied strategy are presented.

The SMDB procedure (Spatially Motivated Balancing by Density) is shown in Algorithm 4.
Its input is a class C, and it returns CB as a subset of size M. This algorithm uses a density-
based clustering method, either DBSCAN or HDBSCAN, to reduce the size of the class,
such that ‖CB‖ < ‖C‖. To adjust the reduction ratio, we use the criteria of grouping only
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the classes whose size is greater than the average plus an additional percentage ∆ (20%),
thus avoiding that the algorithm could eliminate an excessive number of objects. On the
other hand, for classes with a size less than M + ∆, the SMOTE technique is applied until a
subset of objects of size M is obtained.

Algorithm 3 Proposed strategy derived from SCUT.
Input: D (Dataset containing n classes);
Output: DB (Balanced dataset containing n classes of size M each);

1: Split the classes on D in C0, C1, C2, . . . , Cn, disjoint subsets;
2: Calculate ti = ‖Ci‖, for i = 0, 1, ..., n;
3: Calculate M = ∑n

i=0 ti/n
4: DB = ∅
5: for i = 0 to n do
6: if ti > M then
7: CBi ← SMBD(Ci, M); /*SMBD is the density-based undersampling procedure*/
8: end if
9: if ti < M then

10: CBi ← SMOTE(Ci, M);
11: end if
12: if ti = M then
13: CBi = Ci;
14: end if
15: DB = DB ∪ CBi;
16: end for
17: return DB;

Algorithm 4 SMBD: density-based undersampling procedure.
Input: Subset C containing the objects from a specific class in D (C ∈ D), ∆ (tolerance
percentage);
Output: Balanced subset CB of a particular class, where (‖CB‖ == M) ∧ (CB ∈ C);

1: Limit = (M ∗ ∆) + M;
2: if ‖C‖ > Limit then
3: G0, G1, . . . , Gk ← DBSCAN(C, rv, minPts);
4: G0, G1, . . . , Gk ← HDBSCAN(C, minPts);
5: /* Gj, is the j-th group obtained by the clustering algorithm, where j = 0, 1, ..., k */
6: for j = 0 to k do
7: g_Gj = |Gj|; /* Number of samples of Gj cluster /*
8: end for
9: for j = 0 to k do

10: T = T + g_Gj; /* T is the sum of samples all clusters */
11: end for
12: for j = 0 to k do

13: sizej =
[ g_Gj

T

]
∗M; /*Number of samples to be selected from each cluster */

14: end for
15: CB = ∅;
16: for j = 0 to k do
17: G′j = Select(sizej, Gj); /*Randomly select sizej samples from Gj*/
18: CB = CB ∪ G′j;
19: end for
20: else
21: CB← RUS(M, C); /*Randomly select M samples from class C*/
22: end if
23: return (CB);
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The proposed methodology in Algorithm 3 performs the undersampling process
shown in Algorithm 4 which uses either DBSCAN or HDBSCAN. However, other tech-
niques could also be applied. In this study, the K-means clustering algorithm was used as a
baseline [33,39]. Additionally, Algorithms 1 and 2 were adapted by calculating the maxi-
mum radius of the neighborhood, rv, and the best value for the minimum number of points,
minPts, for each particular algorithm. Different values of rv and minPts were proven
by greedy techniques [40], and the Silhouette validation index [31] acted as optimization
criteria, to identify the best collection of clusters.

4. Experimental Set-Up
4.1. Datasets

The experimental validation of the proposed methodology was performed in six
hyperspectral remote sensing datasets obtained from the GIC repository [41]. We proposed
to study remote sensing hyperspectral images, which are collected using airborne or satellite
sensors, because these images are gathered across many contiguous spectral bands. This
means that each pixel in the picture has a spectrum, which is a plot of the amount of light
reflected or emitted at different wavelengths. Hyperspectral images can have hundreds
or even thousands of spectral bands, which gives them much more spectral information
than traditional aerial images. Remote sensing spectral classification has become essential
for spatial data analysis tasks where each pixel is represented as a spectral feature [42].
Therefore, these images contain many classes (land regions), and many times, some classes
are underrepresented because they were only captured in a few pixels from the entire
image, i.e., they are imbalanced datasets.

In the proposed dataset, the AVIRIS sensor captured data from the Pine Indian region
in Northwestern Indiana, yielding a dataset with 220 spectral reflectance bands spanning
the wavelength range from 0.4 to 2.5 µm. The Salinas image was also obtained by the
AVIRIS sensor in California’s Salinas Valley. The ROSIS sensor obtained the PaviaC and
PaviaU images during a flight over Pavia in northern Italy; PaviaC’s image is of the city
center and the university, while PaviaU is just the university. The KSC imagery corresponds
to the Kennedy Space Center by the AVIRIS sensor. Finally, the images in Botswana were
captured by NASA’s EO-1 sensor over the Okavango River Delta in Botswana.

In Table 1, dataset attributes can be observed, which include pixel count, band
count, class count, the size of the majority class (Cmaj), and the size of the minority
class (Cmin). Afterwards, the imbalance ratio (IR) was calculated between the majority
class, Cmaj, and the minority class, Cmin, i.e., the biggest and smallest classes, respectively:
IR = ‖Cmaj‖/‖Cmin‖.

Table 1. Description of the datasets.

Dataset Pixels Bands Classes Cmaj Cmin IR

Indian 21,025 220 17 10776 20 533.8
Salinas 111,104 224 17 56,975 916 62.2
PaviaC 1,201,216 102 10 635,488 2685 236.7
PaviaU 372,100 103 10 164,624 947 173.8
Botswana 377,856 145 15 374,608 95 3943.2
KSC 314,368 176 14 309,157 105 2944.4

To evaluate the effectiveness of the classifier, each dataset was split into two disjoint
subsets by the hold-out method [43], where the training dataset (TRD) contains 70% of the
images, and the testing (TD) dataset represents the remaining 30%, so that TRD ∩ TD == �.
It is noteworthy that this dataset division was executed before any data balancing pro-
cedures, and these balancing techniques were exclusively applied to the image training
subset. Meanwhile, the testing subset remained unaltered throughout the process, ensuring
an equitable evaluation of the proposed scheme’s performance. Furthermore, it is essential
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to highlight that this separation of training and testing was performed at the image level:
each image within the dataset may exhibit distinct pixel distributions, reflecting the unique
hyperspectral information it encapsulates. Importantly, no image pre-processing techniques
were applied before the data balancing process. The latter allows for a comprehensive
evaluation of the classifier’s ability to handle the inherent variations within the dataset,
ensuring that performance assessments are executed in real conditions.

4.2. Artificial Neural Network Architecture

The artificial neural network used as a classifier for this work was constructed upon
that presented in Ref. [11], and it consists of a DNN. The test-and-trial approach was used
to find the number of hidden layers and neurons per layer, so the results of this work can be
directly compared with Ref. [11]. Although several schemes for the automatic identification
of the optimal number of neurons in a DNN exist [44], the test-and-trial method is widely
used because of its suitability to be adapted to many scenarios. In addition, for the purpose
of this study, we consider that the configuration of four to six hidden layers is appropriate
to demonstrate the effectiveness of the methods to balance the dataset.

Table 2 presents the specifications of the deep neural networks employed in the
experimental validation of this study. In this table, IL represents the quantity of neurons in
the input layer of the DNN, while HLk denotes the number of neurons in each respective
hidden layer (indexed as k); finally, OL signifies the neuron count within the output layer.
Furthermore, the free parameters of the DNN were obtained from [11], where 500 epochs
were used for the Indian, Salinas, and PaviaU datasets, while 250 epochs were used for
KSC, Botswana, and PaviaC. The number of samples was set to be 100 for the Indian dataset
and 1000 for the rest of the datasets. The DNN was developed with Tensorflow 2.0 and
Keras 2.3.1 frameworks. The training of the DNN was performed with the training subset
(TRD, see Section 4.1).

Table 2. Deep neural network architecture shows the number of neurons in each layer.

Dataset IL HL1 HL2 HL3 HL4 HL5 HL6 OL

Indian 224 60 60 60 60 - - 17
Salinas 220 60 60 60 60 60 60 17
PaviaU 103 40 40 40 40 40 - 10
KSC 176 60 60 60 60 60 60 14
Botswana 145 30 30 30 30 30 30 15
PaviaC 102 40 40 40 40 40 40 10

Finally, to perform the experiments, we used a Windows-based computer (Win-
dows 10) equipped with an Intel Core i5 processor (up to 4.5 GHz, 18 MB L3 cache,
12 cores, 16 threads), NVIDIA GeForce RTX 3050 Mobile GPU (4 GB), 16 GB DDR5-4800
SDRAM (2 × 8 GB), and 512 GB PCIe NVMe.

5. Results and Discussion

Results of the DNN classification of the testing subset (TD, see Section 4.1) are pre-
sented in this section to evaluate different balancing methods. The Original method (i.e., the
unbalanced datasets) is used as a reference to evaluate the effectiveness of the balancing
methods, which are categorized into four types of heuristics:

1. Classical approaches: ROS (Random Oversampling) and SMOTE.
2. SCUT approaches: SCUT and SCUT+KM (where the EM was replaced by K-means.)
3. Density-based methods: SCUT+DBS and SCUT+HDBS, where the clustering algo-

rithm is substituted by DBSCAN and HDBSCAN, respectively.
4. Density-based with greedy variants: SCUT+DBSv and SCUT+HDBSv, where v refers

to the use of greedy techniques during the optimization of rv and minPts.
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In the proposed strategy, as outlined in Algorithm 3, the class sizes (denoted as
ti) were obtained for each individual class within the database, grouped under Ci. The
pivotal criterion for determining the appropriate balancing approach hinges on whether
a class’s size surpasses the average class size (M) computed for the entire database. If
a class’s size exceeds the database-wide average (M), the Spatially Motivated Balancing
by Density (SMBD) procedure is initiated, which leverages clustering algorithms such
as DBSCAN or HDBSCAN (as detailed in Algorithm 4). On the other hand, if a class’s
size falls below the M threshold, the SMOTE algorithm is utilized as an oversampling
solution. To ensure optimal performance and maintain a consistent balance among all
classes, we introduce a fixed approximation ratio of 20 % relative to the average class
size of each particular database analyzed; this ratio serves as a stopping criterion for
the balancing process. As a result, by the conclusion of the balancing procedure, all
classes are approximately equal in size, aligning with the M value calculated for the entire
database. This approach guarantees that every class, within all studied databases, maintains
a balanced and equitable representation.

The geometric mean (g-mean) was used to assess the performance of the tested methods.
Geometric mean is a mathematical metric used to calculate the central tendency or average
of a set of values x1, x2, x3, ..., xn. Unlike the more common arithmetic mean, which adds up
all values and divides by the number of values, the geometric mean involves multiplying
all values together and then taking the n-th root, where n is the number of values in the
dataset. Equation (1) represents the basic calculation of g-mean.

g-mean = n
√
(x1 · x2 · x3 · . . . · xn) (1)

Moreover, the geometric mean can be applied in the context of machine learning,
mainly when dealing with imbalanced classification problems, to assess the performance
of the classification model, especially in scenarios where accuracy might be misleading due
to class imbalances [45]. Thus, the geometric mean is a way to evaluate the performance of
a classification model, especially in situations where the distribution of classes is highly
imbalanced, as occurs in our tested dataset. g-mean is related to other common metrics,
such as Sensitivity and Specificity [46]; however, for multi-class problems, Equation (1)
exhibited before can be applied to calculating g-mean from the individual precision of each
class. Consequently, the metric represents a weighted precision score that considers the
efficacy of predicting both the minority and the majority classes.

Thus, the average of the geometric mean from five repetitions of each balancing
method, and the Original subset, is reported in Table 3. The intention of performing five
repetitions is to reduce the random effects and ensure that results could follow a trend. The
best results are marked in bold font.

Table 3. Average of geometric mean for the tested methods. The best scores are highlighted in bold.

Method Indian Salinas Botswana KSC PaviaC PaviaU

Original 0.000 0.882 0.000 0.000 0.239 0.579

SMOTE 0.824 0.960 0.698 0.687 0.884 0.862
ROS 0.822 0.961 0.709 0.659 0.899 0.874

SCUT 0.763 0.935 0.882 0.853 0.905 0.858
SCUT+KM 0.754 0.944 0.842 0.858 0.908 0.878

SCUT+HDBS 0.760 0.946 0.891 0.848 0.904 0.886
SCUT+DBS 0.764 0.946 0.877 0.843 0.909 0.883

SCUT+DBS v 0.768 0.946 0.888 0.837 0.911 0.882
SCUT+HDBS v 0.787 0.944 0.885 0.845 0.909 0.879
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The class imbalance negatively affects the precision of the classifier, especially in the
more unbalanced datasets (Table 3). In this sense, the Original subset obtained g-mean = 0
for Indian, Botswana, and KSC databases; however, relatively low g-mean values were also
observed for the other datasets, except for Salinas, which is the dataset with the lowest
IR = 62.2 (i.e., the more balanced dataset). In contrast, when the datasets are processed
by balancing methods, all results are better than the Original case, which agrees with the
reported literature. Nevertheless, our objective is to demonstrate the effectiveness of the
density-based clustering methods in comparison with other approaches.

Table 3 shows that classical methods (ROS and SMOTE) work fine when slightly
unbalanced datasets are processed. This is the case of Salinas, PaviaU, and PaviaC datasets,
where the g-mean values are noticeably more significant than the Original, and even good
results are also obtained for the moderate imbalance present in Indian dataset (IR = 533.8).
In contrast, the highly imbalanced datasets, KSC and Botswana, which reported an IR of
2944.4 and 3943.2, respectively, exhibit improved classification performance when density-
based approaches are utilized. It suggests that the more class imbalance is present, the
more effective the density-based clustering approaches. These algorithms are also adequate
for slightly unbalanced datasets (Salinas, PaviaU, and PaviaC); however, they seem to not
be the best choice for low or moderate imbalance (the case of Indian dataset). It could be
attributed to an excessive elimination of useful data from the majority classes, but also to
the very reduced size of the minority class in this dataset, which contains only 20 points.

The following plots show a graphical representation of the classifier’s performance
using the different balancing techniques analyzed in this paper. In Figure 1, we portray a
comprehensive analysis of classification performance, as measured by the geometric mean
(g-mean), across various class imbalance ratios (IR). This figure highlights the efficacy of
different oversampling and clustering-based techniques in addressing class imbalances.
Two traditional oversampling methods, ROS and SMOTE, are evaluated alongside two
clustering-based algorithms, SCUT and SCUT plus K-means. The performance trends
across different datasets reveal a striking pattern. When dealing with datasets featuring
relatively small class imbalance ratios (e.g., Salinas with an IR of 62.2, PaviaU with an
IR of 173.8, and PaviaC with an IR of 236.7), all selected machine learning techniques
exhibit commendable performance. However, the situation takes a noteworthy turn when
confronted with highly imbalanced datasets, such as Indian with an IR of 533.8, KSC
with an IR of 2944.4, and Botswana with an IR of 3943.2. In these scenarios, classical
oversampling techniques in Figure 1 demonstrate notably poor classification precision,
consistently falling below the 0.7 thresholds. Conversely, the clustering-based algorithms,
SCUT and SCUT plus K-means, outperform their traditional counterparts in handling
highly imbalanced datasets. Nonetheless, it becomes evident that further improvement is
required when addressing extreme class imbalances.

Figure 2 delves deeper into the quest for improved classification performance, partic-
ularly in the face of extreme class imbalance. Here, we explore the results of combining
SCUT with density-based techniques, namely DBS and HDBS, as well as their variants in-
corporating greedy strategies (DBSv and HDBSv). The g-mean, as a measure of classification
performance, is once again assessed across varying class imbalance ratios. Remarkably, the
density-based techniques in Figure 2 consistently outshine the other methods, achieving
remarkable performance even in the most severely imbalanced datasets. These techniques
attain g-mean scores of up to 0.911, showcasing their effectiveness in handling extreme
class imbalances. It is clear from these results that, when confronted with highly skewed
class distributions, the combination of SCUT with density-based methods offers a powerful
solution for enhancing classification precision.

In summary, Figures 1 and 2 underscore the importance of choosing a suitable method-
ology when dealing with class-imbalanced datasets. While traditional oversampling
techniques struggle to maintain classification precision in highly imbalanced scenarios,
clustering-based methods demonstrate improved performance. However, the density-
based strategies in Figure 2 emerge as the best choices, consistently delivering acceptable
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classification results even in the most challenging imbalance situations. These findings
provide valuable insights for seeking robust solutions for class imbalance mitigation in
machine learning tasks on hyperspectral remote sensing images.

Figure 1. Classification performance (expressed as g-mean) after applying traditional oversampling
techniques (ROS and SMOTE) and clustering-based algorithms (SCUT and SCUT plus K-means) as a
function of class imbalance ratio (IR).

Figure 2. Classification performance (expressed as g-mean) after applying Clustered Undersampling
(SCUT) plus density-based techniques (DBS and HDBS) and density-based techniques with greedy
variants (DBSv and HDBSv) as a function of class imbalance ratio (IR).

To provide an objective global measure about the relative performance of the balancing
methods from experimental results, Friedman’s test ranking was calculated [47]. The first
rank is assigned to the best-evaluated method (considering the overall results from the
classification performance for the six datasets), while the last rank belongs to the worst
result. Table 4 presents Friedman’s ranks assigned to the evaluated methods, ordered from
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worst to best. The worst case is the Original (or unbalanced) reference experiment, which
is in the last rank. The SMOTE algorithm and SCUT method are tied for the next place
with a little difference with respect to the ROS and SCUT+KM (both tied for third place).
The best place is obtained by (SCUT+DBSv), i.e., the greedy variant of SCUT combined
with DBSCAN. However, there is no significant difference between all the density-based
algorithms, which go from 3.91 to 3.41, occupying the first places in the ranking.

Table 4. Friedman’s test ranking for the selected methods.

Method Ranking

Original 9.00
SMOTE 5.50
SCUT 5.50
ROS 5.17
SCUT+KM 5.17
SCUT+DBS 3.91
SCUT+HDBSv 3.83
SCUT+HDBS 3.50
SCUT+DBSv 3.41

At this point, it is important to highlight that the time complexity of our approach is
not worse than the typical complexity of the evaluated algorithms. Because a combination
of SMOTE and DBSCAN was used, the time complexity of the proposed strategy can be
considered also asO(N2). It can be concluded if the complexity of the different components
is analyzed as follows:

The time complexity of SMOTE depends on its primary stages: (a) Generating Syn-
thetic Samples, which is the core of SMOTE, is typically O(N ·M), where N is the number
of minority class samples, and M is the number of synthetic samples to generate for each
minority sample; (b) k-Nearest Neighbors Search, where the k-nearest neighbors for each
minority class sample are found, is often dominated by the nearest neighbors search and
can be up to O(N2). Overall, the time complexity of SMOTE is often dominated by the
nearest neighbor search and is commonly expressed asO(N2) for the most time-consuming
parts of the algorithm [48].

DBSCAN is a density-based clustering algorithm that identifies clusters based on the
density of data points in the feature space. Its time complexity depends on the following
typical stages: (a) Nearest Neighbor Search, with time complexity O(N2); (b) Cluster
Formation, which depends on the distribution of data points and the specific parameters of
the algorithm, but its typical complexity can be linear or close to linear with respect to the
number of data points, i.e., O(N). Therefore, the time complexity of DBSCAN is primarily
determined by the nearest neighbor search, typically O(N2) [49].

Finally, HDBSCAN is an extension of the traditional DBSCAN algorithm that intro-
duces a hierarchical approach to clustering. The time complexity of HDBSCAN shares
similarities with DBSCAN but also presents some differences due to its hierarchical struc-
ture. The time complexity of this variant depends on the following stages: (a) Nearest
Neighbor Search, with time complexity O(N2); (b) Hierarchical Clustering, which is often
linear O(N) or close to linear; and b) Cluster Formation, similar to DBSCAN, that has a
time complexity linear or close to linear O(N). HDBSCAN combines the nearest neighbor
search, hierarchical clustering, and cluster formation steps; thus, considering that the most
time-consuming part of the algorithm is the nearest neighbor search, the overall complexity
is also O(N2). In our approach, three main techniques were used (SMOTE, DBSCAN and
HDBSCAN); consequently, the overall complexity of the proposed scheme is also O(N2) in
the worst case.
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6. Conclusions

This study explores the feasibility of using density-based clustering methods to
improve the effectiveness of balancing algorithms when highly imbalanced multi-class
datasets are used in identification problems.

The SCUT algorithm, which was designed to deal with the class imbalance in multiple-
class datasets, was used in this paper in combination with DBSCAN and HDBSCAN. The
results were compared with K-means and the classical ROS and SMOTE approaches. Six
hyperspectral remote images were used to perform the experimental validation, and a
DNN was used as a classifier. The g-mean and Friedman’s ranks were used to measure the
performance of the balancing methods because both g-mean and Friedman’s ranks provide
valuable insights into the performance of deep learning models in classification tasks. The
g-mean helps to evaluate the model’s effectiveness in handling imbalanced datasets, while
Friedman’s rank helps to compare and rank multiple models based on their performance.

Our results indicate that the combination of SCUT with DBSCAN and HDBSCAN is
an effective alternative to process highly imbalanced datasets in the domain of multi-class
problems. These methods obtained a better Friedman’s rank than the classical algorithms.
Greedy techniques were also used to an intensive selection of rv and minPts for the density-
based algorithms, but there was no evident improvement. As a general trend, density-based
algorithms help obtain better classification results than the original unbalanced datasets or
the classical oversampling techniques or neighborhood clustering method of K-means.

Future works should be performed to go deep in evaluating the effectiveness of
density-based strategies in situations of extreme imbalance due to their promising potential,
as is presented in this study.
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