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Abstract: Computation-intensive applications offloading is challenging, especially in the designated
regions where communication infrastructure is absent or compromised. In this paper, we present
a Space–Air–Ground integrated Mobile Edge Computing (SAGiMEC) system for these regions
to provide quality computational services, where the unmanned aerial vehicles (UAVs) act as in-
fight edge servers to provide low-latency edge computing and the satellite provides resident cloud
computing. A joint optimization problem is formulated considering UAV deployment, ground device
(GD) access, and computation offloading to minimize the system average response latency. To cope
with the problem’s complexity, we propose a Particle Swarm Optimization (PSO) and Greedy Strategy
(GS)-based algorithm (PSO&GS) to obtain an approximate optimal solution. Extensive simulations
validate the convergence of the proposed algorithm. Numerical results show that the proposed
approach has excellent convergence, and the system average response latency is about 0.65x–0.85x
that of the benchmark algorithm.

Keywords: space–air–ground integrated; mobile edge computing; UAV deployment; device access;
computation offloading

MSC: 68M10

1. Introduction

With the rapid development of the Internet-of-Things (IoT) and 5th-generation (5G)
networks, a myriad of practical and promising applications and services have emerged,
such as smart homes, high definition (HD) live streaming, and autonomous driving. These
applications and services bring great convenience to people’s learning, living, and working,
benefiting from the ultra-high data rate, low latency, high reliability, and massive connec-
tivity provided by 5G networks [1–3]. However, efficient and reliable communication and a
wide range of applications require a lot of computational capabilities [4]. For example, HD
live streaming requires real-time processing for video streams, and autonomous driving
requires fast handling for Artificial Intelligence (AI) models. These computation-intensive
applications severely challenge resource-constrained IoT devices’ energy storage and com-
putational capabilities. Mobile Cloud Computing (MCC) can significantly reduce the strain
on IoT devices by offloading computation-intensive applications to cloud servers. Still, the
excessive transmission distance potentially causes it to fail to meet the latency requirements
of these applications. Mobile Edge Computing (MEC) has been widely studied as a prospec-
tive approach to address these issues. In the MEC paradigm, ultra-dense network edge
devices such as macro/small cell base stations and WiFi access points will be deployed,
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which can provide exponentially growing edge computational resources for wireless net-
works [1]. Further, IoT devices can offload computation-intensive applications to nearby
edge servers, overcoming the network congestion caused by centralized processing in
MCC, thus effectively improving the Quality-of-Service (QoS) for users [5].

However, 5G networks may not provide ubiquitous coverage in regions where com-
munication infrastructure is absent or compromised. The IoT devices deployed in these
areas cannot access computational services through the typical edge and cloud computing
paradigms. The Space–Air–Ground Integrated Network (SAGIN) architecture enables the
offloading of IoT applications in the above scenarios. The SAGIN combines space, air, and
ground networks to provide reliable network coverage and flexible computational services
to a designated region. It can be applied to many promising fields, such as intelligent
transportation systems, remote area monitoring, disaster relief, and large-scale high-speed
mobile Internet access [6]. The SAGIN consists of a space segment, an air segment, and
a ground segment, which are affected by different constraints. On the one hand, the air
network nodes can act as in-flight edge servers to provide low-latency edge computa-
tional services for IoT devices. On the other hand, satellite communications, although
they may have lower communication rates and higher transmission latency, can provide
resident cloud computational services through seamless coverage and satellite backbone
networks [7]. However, computation offloading in SAGIN will encounter many problems
that must be solved. First, the deployment positions of different in-flight edge servers will
result in different wireless channel conditions and edge computational server coverage.
The deployment positions of these in-flight edge servers should be carefully considered
before performing computation offloading. Second, device access and computation offload-
ing strategy determine the computational resource utilization in the SAGIN. An efficient
access scheme and offloading strategy should be designed to improve computational
resource utilization.

In this paper, we propose a Space–Air–Ground integrated Mobile Edge Computing
(SAGiMEC) system to provide quality computational services for ground devices (GDs).
We design an efficient joint optimization approach for unmanned aerial vehicle (UAV)
deployment, GD access, and computation offloading that minimizes the system average
response latency while considering constraints such as UAV coverage capability and
computation task latency requirements. First, we develop a position model to describe
the position of each computational node in the proposed SAGiMEC system and define the
quality and characteristics of the wireless channel between all computational nodes. Second,
we construct a task model to characterize various computation tasks and describe three
computing models. Based on the above position, task, and computing model, we formulate
the joint optimization problem of UAV deployment, GD access, and computation offloading.
Finally, we propose an approach based on particle swarm optimization (PSO) and greedy
strategy and perform a simulation. Numerical results show the proposed approach has
excellent convergence and system average response latency optimization performance.

The rest of this paper is organized as follows. In Section 2, we present the related work.
In Section 3, the system model is introduced and the formulated joint optimization problem
of UAV deployment and computation offloading is presented. In Section 4, we propose
an approach to solve the formulated problem for the SAGiMEC system. Performance
evaluation results are presented in Section 5, followed by the conclusions in Section 6.

2. Related Work
2.1. Mobile Edge Computing

MEC was initially proposed by the European Telecommunications Standards Institute
(ETSI) in [8], and it is capable of providing cloud computational services close to users in
wireless networks [9]. Computation offloading is a crucial technology for MEC to enhance
user experience. The end devices can reduce latency and energy consumption by offloading
computation-intensive tasks to edge servers for processing. Therefore, performing efficient
computation offloading is vital for MEC systems [10].
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According to the performance metrics, the existing works about MEC computation
offloading can be broadly classified into three types, i.e., energy-efficient computation
offloading, latency-efficient computation offloading, and computational offloading that
optimizes the weighted sum of latency and energy consumption [11–13]. In [11], the
authors proposed a MEC system that utilizes Non-Orthogonal Multiple Access (NOMA) for
computation offloading and minimizes the total energy consumption by jointly optimizing
the transmit power, transmission time allocation, and task offloading. However, the system
neglects to optimize the latency. Yang et al. [12] studied a MEC system consisting of mobile
devices and heterogeneous edge servers supporting various wireless access technologies.
They formally defined the optimal offloading node selection strategy as a Markov Decision
Process (MDP) based on the heterogeneous edge servers’ available bandwidth and the
mobile devices’ location. The authors also proposed a value iterative algorithm for solving
the problem to achieve latency minimization. In [13], the authors proposed an energy-
aware computation offloading that can jointly optimize communication and computational
resource allocation with limited energy and higher latency sensitivity, achieving a trade-off
between energy consumption and latency.

In addition, the task offloading mode is also a key direction for MEC computation
offloading. The computation offloading in MEC is divided into two main modes: full and
partial offloading. Full offloading refers to the complete offloading of computing tasks
from the end device to the server for processing. Full offloading is used in many works as a
traditional computation offloading mode. In [14], the authors proposed a multi-user MEC
network driven by wireless power transmission in which each energy harvesting terminal
follows a full offloading mode. They proposed an optimization algorithm based on the
coordinate descent method and an alternating direction multiplier method to solve the pro-
posed optimization problem. Similarly, Huang et al. [15] studied a wireless-powered MEC
network using a full offloading strategy. They proposed an online offloading framework
based on deep reinforcement learning (DRL) [16] capable of learning full offloading deci-
sions from experience. Partial offloading employs techniques such as code decomposition
to divide computation tasks and offload some to remote servers for processing. Partial
offloading enables fuller utilization of computational resources in the network than full
offloading [17]. In [18], the authors studied the partial offloading problem for a single user.
They proposed a multi-user computation offloading framework that supported partial
offloading and designed a heuristic algorithm to make offloading decisions dynamically.
In [19], You et al. studied the resource allocation for the multi-user MEC partial offloading
problem considering the TDMA and OFDMA cases. In [20], Wu et al. studied a joint
optimization approach for partial computation offloading and radio resource allocation.

2.2. Space–Air–Ground Integrated Network

The SAGIN architecture can provide ubiquitous network coverage for end devices in
communication networks and has received extensive academic attention in recent years.
The different SAGIN architectures have been discussed in many works [21–23]. In [21], the
authors proposed a Space–Air–Ground–Sea Integrated Network architecture supporting
satellites, UAVs, terrestrial base stations, and maritime speedboats for the complexity of
marine communication services, which significantly compensates for the lack of maritime
communication resources. In [22], the authors proposed an onboard network architecture
supporting the SAGIN. They addressed communication security, efficiency, and reliability
between the SAGIN and the onboard network. In [23], the authors studied a civil aircraft-
enhanced SAGIN and proposed a fair optimization strategy, including resource allocation
and auction.

The combination of MEC and SAGIN is expected to break through the various limi-
tations of traditional ground communication and further improve the flexibility of com-
putational and communication resources. It has received continuous attention in recent
years. In [24], the authors studied the computation offloading problem in the SAGIN,
where multiple end devices collaborate to utilize computational resources. The authors
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formulated an optimization problem for minimizing the total system latency considering
the dynamic nature of tasks, the mobility of UAVs, and the variability of end devices, and
expressed it as an MDP. However, only one UAV is used as an edge server in this work,
and the proposed model may not apply to scenarios with larger user sizes, considering the
limited computational resources of the UAV. In [25,26], the authors studied an IoT system
supporting a single satellite, a single UAV, and multiple GDs, where the UAV acts as an
edge server capable of collecting computation tasks from GDs during flight and offloading
them to a base station or satellite for processing. In addition, the authors adopted a full
offloading strategy. At the same time, they ignored the computational capabilities of the
end devices, thus failing to fully utilize the computational resources of various end devices
within the system. Further, the joint optimization of UAV deployment and computation
offloading is one of the research priorities of the SAGIN. Tang et al. [27] proposed a rein-
forcement learning-based traffic offloading strategy by considering the high mobility of
nodes and the frequently changing network traffic and link states. However, such optimiza-
tion algorithms must provide extensive data for training the model. In [28], the authors
proposed a joint optimization algorithm based on the block coordinate descent method that
can quickly solve the problem of UAV deployment, task offloading, and resource allocation
in a SAGIN. However, the complexity of such algorithms based on convex optimization
theory grows exponentially with the size of the problem and is, therefore, more suitable for
small-scale scenarios.

The comparative analysis of the previous work has been illustrated in Table 1. In
summary, although some work has been carried out to investigate the critical technologies
of the SAGiMEC, most of it only considers supporting a single UAV. They thus cannot be
applied to practical and complex scenarios. In addition, to simplify the model, most of the
work adopts a full offloading strategy, resulting in low resource utilization for all types of
computational nodes in the system.

Table 1. The comparative analysis of different work (“+”: involved; “-”: not involved).
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Our work - + - + - + + - -
[24] - + + - + - - + -
[25] - + + - + - - + -
[26] - + + - - + - - +
[27] - + + - + - + - +
[28] + - + - - + - + +

3. System Model and Problem Formulation

In this section, we describe the SAGiMEC system and analyze the system average
response latency. We also formulated the joint optimization problem of UAV deployment
and computation offloading to minimize the system average response latency. For ease of
reference, the key notations used throughout this paper are listed in Table 2.

Table 2. Summary of Key Notations.

Notation Definition

M = {1, 2, . . . , M} The set of the GDs in the ground layer
N = {1, 2, . . . , N} The set of the UAVs in the air layer
uGD

m = (xGD
m , yGD

m , 0), ∀m ∈M The coordinate of GD m ∈M
uUAV

n = (xUAV
n , yUAV

n , H), ∀n ∈ N The coordinate of UAV n ∈ N
Im, ∀m ∈M The computation task of GD m ∈M
Dm, ∀m ∈M The computational task-input data size of Im
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Table 2. Cont.

Notation Definition

Sm, ∀m ∈M The computational complexity of Im
Om, ∀m ∈M The computation result size of Im
Em, ∀m ∈M The maximum tolerable latency of Im
αGD

m , ∀m ∈M The local processing ratio of Dm
αUAV

m , ∀m ∈M The ratio of Dm offloaded to the UAVs
αLEO

m , ∀m ∈M The ratio of Dm offloaded to the LEO satellite
f GD
m , ∀m ∈M The CPU-cycle frequency of GD m ∈M

TGD
m , ∀m ∈M The local processing latency of Im

hm,n, ∀m ∈M, n ∈ N The wireless channel gain between GD m and UAV n
dm,n, ∀m ∈M, n ∈ N The spatial distance between GD m ∈M and UAV n ∈ N
h0 The wireless channel gain at a reference distance
Rm,n, ∀m ∈M, n ∈ N The wireless channel transmission rate between GD m ∈M

and UAV n ∈ N
B The bandwidth between the GDs and the UAVs
Pm, ∀m ∈M The transmission power of GD m ∈M
σ2 The additive white Gaussian noise
β = {βm,n|m ∈M, n ∈ N } The access between the GDs and the UAVs
Λmax The maximum parallel tasks number of UAVs
Lmax The maximum service distance of the UAVs
TUAV

m , ∀m ∈M The edge processing latency of Im
f UAV
m,n , ∀m ∈M, n ∈ N The CPU-cycle frequency of UAV n ∈ N when it computes

the input data of Im
Rs The transmission rate between the GDs and the LEO satellite
f LEO
m , ∀m ∈M The CPU-cycle frequency of the LEO satellite when it com-

putes the input data of Im
TLEO

m , ∀m ∈M The cloud processing latency of Im
Tm, ∀m ∈M The processing delay of Im
T(uUAV, α, β) The system average response latency

3.1. System Model

As shown in Figure 1, a SAGiMEC system consists of three layers: the space layer with
the LEO satellite, the air layer with N UAVs, and the ground layer with M GDs. We denote
the set of the GDs and the UAVs asM = {1, . . . , M} and N = {1, . . . , N}, respectively. In
the ground layer, GDs with limited computational capabilities are distributed in areas where
communication equipment is lacking or damaged, such as remote mountainous and disaster
areas, and process computation-intensive tasks. To enable the GDs to process computation
tasks satisfactorily, the UAVs in the air layer act as edge computing servers to provide
computational services to GDs. In addition, the LEO satellite in the space layer can provide
centralized cloud computational services to GDs within its coverage area. Due to the
limited computational capabilities of the GDs, they can offload some of their computation
tasks to UAVs or LEO satellites to ease the pressure on computational capabilities.

Space

Air

Ground

UAV 1 UAV N

UAV n

··· ···

LEO satellite

GD 1 GD M
GD m

···
···

H

Figure 1. The SAGiMEC system.
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3.1.1. Position Model

A three-dimensional (3D) Euclidean coordinate system is adopted without loss of gener-
ality, whose coordinates are measured in meters. Specifically, the coordinates of GD m ∈M
and UAV n ∈ N can be presented as uGD

m = (xGD
m , yGD

m , 0) and uUAV
n = (xUAV

n , yUAV
n , H),

respectively, where xGD
m and yGD

m are the horizontal positions of GD m ∈ M. xUAV
n and

yUAV
n are the horizontal positions of UAV n ∈ N . H is the flying altitude of the UAVs.

We assume that the UAVs hover at a fixed height H > 0 during the computation tasks
processing. H > 0 is assumed to be the minimum height appropriate to the work terrain
and can avoid obstructions without frequent descending and ascending.

3.1.2. Task Model

In the considered time slot, the computation task of GD m ∈M is denoted as a positive
tuple < Dm, Sm, Om, Em,>, where Dm represents the size of the computational task-input
data in bits (e.g., the length of the encoded program codes and input parameters); Sm
is the amount of required computational resource for computing 1-bit of input data (i.e.,
the required number of CPU cycles); Om is the size of the computation result; Em is the
maximum tolerable latency for Im in seconds. The characteristics of computation tasks, i.e.,
the size of the computational task-input data, the computational complexity, the size of the
computation result, and the maximum tolerable delay, are determined by the GD. Moreover,
to ensure the efficiency of the GDs, a computation task processing latency exceeding its
maximum tolerable delay is not allowed.

Due to the limited computational capabilities of the GDs, the computation-intensive
tasks may not be processed before the maximum tolerable latency and, therefore, need to be
offloaded to the UAVs or the LEO satellite. We adopt a partial offloading strategy to fully
utilize the computational capabilities in the ground, air, and space layers. In the offloading
strategy, the GDs can process part of the tasks locally and also offload some tasks to the
UAV or LEO satellite. Let αGD

m , αUAV
m , and αLEO

m denote the percentage of computation task
Im locally processed, offloaded to the UAV, and offloaded to the LEO satellite, respectively.
We assume that computation task partitioning does not generate additional computational
loads [29], i.e., it is constrained by

αGD
m + αUAV

m + αLEO
m = 1, ∀m ∈M. (1)

3.1.3. Computing Model

Depending on the processing location of the computation tasks, we define three
different computing modes, i.e., local computing mode for local processing, edge computing
mode for UAV processing, and cloud computing mode for LEO satellite processing. These
three computing modes use orthogonal computational resources to proceed in parallel.

Local Computing Mode

In the local computing mode, based on the computational task-input data size and
the local processing ratio, the input data size for local processing can be quantified as
αGD

m Dm, ∀m ∈ M. We define f GD
m as the CPU-cycle frequency of GD m ∈ M. The local

processing latency of computation task Im is quantified as [26,27,30]

TGD
m =

αGD
m DmSm

f GD
m

, ∀m ∈M. (2)

Edge Computing Mode

In the edge computing mode, the latency for processing the computation task consists
of three parts: (1) the communication latency for transmitting the computation task-input
data from the GD to the UAV; (2) the processing latency for the computation task-input
data at the UAV; (3) the communication delay for transmitting the computation result from
the UAV to the GD.
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The wireless channel between GD m ∈M and UAV n ∈ N is assumed to be domi-
nated by Line-of-Sight (LoS) links regarding recent field experiments by Qualcomm [31].
Therefore, the wireless channel gain between GD m ∈M and UAV n ∈ N is quantified as

hm,n = d−2
m,nh0, ∀m ∈M, n ∈ N , (3)

where dm,n =
√∥∥uGD

m − uUAV
n

∥∥2, ∀m ∈ M, n ∈ N is the spatial distance between GD
m ∈M and UAV n ∈ N ; h0 is the channel power gain at a reference distance d0 = 1 m. The
wireless channel transmission rate between GD m ∈M and UAV n ∈ N can be quantified
as [26,27,30]

Rm,n = B log
(

1 +
Pmhm,n

σ2

)
, ∀m ∈M, n ∈ N , (4)

where Pm is the transmission power of GD m ∈M, σ2 is additive white Gaussian noise,
and B is the wireless channel bandwidth. Similar to [1], we assume that the UAVs are
allocated equal bandwidth for the GDs by frequency division multiple access (FDMA).

We define β = {βm,n|m ∈M, n ∈ N } as the access between the GDs and the UAVs,
where βm,n denotes the access between GD m ∈M and UAV n ∈ N , when GD m ∈M
offloads the computation task to UAV n ∈ N , βm,n = 1, otherwise βm,n = 0. We assume
that each GD only offloads computation task to one UAV for processing, then we have the
following constraint:

N∑
n=1

βm,n ≤ 1, ∀m ∈M. (5)

In addition, due to the UAVs’ limited parallel computational capabilities, we assume that
the number of computation tasks received by each UAV in the considered time slot cannot
exceed the maximum number of parallel tasks Λmax. Thus, we have another constraint:

M∑
m=1

βm,n ≤ Λmax, ∀n ∈ N . (6)

To ensure QoS, we limit the UAV to providing edge computing services only for the GDs
within a certain spatial distance, i.e.,

βm,ndm,n ≤ Lmax, ∀m ∈M, n ∈ N , (7)

where Lmax is the maximum service distance of the UAVs.
The computation result size tends to be much smaller than the computational task-

input data size, and the communication latency generated by its transmission from the
UAV to the GD is small, so we ignore the communication latency generated by this process.
Ignoring the back-propagation process of the computation result can significantly reduce
the model complexity, which has been adopted in many works [30,32,33]. Therefore, the
edge processing latency of computation task Im is quantified as

TUAV
m =

N∑
n=1

βm,n

(
αUAV

m Dm

Rm,n
+

αUAV
m DmSm

f UAV
m,n

)
, ∀m ∈M, (8)

where f UAV
m,n is the CPU-cycle frequency of UAV n ∈ N when it computes the input data of Im.

Cloud Computing Mode

In the cloud computing model, the GDs adopt ground-space transmission technol-
ogy [1] to offload some computation tasks to the LEO satellite for processing. Referring
to [1], we denote the transmission rate between the GDs and the LEO satellite by Rs. Due
to the long spatial distance between the GDs and the LEO satellite, Rs is usually smaller
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than the transmission rate between the GDs and the UAVs, i.e., Rs < Rm,n, ∀m ∈M, n ∈ N .
We define f LEO

m,n as the CPU-cycle frequency of the LEO satellite when it computes the input
data of Im. The cloud processing latency of computation task Im is quantified as

TLEO
m =

αLEO
m Dm

Rs
+

αLEO
m DmSm

f LEO
m,n

, ∀m ∈M. (9)

Since the local, edge, and cloud computing modes can be performed in parallel, the
processing latency of Im is quantified as

Tm = max(TGD
m , TUAV

m , TLEO
m ), ∀m ∈M. (10)

The system average response latency is defined as the average processing delay of all
computation tasks, as described in the following:

T(uUAV, α, β) =
1
M

M∑
m=1

Tm. (11)

3.2. Problem Formulation

We expect to minimize the system average response latency of the SAGiMEC system
by jointly optimizing the UAV deployment, the computation offloading, and the GD
access for a given set of system parameters. The above joint optimization problem can be
formulated as

P : min
uUAV,α,β

T(uUAV, α, β) (12)

s.t. Tm ≤ Em, ∀m ∈M (12a)

αGD
m , αUAV

m , αLEO
m ∈ [0, 1], ∀m ∈M (12b)

αGD
m + αUAV

m + αLEO
m = 1, ∀m ∈M (12c)

βm,n ∈ [0, 1], ∀m ∈M, n ∈ N (12d)∑N

n=1
βm,n ≤ 1, ∀m ∈M (12e)∑M

m=1
βm,n ≤ Λmax, ∀n ∈ N (12f)

βm,ndm,n ≤ Lmax, ∀m ∈M, n ∈ N (12g)

where (12a) states that the computation task must be completed before its maximum
tolerable latency; (12b) and (12c) define the range of computation task offloading
ratio; (12d)–(12f) denote the constraints for the access indicator between the GDs and
the UAVs; and (12g) states the each UAV provides edge computing services only for the
GDs within a certain spatial distance.

4. Approach

In this section, we first analyze the characteristics of the joint optimization problem,
and then describe the proposed approach.

4.1. Problem Analysis

The joint optimization problem is a complicated mixed integer non-linear program-
ming (MINLP) because of the non-convexity of the objective function, the non-linearity
of the optimization variables, and the non-linear couplings exist among the optimization
variables. To address these issues, we propose a Particle Swarm Optimization (PSO) and
Greedy Strategy (GS)-based algorithm (PSO&GS) to obtain an approximate optimal solu-
tion for the joint optimization problem. In solving the optimization problem, traditional
PSO does not require the gradient information of the objective function and has no con-
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straints on the continuity and derivability of the objective function. It has the potential
of solving the joint optimization problem. However, traditional PSO has the following
issues [34,35]:

• The joint optimization problem involves both continuous variables (uUAV, α) and
discrete variables β. It is a typical mixed decision variable optimization problem
which is difficult to be solved directly by traditional PSO.

• In the joint optimization problem, there is the non-linear couplings among the opti-
mization variables. On the one hand, since the UAVs can only provide edge computing
services to the GDs within their respective coverage areas, the access between the
GDs and the UAVs depends on the UAV deployment. On the other hand, the UAV
deployment needs to be adjusted according to the computation task offloading to get
the best system performance.

• Traditional PSO is prone to fall into local optimality and cannot obtain optimal or
near-optimal solutions to the joint optimization problem.

To sum up, it is inefficient to use traditional PSO to solve the joint optimization problem.
Therefore, we improved the traditional PSO by introducing the update operator of the
genetic algorithm (GA) and incorporated the idea of GS to make it have the ability to solve
the joint optimization problem efficiently.

4.2. Algorithm Design

We propose an inner and outer double-layer nested joint optimization approach by
integrating the traditional PSO, GA, and greedy strategy to solve the issues arising from
the traditional PSO in solving the joint optimization problem XX. During each iteration
of the proposed joint optimization approach, the outer layer achieves UAV deployment
optimization by the PSO-GA, while the inner layer realizes GD access and computation
offloading optimization by the greedy strategy. The details of the algorithm are as follows.

4.2.1. Outer: UAVs Deployment Optimization

The first sub-problem of problem P, denoted P1, is to solve for the optimal UAV
deployment uUAV∗ with given GD access α∗ and computation offloading β∗. P1 can be
formulated as follows:

P1 : min
uUAV

T(uUAV, α∗, β∗) (13)

s.t. Tm ≤ Em, ∀m ∈M (13a)

To solve P1, we propose PSO-GA, which is based on traditional PSO and introduces the
crossover and mutation operators of GA in the particle update process. While inheriting the
advantages of easy implementation and rapid convergence of PSO, PSO-GA incorporates
the characteristics of GA with excellent global search capability, which can effectively
overcome the shortcomings of traditional PSO, which is prone to fall into local optimum.
Then, PSO-GA is described in detail.

Problem Encoding

As PSO-GA is an approach based on the swarm intelligence algorithm, the particle
encoding method will directly affect the algorithm’s efficiency and the quality of the
solution. Obviously, traditional particle encoding methods, such as binary and integer
encoding, are difficult to represent feasible solutions for problem P1. Therefore, we adopt
the following particle encoding method. Let K = {1, . . . , K} denote K particles contained
in the population, where each particle denotes a UAV deployment scheme. Each particle
is encoded as a set containing N two-dimensional vectors, where each two-dimensional
vector represents a UAV’s deployment coordinates at the current time slot. Further, the T
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iterations undergone by the PSO-GA are denoted by T = {1, . . . , T}. Specifically, particle
k ∈ K at t(∈ T )-th iteration can be denoted as

Ut
k = (ut

k,1, ut
k,2, . . . , ut

k,N), ∀t ∈ T , k ∈ K, (14)

where ut
k,n = (xt

k,n, yt
k,n) denotes the deployment coordinate of UAV n ∈ N in the UAV

deployment corresponding to particle k ∈ K.

Fitness Function

The fitness function judges the superiority or inferiority of the two particles participat-
ing in the comparison. We utilize the system average response latency function defined in
Equation (11) as the fitness function of PSO-GA. Therefore, the fitness value of a particle
can be obtained by the UAV deployment corresponding to the particle and GD access
and computation offloading obtained by the greedy strategy, which will be described in
Section 4.2.2. Since the objective of problem P1 is to minimize the system average response
latency, the particle with the smaller fitness value has the better quality.

Population Update

For traditional PSO, each particle moves in a specific direction and velocity in the
solution space. During the iteration process, each particle is updated by its personal best
state and the current global best state. The particle’s velocity and position are updated by

Vt+1
k = wVt

k + c1r1(pBestk −Ut
k) + c2r2(gBest−Ut

k), ∀t ∈ T , k ∈ K, (15)

and
Ut+1

k = Vt+1
k + Ut

k, ∀t ∈ T , k ∈ K, (16)

respectively. Vt
k and Ut

k are the velocity and position for particle k in the t-th iteration.
pBestk and gBest are the personal best for particle k and the global best for the population
after t iterations. w is the inertia factor, which determines the effect of the current velocity
on the velocity during the next iteration. c1 and c2 are the individual and social learning
factors, respectively, reflecting the ability of the particles to learn the personal and global
best. r1 and r2 are two random numbers that add randomness to the iterative search process.

PSO-GA improves the particle update process of traditional PSO by introducing
crossover and mutation operators of GA, and the update of particle k is modified to

Ut+1
k = c2 ⊕ Cg(c1 ⊕ Cp(w⊕Mu(Ut

k), pBestk), gBest), ∀t ∈ T , k ∈ K, (17)

where Mu() is the mutation operator; Cp() and Cg() are the crossover operator.
In PSO-GA, the particle inertia part follows

At+1
k = w⊕Mu(Ut

k)

=

{
Mu(Ut

k), r1 < w
Ut

k, r1 ≥ w
, ∀t ∈ T , k ∈ K,

(18)

where r1 ∈ [0, 1]. Mu(Ut
k) means a randomly selected encoding position on particle k

for random mutation. Figure 2 shows the mutation operator in the inertial part. In this
example, the encoding position mp1 is selected, and (11, 162) replaces (72, 27) to get the
new particle.
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old particle (123, 121)

(123, 121)new particle

(123, 121) (72, 27) (73, 113)

(123, 121) (11, 162) (73, 113)

mutation

mp1

mp1

Figure 2. Mutation operator.

Further, the individual and social learning parts of PSO-GA are combined with the
crossover operator of GA. They are updated by

Bt+1
k = w⊕ Cp

(
At+1

k , pBestk

)
=

{
Cp

(
At+1

k , pBestk

)
, r2 < c1

At+1
k , r2 ≥ c1

, ∀t ∈ T , k ∈ K,
(19)

and
Ct+1

k = w⊕ Cg

(
Bt+1

k , gBest
)

=

{
Cg

(
Bt+1

k , gBest
)

, r3 < c2

Bt+1
k , r3 ≥ c2

, ∀t ∈ T , k ∈ K,
(20)

respectively, where r2, r3 ∈ [0, 1]. The crossover operator randomly picks the encoding
fragment between two encoding positions and replaces it with the encoding fragment at the
same position in pBestk or gBest. Figure 3 illustrates the crossover operator in the individual
or social learning part. In this example, the crossover operator picks the encoding fragment
between cp1 and cp2 and replaces it with the encoding fragment at the same position of
pBestk or gBest. Finally, the new particle is obtained.

old particle (123, 121)

(39, 188)pBest(gBest)

(32, 21) (72, 27) (73, 113)

(199, 11) (39, 58) (88, 143)

crossover

cp2

cp2

cp1

cp1

(123, 121) (199, 11) (39, 58) (73, 113)

Figure 3. Crossover operator.

Parameter Settings

The inertia weight factor for traditional PSO can affect the convergence velocity and
search capability. The algorithm has a strong global search capability when the inertia
weight factor is large, and the probability of particle mutation is higher. Conversely, the
probability of particle mutation is smaller, and the algorithm has a powerful local search
capability. In the early and late stages of algorithm execution, we need to focus more
on search diversity and local search capability. Therefore, we adopt a linear adjustment
strategy for the inertia weight factor. In this strategy, the inertia weight factor decreases
linearly with the increase in the number of iterations. The adjustment strategy can be
defined as

w = wmax − iterscur ×
wmax − wmin

T
, (21)

where wmax and wmin are the maximum and minimum values of the inertia weight factor,
respectively, and iterscur is the current number of iterations.
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Similarly, we apply a linear adjustment strategy to the individual and social learning
factors in Equation (17), as follows

c1 = cstart
1 − iterscur ×

cstart
1 − cend

1
T

, (22)

and

c2 = cstart
2 + iterscur ×

cend
2 − cstart

2
T

, (23)

where cstart
1 and cstart

2 indicate the initial values of c1 and c2, and cend
1 and cend

2 indicate the
final values of c1 and c2.

Algorithm Flowchart

The main steps of the PSO-GA are given in Algorithm 1.

Algorithm 1 PSO-GA

Require: uGD, I, α, β
Ensure: uUAV

1: Initialize the parameter settings of PSO-GA and generate the population;
2: for each k ∈ K do
3: Call Algorithm 2 to obtain the computation offloading for particle k;
4: Calculate the fitness of particle k according to Equation (11);
5: Initialize the personal best pBestk of particle k;
6: end for
7: Initialize the global best particle of the population;
8: t = 1;
9: while t < T do

10: for each k ∈ K do
11: Update particle k according to Equation (17);
12: Call Algorithm 2 to obtain the computation offloading for particle k;
13: Calculate the fitness of particle k according to Equation (11);
14: if Fitness(k) < Fitness(pBestk) then
15: Update pBestk;
16: if Fitness(k) < Fitness(gBest) then
17: Update gBest;
18: end if
19: end if
20: end for
21: end while
22: Mapping gBest to UAV deployment;
23: return uUAV

The algorithm initializes the values of relevant parameters such as population size K,
maximum number of iterations T, inertia weight factor w, and the maximum and minimum
values of the cognitive factors. It then randomly generates the initial population (Line 1).
For each particle in the initialized population, Algorithm 2 is called to get the computation
offloading for particle k (Line 3) and calculate the fitness of each particle according to
Equation (11) (Line 4). The initial state of each particle is set to its personal best (Line 5),
while the optimal particle in the initial particle population is taken to the global best (Line 7).
Then, the algorithm begins to iterate. In each iteration, each particle in the population is
updated one by one according to Equation (17) (Line 11), and Algorithm 2 is recalled to
obtain the computation offloading and calculate the fitness for each particle (Lines 12–13).
If the fitness of the updated particle is less than the fitness of its personal best state, its
updated state is set to its best state (Lines 14–15). In addition, if the fitness of the updated
particle is smaller than the fitness of the global best particle, its updated state is set as the
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global best particle (Lines 16–17). After completing T iterations, map gBest to the UAV
deployment uUAV and return (Lines 22–23).

4.2.2. Inner: GDs Access and Computation Offloading Optimization

The second sub-problem of problem P, denoted P2, is to solve for the optimal GD
access α∗ and computation offloading β∗ with given UAV deployment uUAV∗. P2 can be
formulated as

P2 : min
α,β

T(uUAV∗, α, β) (24)

s.t. Tm ≤ Em, ∀m ∈M (24a)

αGD
m , αUAV

m , αLEO
m ∈ [0, 1], ∀m ∈M (24b)

αGD
m + αUAV

m + αLEO
m = 1, ∀m ∈M (24c)

βm,n ∈ [0, 1], ∀m ∈M, n ∈ N (24d)∑N

n=1
βm,n ≤ 1, ∀m ∈M (24e)∑M

m=1
βm,n ≤ Λmax, ∀n ∈ N (24f)

βm,ndm,n ≤ Lmax, ∀m ∈M, n ∈ N (24g)

As the computation offloading problem formulated in Equation (24) is NP-Hard [36],
the traditional algorithm is inefficient for this problem. Therefore, we tackle the problem
with a greedy strategy-based algorithm. Greedy is a low-complexity approximation algo-
rithm that always makes the current optimal decision in solving the problem. Therefore, it
can quickly obtain a near-optimal solution. According to Equation (4), it can be concluded
that when the GD is closer to the accessed UAV, the greater the channel gain between them.
Therefore, accessing the GDs to their nearest UAVs can reduce the transmission latency
during computation offloading. However, since the service coverage of the UAV is finite,
the GDs outside the coverage area cannot offload the tasks to the UAV. In addition, the
parallel processing capability of UAVs is constrained and cannot process excessive compu-
tation tasks simultaneously. Therefore, we classify the GDs into three types according to
their distribution:

1. The GDs not within the coverage area of any one UAV and the set of such GDs is
defined byM1;

2. The GDs within the coverage area of only one UAV and the set of such GDs is defined
byM2;

3. The GDs within the coverage area of multiple UAVs and the set of such GDs is denoted
byM3.

The first type of GD has the highest priority because they cannot be accessed by UAVs and
do not occupy the computational resources of UAVs, so they do not affect the computation
offloading policies of the other two types of ground devices. The second type of GD can
only be accessed to the nearest UAV and has the next highest priority. The third type of GD
can be accessed to the most appropriate UAV among multiple UAVs, and these GDs have
the lowest priority.

Further, we decide on the computation offloading of the GDs. For the first type of
GD, the computation tasks are divided into local and LEO satellite processing parts since
they cannot be accessed by the UAV, i.e., αUAV

m = 0, ∀m ∈M1. For the second and third
types of GD, the computation tasks are split into local, UAV, and LEO satellite processing
parts. As the UAV deployment and the GD access are already determined, the computation
offloading optimization problem is a standard linear programming problem that can be
solved by employing existing toolkits (e.g., CVXPY).

We propose the following greedy strategy based on the above analysis.

1. ForM1, they do not have access to UAVs.
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2. ForM2, they are accessed to the nearest UAV. If there are currently Λmax GD accessed
by a UAV, the access of this UAV with its accessed GD with the highest transmission
latency is canceled, and the computation offloading for this GD is adjusted.

3. ForM3, they always try to access the nearest UAV. If Λmax GDs are currently accessed
by this UAV, select the GD inM3 that is already accessed by this UAV and has the
highest transmission latency, and access it to other UAVs that are nearest. If the
original access cannot be changed, the GD inM3 relinquishes access to the UAV and
adjusts the computation offloading.

The main steps of the Greedy are given in Algorithm 2.

Algorithm 2 Greedy

Require: uGD, uUAV, I
Ensure: α, β

1: Classify the GDs to generateM1,M2,M3;
2: for each m ∈M1 do
3: for each n ∈ N do
4: βm,n = 0;
5: end for
6: Calculate the computation offloading ratio for GD m;
7: end for
8: for each m ∈M2 do
9: for each n ∈ N do

10: if n is the closest UAV to GD m then
11: βm,n = 1;
12: end if
13: end for
14: if the number of GD accessed to UAV n is greater than Λmax then
15: Calculate the transmission latency of all GDs inM2 accessed to UAV n;
16: Select GD m′ with the largest transmission latency so that βm′ ,n;
17: Calculate the computation offloading ratio of GD m′;
18: end if
19: Calculate the computation offloading ratio of GD m;
20: end for
21: for each m ∈M3 do
22: for each n ∈ N do
23: if n is the closest UAV to GD m then
24: βm,n = 1;
25: end if
26: end for
27: if the number of GD accessed to UAV n is greater than Λmax then
28: Calculate the transmission latency of all GDs inM3 accessed to UAV n;
29: Select GD m′′ with the largest transmission latency, and let it access the second

closest UAV;
30: Calculate the computation offloading ratio of GD m′′;
31: end if
32: end for
33: return α, β

The algorithm first classifies the GDs to obtainM1,M2, andM3 (Line 1). computation
offloading for the GDs is obtained according to the proposed greedy strategy (Lines 2–32).
Finally, α and β are returned (Line 33).
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5. Performance Evaluation

In this section, extensive simulations are conducted to investigate and validate the
effectiveness of the proposed PSO&GS.

5.1. Simulation Settings

In the simulation, we consider a rectangular area of 200 × 200 m2, where the CPU-cycle
frequencies of the GDs are 0.8–1.2 GHz. The computational task-input data size follows
a random distribution of [10, 15] Mbit. The computational complexities for computation
tasks are set to 80–120 cycles/bit, and the maximum tolerable latency is 1 s. To provide
computational services to GDs, we assumed that N = 4 UAVs are deployed as edge servers
in the considered area, and their CPU-cycle frequencies are set to 2 GHz. In addition, an
LEO satellite is used as a cloud server, which is assigned a CPU-cycle frequency of 3 GHz
for each GD. The transmission rate between the GDs and the LEO satellite is 20 Mbit/s.
The basic simulation settings are listed in Table 3 [28].

Table 3. Simulation Settings.

Parameter Value

H 40 m
B 10 MHz
P 1 W
σ2 −130 dBm
h0 −30 dB
M 20, 30, 40

Λmax 8
Lmax {40, 80} m

All the simulations in this section are carried out on a PC equipped with an i5-8500
CPU and 32 GB RAM. The operating system version is Windows 10-2004. PSO&GS and
all benchmark algorithms are implemented in Python 3.7. The relevant parameters of
PSO&GS refer to [29] and are set as T = 1000, K = 100, wmax = 0.8,wmin = 0.2, cstart

1 = 0.9,
cend

1 = 0.2, cstart
2 = 0.4, and cend

2 = 0.9.

5.2. Numerical Results Analysis
(Result#1) Discussion of the convergence of PSO&GS

First, we analyze the convergence of the proposed PSO&GS. Figure 4 shows the
variation of the system average response latency obtained by PSO&GS with the increase
in the number of iterations. As shown in Figure 4, PSO&GS always converges to a stable
result within 500 iterations, no matter how M and Lmax vary. Specifically, the convergence
of PSO&GS is slower when Lmax = 40 m compared to Lmax = 80 m. It is because more GDs
will be outside the coverage of the UAV when its coverage is small. In such cases, more
stringent requirements for UAV deployment are needed to provide computational service
to more GDs. Therefore it takes more time for UAV deployment employing PSO&GS. With
a large maximum service distance of the UAVs, almost all GDs are within their coverage, so
PSO&GS takes less time searching for UAV deployment. Further, the convergence curves
of PSO&GS under different conditions show that the increase in the number of GDs will
make the problem solution space larger and cause the convergence of PSO&GS to slow
down. In summary, the convergence performance of the proposed PSO&GS is excellent in
various scenarios.
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Figure 4. (Result#1) The system average response latency obtained by PSO&GS.

(Result#2) Analysis of the effectiveness of PSO&GS outer PSO-GA

To better evaluate the performance of PSO&GS outer PSO-GA, we conduct the com-
parison by introducing benchmark algorithms as follows.

• RanDep: In this algorithm, a random algorithm is used to replace PSO&GS outer
PSO-GA as the UAV deployment optimization approach, and the proposed Greedy is
employed to optimize computation offloading. The average result of 1000 repetitions
was used as the final result.

• DeDep: In this algorithm, the differential evolutionary algorithm is employed as the
UAV deployment optimization approach, and the inner adopts the proposed Greedy
to optimize computation offloading.

Figure 5 shows the system average response latency obtained by PSO&GS and the
benchmark algorithms for different M and Lmax. As shown in Figure 5, regardless of the
variation of M and Lmax, the proposed PSO&GS has a significant performance advantage
over RanDep. Specifically, the performance advantage of PSO&GS is particularly substan-
tial for larger Lmax. The reason for the above phenomenon is that when the maximum
service distance of the UAV is large, high-quality UAV deployment enables the UAV to
cover more GDs, so that more GDs offload their computation tasks to the UAV for pro-
cessing, thus making full use of the UAVs’ computational resources. When low-quality
UAV deployment is employed, even if the maximum service distance of the UAV is large
enough, it results in some GDs being unable to access the UAV, thus limiting the utilization
of computational resources. In addition, PSO&GS are better than DeDep in optimizing the
system average response latency except for M = 30 and Lmax = 80 m. In summary, we
can demonstrate the effectiveness and superiority of PSO&GS outer PSO-GA in achieving
optimization of UAV deployment.
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Figure 5. (Result#2) The system average response latency obtained by RanDep, DeDep, and PSO&GS.
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(Result#3) Analysis of the effectiveness of PSO&GS inner Greedy

Similarly, we compare by introducing benchmark algorithms to evaluate the perfor-
mance of PSO&GS inner Greedy as follows.

• RanOff: In this algorithm, the outer employs an approach consistent with PSO&GS
for UAV deployment, while the inner adopts a random approach for computation
offloading.

• ProAve: In this algorithm, the outer applies the same approach as PSO&GS for UAV
deployment. At the same time, the inner uses the proximity principle to access GDs to
UAVs and distributes the computation tasks on average to each end.

Figure 6 shows the system average response latency obtained by PSO&GS, RanOff, and
ProAve for different M and Lmax. As shown in Figure 6, the proposed PSO&GS performs
best in various scenarios, followed by ProAve and the worst by RanOff. It is because
the proposed PSO&GS is optimized in both device access and computation offloading
compared to random-based computation offloading and thus can significantly improve the
performance. For ProAve, the proposed PSO&GS is significantly better than the average
distribution in computation offloading optimization. Therefore, the Greedy algorithm
proposed in this paper can achieve better optimization results when the maximum service
distance of the UAV is larger.
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Figure 6. (Result#3) The system average response latency obtained by RanOff, ProAve, and PSO&GS.

6. Conclusions

In this paper, we proposed a joint optimization of UAV deployment, GD access,
and computation offloading in the SAGiMEC system to minimize the system average
response latency. We formulated the problem as a MINLP and designed an inner and
outer double-layer optimization algorithm (i.e., PSO&GS). Numerical results show that the
proposed PSO&GS converges well and achieves better system average response latency
than other benchmark algorithms. In our future work, we aim to investigate the impact
of the NOMA and the successive interference cancellation (SIC) decoding order on the
wireless channel performance.
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