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Abstract: Mathematical models are becoming indispensable tools to explore the complexities of bio-
logical systems at cellular levels. We present a model to explore the baseline immune cell interactions
for in vitro polyclonal antibody synthesis via B-cells regulated by helper and regulatory T-cells. The
model incorporates interactions of antigen-presenting cells, T-cells, regulatory T-cells, and B-cells with
each other and predicts time-dependent trajectories of these cells and antibody synthesis stimulated
by pokeweed mitogen. We used an ordinary differential equation-based approach to simulate the
dynamic changes in the cells and cytokines numbers due to the cellular and humoral response to
pokeweed mitogen stimulation. The parameters of the ordinary differential equations model are
determined to yield a normal immune response as observed in the pokeweed mitogen-stimulated
in vitro antibody synthesis via normal T, B, and antigen-presenting cells. The dose effects of antigen
load and basal values of regulatory T-cells on the profiles of various immune response variables are
also evaluated.

Keywords: mathematical modeling; in vitro antibody synthesis; T-cells; B-cells; pokeweed mitogen;
antibody production
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1. Introduction

Mathematical modeling is a powerful tool to explore complex interactions and mecha-
nisms in immunoregulatory networks of cells and cytokines. The development of models
for immune responses can provide insights into the immune system’s multi-layered, orga-
nized, interactive, and regulated network of cellular components and cytokines/chemokines.
Such a model can potentially improve biologically and clinically relevant predictions for the
diagnosis and treatment of human diseases as well as vaccine responses. Here, we present a
model that functionally exhibits optimal T-cell-dependent antibody synthesis response via
B-cells upon polyclonal stimulation, while incorporating the upstream complex interactions
involved in the T-cell-dependent B-cell antibody response using pokeweed mitogen (PWM)
as a nominal antigen.

Upon antigen recognition, cognate B-cells become activated and initiate proliferation
and differentiation processes to produce antibody-secreting plasma cells (PCs) crucial in
the initial response, and long-lived PCs and memory cells that contribute to sustained
immunity. Earlier in vitro studies have shown polyclonal antibody synthesis via PWM-
stimulated B-cells using unfractionated peripheral blood mononuclear cells (PBMC) or
defined proportions of T- and B lymphocytes or T-cell subpopulations in the context of
stem cell transplantation, infections, and vaccinations [1–3]. PWM-induced immunoglob-
ulins (Ig) synthesis via B-cells [4–7] requires the presence of both monocytes acting as
an antigen-presenting cell (APC) and helper T-cells acting as regulators of B-cell activa-
tion [8–10]. Proliferation and differentiation of B-cells, development of memory B-cells,
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and antibody affinity maturation are regulated by cytokines produced by T helper cells
(Th) and regulatory T-cells (Treg) [7,11,12].

Given that PWM stimulation of B-cells provides an immunologically well-defined
platform to investigate immune responses, the PWM system supported by historically
acknowledged and robust experimental data [13–17] in normal PBMC was used to develop
the model. This model incorporates the functional dynamics of the selected immune
variables considered to be critical to dissect the process of T-cell receptor (TCR) activation
leading to antibody production by B-cells. The model could eventually be applied to
predict optimal immune response that can prevent infectious diseases such as SARS-CoV2
and infections and can be expanded to study a variety of liquid and solid tumors [18] and
autoimmune diseases. Our simulations provide new insights into how the immune system
responds to cell population dynamics under balanced and imbalanced immunologic states.

2. Methods
2.1. Process Description

The in vitro method for measuring Ig production uses T-cells, non-T-cells (comprising
of B-cells, monocytes, natural killer cells, immune cell-derived cytokines, and PWM, while
the numbers and proportions of Th and Tregs are adjusted to regulate in vitro Ig produc-
tion [19]. PWM was used as a polyclonal antigen (polyclonal Ag) trigger to stimulate,
proliferate, and differentiate B-cells into antibody-producing PCs with the help of T-cells.

Immune response to Ag stimulation: Our objective is to define the proliferation and
differentiation of PC under simulated immunologic conditions and quantify the biological
processes. Figure 1 describes the immune components and their interactions leading to
antibody production. The antigen is recognized by a naïve dendritic cell (DC) or APC
and B-cells via their surface receptors and presented to naïve T-cells (Tn) that differentiate
into Th cells and Treg. The activated T-cells and APC, in turn, produce IL-2, IL-4, and
IL-6 cytokines [20] (T-cell growth, B-cell proliferation, and B-cell differentiation factors,
respectively). The IL-4 and IL-6 enriched microenvironment promotes B-cell proliferation
and differentiation into antibody-producing PC. To keep the model simple, we chose
dominant cytokines that participate in B-cell proliferation, differentiation, and regulatory
activity. The mathematical framework was developed taking into consideration the T-B-
cells interaction, B-cell proliferation and differentiation, and Ig synthesis by PC.

2.2. Development of Mathematical Model

With the advances in data storage and computational power, the applications of mathe-
matical modeling [21] to complex biological processes are gradually gaining popularity. The
quantitative techniques can provide deep insights into cellular biology and other biological
processes [22]. Over the last decades, mathematical modeling has also been seen as an
alternative tool to dive deeper into the investigation of HIV infection [23] and to investigate
spatio-temporal dynamics of tumor growth [24]. Tumor models have also been devel-
oped [25] to differentiate normal and cancer cell growth regimes using radially symmetric
reaction–diffusion equations. Mathematical models are useful to generate time-dependent
quantitative data of the cell populations, growth/decay rates, and maximum/minimum
values. These models allow us to explore the dynamics of complex diseases in terms of
their latent molecular mechanisms, help in treatment strategy optimization, and new drug
development and discovery. Several modeling approaches have been applied for biological
systems to simulate dynamic changes in the regulatory networks, disease progression,
and cellular system. One of the widely used methods is based on setting up ordinary
differential equations (ODEs) [26,27] for the biological variables. Within this approach, a
first-order rate of change in a biological variable [28] is expressed in terms of the variables
that affect its dynamics. Since the biological variables are dependent on each other, we
obtain a set of coupled equations that are solved numerically to obtain the time-dependent
continuous evolution of the variables. The ODE-based methods can be put into three
classes: (1) Michaelis Menten Kinetics [29], (2) the law of mass action [30], and (3) the
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Hill function [31]. Each of these methods is suited for a specific biological process. In our
study, we used the Michaelis Menten Kinetics approach to model continuous changes in
populations of intercellular networks of various immune cells and cytokines.
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to T-cells inducing their activation via cell–cell interaction between T and B-cells. The activated T-
cells recognize and bind the Ag on the surface of a B-cell. This complex induces the release of inter-
leukin-2, -4, and -6 (IL-2, IL-4, IL-6) from Th1 and Th2 cells, resulting in activation and differentiation 
of B-cells into memory cells and antibody-secreting PCs. Macrophages, naïve T-cells, B-cells, Th-
cells, Treg-cells, and various cytokines are key elements that promote, suppress, or secrete antibody 
synthesis. 
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Figure 1. Immune cell interactions network leading to T-cell-dependent antibody synthesis via T-cells
and B-cells after PWM (Ag) stimulation. PWM is captured, processed, and presented by APC to
T-cells inducing their activation via cell–cell interaction between T and B-cells. The activated T-cells
recognize and bind the Ag on the surface of a B-cell. This complex induces the release of interleukin-2,
-4, and -6 (IL-2, IL-4, IL-6) from Th1 and Th2 cells, resulting in activation and differentiation of B-cells
into memory cells and antibody-secreting PCs. Macrophages, naïve T-cells, B-cells, Th-cells, Treg-cells,
and various cytokines are key elements that promote, suppress, or secrete antibody synthesis.

Another mathematical approach is based on Petri nets formalism, which allows dif-
ferent abstraction levels of the biological system, from purely qualitative to more complex
quantitative models. Mapping a biological system into an intuitive network representation,
Petri nets [32], offers a convenient quantitative formalism to investigate biological systems.
Agent-based modeling [33] is another quantitative technique that is being used to simulate
a large set of active components represented by agents of biological systems. Within this
approach, a biological system is represented via agents, which are the model components
performing independent biological processes and interacting with other agents and the
microenvironment [34].

In addition to the investigations of the dynamic evolution of the cytokines and
chemokines as discussed in the above methods, their diffusive motion within a restricted
spatial biological environment is also of vital interest [35,36] and can be discussed by
space-time spectral order sinc-collocation method using a nonlinear fractional differen-
tial equation. The predictor–corrector method offers greater numerical stability and high
accuracy thus making it suitable for complex fluidic dynamic systems.

We used a deterministic mathematical model [37] to quantify the dynamics of the
immune response by developing first-order differential equations for each of the immune
variables. The procedure of setting up the equations for the immune variables is similar to
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what has been used earlier in other studies [38], i.e., the rate of change in a variable is ex-
pressed as a linear combination of a minimum of two or more immunological processes that
include basal production rate (πnn), proliferation rate (αnn), transformation/differentiation
rate (θnn), suppression rate (δnn), uptake rate (µnn), and turnover rate (λnn). The subscript
nn in the immune response process denotes the variable name.

Although the immune response to Ag stimulation in vivo is a result of coordinated
interactions of the hundreds of variables, here, we have limited the evaluation to the
major immune components known as the primary drivers of the immune response. We
selected 12 immunological variables whose time-dependent evolution is determined by
various immunologic parameters. The evolution of dynamic interactions was stretched to
21 days because most of the immune responses occur within this time frame and nearly all
the variables display their optimal changes, growth, saturation, or steady-state behaviors
within 21 days. Since we used in vitro antibody synthesis by PCs and Ig production profiles
in response to PWM stimulation, the framework of our mathematical model is based
on polyclonal activation of the T-cell-dependent Ig synthesis. In order to describe the
behavior of B-cells differentiating into antibody-producing PCs, we considered various
cells including Th-cells, Treg cells, B-cells, and APC in the presence of IL-2, IL-4, and IL-6
produced by T-cells. While Th provides helper activity for B-cell activation, proliferation,
and differentiation, Treg and suppressor macrophages (M2) can inhibit the B-cell activation
process or block T-cell helper activity. Interactions of these cellular components and their
proliferative and suppressive functions are depicted in Figure 1.

2.3. Detailed Description of the Model Components

Antigen (Ag). Ag (PWM) triggers adaptive cellular and humoral immune responses,
leading to the development of Ag-specific Th cells, Tregs cells, and B-cell responses. PWM
triggers a T-cell-dependent antibody response by B-cells. The rate of change in Ag due to
its interaction [39] with B-cells and dendritic cells is described by

dAg
dt

= πAg −
(
µAgBB + µAgN DCN + µAgADCA

)
Ag − λAg Ag. (1)

Here, Ag denotes the concentration of antigen in µg/mL (used in in vitro experiments),
the constant πAg represents basal production rates, the terms µAgBBAg, µAgN DCN Ag, and
µAgADCA Ag represent uptake of Ags by B-cells, naïve dendritic cells (DCN) and activated
dendritic cells (DCA), respectively. The parameters, µAgB, µAgN , and µAgA are the rates
of elimination of Ag (Ag processing) by B-cells, naïve dendritic cells (DCN) and activated
dendritic cells (DCA), respectively. The natural degradation of Ag is represented by λAg Ag.
The interaction of Ag with APC (B-cells, DCN, DCA) initiates the activation of the immune
system that propagates through the immune network, leading to the elimination of antigens.

Naïve Dendritic Cells (DCN). The main role of DCN is to recognize, capture, and
process Ags. After the processing of the Ag sequences into small pieces called peptides,
they are presented to the TCR on Th-cells in the context of class II MHC molecules on the
cell surface. The interactions of Ag with DCs and their activation are expressed by the
following equation [40]:

dDCN
dt

= πDCN − θDCADCN Ag − θM2DCN Ag − λDCN DCN . (2)

where in the first term, πDCN , is the basal production rate of DCN; the second term,
θDCADCN Ag, is the rate of transformation of DCN into activated dendritic cells (DCA);
θM2DCN Ag represents the rate of transformation of DCN cells/monocytes into M2 macrop-
hages; and the last term, λDCN DCN , is natural turnover rate of DCN. It should be noted that
high Ag doses can induce tolerance or suppression in both in vitro and in vivo models [41].

Activated Dendritic Cells (DCA). Dendritic cells are activated by inflammatory cy-
tokines to express a costimulatory molecule (CD80, CD86), which is recognized by specific
receptors (CD28) on the T-cells. DCA is required to trigger T-cell activation, differentiation
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into effector T-cells, and clonal expansion of naïve T-cells. We determine the dynamics of
DCA using Equation (3) below. The first term of the equation, θDCADCN Ag, is the rate of
generation of activated dendritic cells [42], which is equal to the rate of activation of the
naïve DC into DCA; and the last term, λDCADCA, is the degradation rate of the DCA.

dDCA
dt

= θDCADCN Ag − λDCADCA. (3)

Suppressor Macrophages (M2). Macrophages activated via an alternative pathway
are referred to as suppressive macrophages or M2. Under non-infectious conditions, the
presence of IL-4, IL-10, and TGF-β favors the polarization of monocytes or DCN [43] to an
M2 subpopulation that produces IL-10 in high concentrations along with TGF-β that are
able to suppress immune effector cells and antibody synthesis. Equation (4) describes the
rate of production of M2, which is equivalent to the differentiation of naïve dendritic cells
into M2 via antigens interaction and their decay, λM2M2.

dM2

dt
= θM2DCN Ag − λM2M2, (4)

M2 macrophages suppress the T-cell activation process leading to suppression of
antibody synthesis.

Naïve T-cell (Tn). Naïve T-cells are derived from cell division and thymic export. Tn
cells circulate between the blood and peripheral lymphoid organs (lymph nodes, spleen,
and mucosal lymphoid tissues) until they encounter a foreign Ag. This encounter activates
Tn cells and initiates the differentiation of Tn into Th and Treg cells. Since our focus is on
antibody responses, the development of cytotoxic T lymphocytes was excluded from the
model. We have considered here that Tn cells [44] are produced at a constant rate πTn and
their dynamics in the periphery are determined by homeostatic mechanisms driven by cell
death, differentiation, and rate of generation [44,45]. These processes are summarized in
the following expression Equation (8).

dTn

dt
= πTn −

(
θTh + θTreg

)
Tn

DCA
DCA + DCA50

− δTnTn M2 − λTnTn, (5)

The θThTn
DCA

DCA+DCA50 and θTregTn
DCA

DCA+DCA50 are transformation rates of Tn cells into
Th-cells and Treg-cells, respectively. Since DCs concentration floats between 1% to 3% of
the total cell population, we set DCA50 = 0.5 ∗ DCA0 cells

ml ∼ 2800 cells/mL. DCA0 varies
from 0.3% to 0.6 % of the total PBMC. The δTnTn M2 denotes the suppression of Tn cells by
M2 macrophages, and the last term, λTnTn, is the degradation rate of Tn cells due to all
possible mechanisms.

Helper T-cells (Th). The dynamic behavior of Th cells was evaluated in the stimulation
of the cellular arm of immune responses. CD4+ T helper lymphocytes play a key role in
the adaptive immune system exerting a wide spectrum of biological functions required
for effective control of infections and avoidance of autoimmune diseases. Tight regulation
of immune responses by CD4+ T-cells is exerted by various subpopulations of CD4+ T-
cells including classical Th1 cells, Th2 cells, and Treg cells predominantly governed by the
cytokines in the milieu and, the intensity of stimulation. When Th cells are activated by
APCs, they not only secrete multiple cytokines and chemokines but also express specific
stimulatory co-receptors on their surface. The behavior of Th cells is given by

dTh
dt

= θThTn
DCA

DCA + DCA50
+ αThTh

IL2
IL2 + IL250

Ag
Ag + Ag50

− θTrTregTh − λThTh. (6)

The first term, θThTn
DCA

DCA+DCA50 , represents a generation of Th from naïve T-cells [46–48];

the second term, αThTh
IL2

IL2+IL250
Ag

Ag+Ag50 represents a proliferation of antigen-bounded Th by
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IL-2; θTrTregTh represents the depletion of Th cells due to their differentiating into Treg cells;
and the last term is their turnover rate. In our calculations, we have set IL250 = 5.0 ng/mL.

Regulatory T-cells (Treg). The primary function of Treg cells is to prevent autoimmune
diseases by maintaining self-tolerance. However, the main suppressive function of Treg
cells in the context of antibody production is exerted by immunosuppressive cytokine
TGF-β, which can inhibit the secretion of immunoglobulins [49]. Treg cells have essential
roles in the maintenance of peripheral tolerance, immune homeostasis, and prevention of
autoimmunity by regulating effector T-cell responses and thus preventing their potentially
pathogenic effects via various mechanisms [50]. Features such as the plasticity of Treg cells
have changed the understanding of Treg-cell biology in terms of their interaction with other
immune and non-immune cells, their functions in specific tissues, and the implications of
this for the pathogenesis of autoimmune diseases. In this paper, we have restricted the role
of Treg cells immune cells, and antigens. We determine the dynamics of Treg cells [51] using
the following equation.

dTreg

dt
= θTregTn

DCA
DCA + DCA50

+ αTregTreg
IL2

IL2 + IL250
Ag

Ag + Ag50
+ θTrTregTh − λTregTreg, (7)

The first term, θTregTn
DCA

DCA+DCA50 , represents the generation of Treg cells from the

naïve T-cells; αTregTreg
IL2

IL2+IL250
Ag

Ag+Ag50 is the proliferation of Treg by the IL-2, θTrTregTh
represents rate of generation of Treg cells due to differentiation of Th cells; and the last term
is their natural decay rate, λTregTreg.

B-cells. B-cells when activated differentiate into PCs and secrete antibodies [7]. While
some Ags can trigger a direct B-cell response, most B-cell responses are derived after
interaction with the Th cells. Activated Th cells produce IL-4 which helps in the proliferation
of B-cells and IL-6, which supports differentiation of B-cells. B-cell behavior is determined
by the equation below, which incorporates these processes.

dB
dt

= πB + αBThBTh + αIL6
IL6

IL6 + IL650
B − θBThBDCA − λBB, (8)

πB is the basal level generation rate of B-cells; and αBPBTh represents a positive
feedback by Th via interaction with B-cells. Cytokine proliferation of B-cells is given by
αIL6

IL6
IL6+IL650 B term. For simplicity, we have taken IL650 = IL250. The term θBThBDCA

represents the differentiation of B-cells into PCs mediated by Th cells and λBB represents
B-cell turnover rates.

Plasma cells (PCs). The long-lived PCs represent the terminal differentiation step of
B-cells that secrete antibodies (Abs). The dynamics of PC [52,53] is given by

dPC
dt

= θBThBDCA − λPCPC. (9)

T-cell-dependent antibody responses require the activation of B-cells by Th cells that
respond to the same antigen. The first term, θBThBDCA, describes a generation of PCs
due to B-cells differentiation by activated dendritic cells and δPCPC describes their natural
turnover rates.

Immunoglobulins (Ig). Ig are glycoproteins produced by B-cells that play a crucial role
in protective immunity. Structurally, Ig contains two components: the Fc region (tail part)
and the Fab region; the Fc tail of the Ig is responsible for triggering effector functions of
the innate immune system while the Fab arms are responsible for antigen binding. Among
the subtypes of Ig, the immunoglobulin G (IgG) class of antibodies is a major effector
molecule of the humoral immune response in humans and accounts for about 75% of
the total immunoglobulins in plasma. Antibodies of the IgG class have a relatively high
antigen affinity and long serum persistence. Antibody production via PCs is described
below as follows:

dIg
dt

= αIgPC − λIg Ig. (10)
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The first term, αIgPC, is the rate of antibody production by PCs, and the last term,
λIg Ig, is Ab degradation rate.

Cytokine IL-2. IL-2 is a T-cell growth factor that supports the expansion of T-cells after
engaging with Ag. IL-2 is essential for the development of T-cells and Treg. Tregs function to
prevent other T-cells from recognizing and reacting against “self-Ags”. Not only do T-cells
produce IL-2 [54] but they consume IL-2 for their proliferation [12]. The dynamics of IL-2 is
given by

dIL2
dt

=

(
αIL1 + αIL2

DCA
DCA + DCA50

)
Th f (t)−

(
µThIL2Th + µTrIL2Treg

)
IL2 − λIL2 IL2. (11)

The first term,
(

αIL1 + αIL2
DCA

DCA+DCA50

)
Th f (t) describes the production of IL-2 by

Th [46,55];
(
µThIL2Th + µTrIL2Treg

)
IL2 term accounts for IL-2 consumption by Th and Treg;

and the last term, λIL2 IL2, accounts for their normal degradation. The dynamic offset
between two opposing forces (proliferation and consumption terms of IL-2) determines
the trajectory of the immune response. IL-2 production is transient due to a network of
autocrine and paracrine signals present in normal and pathological responses. We have

introduced a factor f (t) =
(

t
τ0

)
.exp

(
−
(

t
τ0

)2
)

to account for this transient behavior by

setting τ0 to 5 days.
Cytokine IL-4 and IL-6. IL-4 and IL-6 are critical in the activation process. While IL-6

helps in the differentiation, growth, and activation of T and B lymphocytes and stimulates
the production of antibodies, IL-4 induces the differentiation of naive helper T-cells [56,57].
IL-4 and IL-6 are essential to transition from innate to acquired immunity and drive B-
cell proliferation and differentiation, respectively. In this model, for brevity, we have
combined [58,59] the effects of both IL-4 and IL-6 into just one variable, IL-6. The rate of
change in IL-6 is given by

dIL6
dt

=

(
αIL1 + αIL2

DCA
DCA + DCA50

)
Th f (t)− µBIL6BIL6 − λIL6 IL6. (12)

The second term, µBIL6B.IL6, is the rate of consumption of IL-6 by B-cells for their
differentiation and the natural degradations of IL-6 is given by λIL6 IL6.

2.4. Parameters Determination

The profiles of the immune response variables are strongly dependent on the parameter
values used in the equations and the initial (time = 0) values of the variables are shown
in Table 1. The parameter and basal values are strongly dependent on each other. For
a normal healthy person, the values of the variables lie in a certain range as shown in
Figure 2. The range dictates the cell populations and their distributions in 1 mL of PBMC
(1 × 106 cells) as we move from left to right in the figure. Based on these values, we
have taken basal values of the variables in 1 mL of PBMC as shown in Table 2. We solve
the system of differential Equations (1)–(12) using the R programming language. For the
integration of these equations, we used the ODE function of the package “deSolve”. Using
Equations (1)–(12), we determined parameter values that generate the normal immune
response of a healthy person. The computational algorithm follows the following steps: we
start with the basal values of the variables and use a uniform distribution function bounded
by minimum and maximum values to generate very large values of the parameter for each
parameter. Starting with the first value of each parameter, the time-dependent equations
are solved for the time window of 21 days retaining only the solutions that are convergent.
This process is repeated for all the values of the parameters and thus generates a very
large set of output solutions. We analyzed the output profiles of the immune variables and
selected only those parameter sets that produced the normal immune response of the cells
as shown in Figure 3 where each cell and cytokine show characteristic features in its profile.
To obtain a large collection of the time-dependent profiles of the variables, we varied the
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minimum and maximum values of the parameters and generated a new set of parameters,
and repeated the calculations. In the end, we collected only those parameters that produced
the desired profiles of the immune variables. From this collection of the parameters, we
determined their mean, minimum, and maximum values as reported in Table 2.

Table 1. Initial values of the variables.

No Variables Values (per mL)

1 Ag (Ag) 0.5 µg, 1.0 µg and 2.0 µg
2 Naive Dendritic cells (DCN) 16,000
3 Activated Dendritic cells (DCA) 8000
4 Regulatory Macrophages (M2) 0
5 Naïve T-cells (Tn) 520,000
6 B-cells (B) 20,000
7 Antibody, Ig 0
8 Plasma cells (PC) 0
9 Treg cells (1%, 5%, and 10%) of Th

10 T Helper cells (Th) 150,000
11 Interleukin 2 (IL-2) 10 ng
12 Interleukin 4 (IL-4) 10 ng
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Figure 2. (A) Shows the immune cell distribution in normal PBMC. (B) Shows the generic B-cell
response profiles of each combination- CD4+ T-cells + B-cells (non-T-cells) or CD8+ T-cells + B-
cells (non-T-cells) compared to control cells. (C) Shows the result of B-cells EliSpot response to
Ag-stimulated purified CD4+ (CD4%H) or CD8+T helper cells (CD8%H) or CD4+ (CD4%S) or CD8+T
suppressor cells (CD8%S) compared to control B-cell response.
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Table 2. Description of parameters, mean, and range of values.

Parameter (Units) Description Mean Value Min Value Max Value

πAg (ng/day−1) Basal production rate of Ag 1.621 × 10−1 1.093 × 10−1 1.990 × 10−1

µAgB (1/cell.day) Rate of Ag binding with B-cells 9.03 × 10−7 2.18 × 10−7 1.69 × 10−6

µAgN (1/cell.day) Rate of Ag binding with naïve dendritic cell 8.27 × 10−7 1.06 × 10−7 1.61 × 10−6

µAgA (1/cell.day) Rate of Ag binding with activated
dendritic cells 8.74 × 10−7 2.09 × 10−7 1.67 × 10−6

λAg (day−1) Turnover rates of antigen 2.50 × 10−1 1.01 × 10−1 4.94 × 10−1

πDCN (cells/mL.day) Basal production rate of dendritic cells 4.54 × 102 2.04 × 101 1.00 × 103

θDCA (1/ng.day) Rate of DC binding with Ags, which leads to
their differentiation into activated DC 2.53 × 10−2 4.29 × 10−4 5.22 × 10−2

θM2 (1/ng.day) Rate of DC binding with Ag, which leads to
their differentiation into M2 cells 1.85 × 10−2 3.20 × 10−3 3.44 × 10−2

λDCN (1/day) Decay rates of DC 1.77 × 10−1 9.49 × 10−2 2.98 × 10−1

λDCA (1/day) Decay rates of DCA 3.90 × 10−1 2.05 × 10−1 5.94 × 10−1

λM2 (1/day) Decay rates of M2 3.75 × 10−1 3.03 × 10−1 4.86 × 10−1

πTn (cells/day) Basal production rates of naïve T-cells 9.03 × 100 8.11 × 100 9.90 × 100

θTh (1/day) Rate of Tn cells differentiating into Th cells 2.61 × 10−5 9.65 × 10−6 4.99 × 10−5

θTreg (1/day) Rate of Tn cells differentiating into Treg cells 2.95 × 10−4 5.12 × 10−5 4.78 × 10−4

δTn (1/cell.day) Rate of suppression of Tn cells by M2 5.49 × 10−6 1.03 × 10−6 9.35 × 10−6

λTn (1/day) Turnover rate of Tn cells 3.27 × 10−2 1.07 × 10−2 5.56 × 10−2

πB (cells/day) Basal rate of production of B-cells 3.48 × 102 3.03 × 102 3.91 × 102

αBTh (1/cell.day) Rate of proliferation of B-cells by Th cells 3.25 × 10−7 5.55 × 10−7 4.42 × 10−7

αIL6 (1/day) Growth rate of B-cells by IL-6 3.81 × 10−4 2.83 × 10−4 4.63 × 10−4

θBTh (1/cell.day) Rate differentiation of B-cells into B2-cells
induced by Th cells 1.48 × 10−10 9.07 × 10−12 2.83 × 10−10

λB (1/day) Degradation rates of B-cells 2.05 × 10−2 1.62 × 10−2 2.49 × 10−2

λPC (1/day) Degradation rates of PC- cells 1.64 × 10−2 4.00 × 10−3 2.63 × 10−2

θTr (1/cell.day) Rate of Th cells differentiation into Treg cells 1.20 × 10−6 6.18 × 10−7 2.13 × 10−6

αTh (1/day) Proliferation rate of Th cells by IL2 2.70 × 10−1 1.10 × 10−1 3.47 × 10−1

λTh (1/day) Turnover rate of Th cells 1.39 × 10−1 3.86 × 10−2 2.96 × 10−1

αTreg (1/day) Proliferation rate of Treg by IL2 1.19 × 10−4 8.76 × 10−5 1.57 × 10−4

λTreg (1/day) Turnover rates of Treg cells 2.13 × 10−1 9.95 × 10−2 2.94 × 10−1

αIL1 (ng/cell.day) Expansion rates of IL-2 by Th cells 8.67 × 10−1 1.21 × 10−1 1.59 × 100

αIL2 (ng/cell.day) Expansion rates of IL-2 by activated Th cells 1.01 × 100 2.42 × 10−1 1.46 × 100

µThIL2 (1/cell.day) Rate of consumption of IL-2 by Th cells 2.80 × 10−2 6.75 × 10−3 5.98 × 10−2

µTrIL2 (1/cell.day) Rate of consumption of IL-2 by Treg cells 2.35 × 10−2 1.39 × 10−3 4.98 × 10−2

λIL2 (1/day) Rate of degradation of IL-2 3.12 × 10−2 1.05 × 10−2 5.00 × 10−2

µBIL6 (1/cell.day) Rate of consumption of IL-6 by B-cells 8.18 × 10−2 4.35 × 10−3 1.54 × 10−1

λIL6 (1/day) Rate of degradation of IL-6 2.79 × 10−2 1.13 × 10−2 4.94 × 10−2

αIg (µg/cell.day) Rate of production of Ig by plasma cells 3.44 × 10−1 1.77 × 10−1 4.85 × 10−1

λIg (1/day) Turnover rate of Ig 2.61 × 10−2 2.32 × 10−2 2.95 × 10−2
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antibody-producing PCs in in silico platform starting from their initial values.

3. Results

Overview of the Mathematical Model. A theoretical model was developed to assess
the immune response to PWM by PBMC from healthy donors incorporating cell–cell
interactions of APC-T-cells, T-cells-B-cells, B-cells-APC, and contributions from cytokines
that promote proliferation and differentiation of T and B-cells. The system of equations
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was solved for a set of parameter values presented in Table 2 using the initial values for
the variables, in Table 1, a range of normal immune responses was determined for the
immune response variables—Ag, naïve (DCN) and activated DC (DCA), naïve (Tn), helper
(Th) and regulatory (Treg) T-cells, B-cells, plasma cells (PC), M2, Ig, IL-2, IL-4 and IL-6,
and Ig synthesis over a period of three weeks. The three-week interval was selected to
capture the time course in which the immune responses and induction-specific antibodies
are essentially complete when an individual is vaccinated or challenged with a pathogen.

In Vitro Experimental Data Supporting the Model. The in vitro model was used as
a guide for establishing the range of immune response variables [18,60,61]. Individual
IgG-secreting B-cells were measured by B-cell ELISpots in cultures of PBMC, CD4+ T-
cells + non-T-cells (B-cells, monocytes, and NK cells), or CD8+ T-cells + non-T-cells in
co-cultures stimulated with PWM (Figure 2B). The data from individuals published by
Lum et al. [18,60,61] were reanalyzed and presented in the context of this study. Similarly,
purified CD4+ or CD8+ T-cell subsets were evaluated for enhancement or suppression of
control culture containing a fixed number of T + B-cells (Figure 2C). The effect of monocytes
and subpopulations of monocytes was estimated based on the effects of adding purified
monocytes to purified T and B-cells (monocytes were depleted) in the same assay using
normal and patienT-cells after HLA-identical allogeneic sibling transplants [10].

Recapitulating Experimental Data in Mathematical Model. The model’s results are
based on experimental data we used in our equations via the initial time = 0 values of the
variables (Table 1). In Figure 3, we show the simulation profiles for antigen concentration,
IL-2, IL-4/IL-6, naïve DC, activated DC, M2 macrophages, naïve T-cells, Th1 cells, Treg cells,
B-cells, PC, and Ig concentration over a period of three weeks using in vitro experimental
results of in vitro polyclonal antibody synthesis PWM-stimulation.

3.1. Dynamics of the Variables

Dose responses to PWM. The dynamic and kinetics of the immune responses to three
different doses (0.5 µg, 1.0 µg, and 2.0 µg/mL) of Ag were evaluated. As a function of time,
the Ag dose declines from the initial value due to its binding with APCs and the natural
degradation process (Figure 3a). Increasing initial values of Ag increases the overall profile
of Ag but its decay dynamics remain the same.

Dynamics of Dendritic Cells. DCN decline with time as the DCN differentiate into
activated DCs (Figure 3d), while the DCA population initially increases due to a higher rate
of a generation that peaked at days 1–2 but declines later due to turnover rates (Figure 3e);
M2 macrophages increase initially but later they begin to decline in numbers due to the
dominance of turnover rate to their generation rate (Figure 3f). This behavior is consistent
with the recent work by Lichtnekert and Kawakami [62].

Dynamics of T-cells. Naïve T-cells decline continuously from their initial value soon
after activation and the beginning of differentiation into effector T-cells. This is due to
their higher rates of differentiation into Th and Treg cells after stimulation and activation
(Figure 3g). Soon after the presentation of Ag, the number of Th cells rose from the basal
state as expected in the normal immune response. Th cells continue to rise due to additional
positive feedback driven by IL-2 produced by Th cells themselves until the number of Th
cells reaches a peak between 5 to 15 days. Later, Th cells start declining due to a decrease in
IL-2 levels as well as due to their natural turnover rate (Figure 3h) and eventually reach
a homeostasis value. The proliferation of the Th cells and Treg cells is determined by the
IL-2, Ag, and activated DC whose functional potency declines after a week from the start
of immune activation. The time-dependent profile of Treg cells is a reciprocal of the Th
cells pattern. The number of Tregs is small during the initial expansion phase of Th cells,
and once Treg starts increasing (Figure 3i), the Th cells begin to decline due to suppressor
activity mediated by Treg cells.

Dynamics of B-cells. B-cells show a slower increase due to their differentiation into PC
and turnover rate (Figure 3j). Around 3 weeks after stimulation, the number of B-cells peaks
and begins to decline whereas PC increases, peaks, and declines (Figure 3k). Antibody
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synthesis increases steadily during the timeframe (Figure 3l) and declines around the 4th
week after stimulation.

Dynamics of Cytokines. The IL-2 (Figure 3b) and IL-6 patterns are functionally similar
for T and B-cells, respectively. The main source of generation for IL-2 and IL-6 are Th cells.
The IL-6 has similar kinetics except it is being utilized by B-cells (Figure 3c).

3.2. Effects of Varying Ag Dose on the Dynamics of Immune Response

In addition to the input parameter values (Table 2) required for evaluation of the
coupled differential equations, the outcomes of the equations also depend on the initial
(time = 0 day) values of the variables as given in Table 1. Since Ag is the only external
element that induces immune responses, the effects of varying Ag doses were investigated.
Given a highly non-linear relationship between the immune response components, it is not
trivial to predict the behavior of each element to the changing Ag doses. Figure 4A shows
the variations in the immune profiles for all the 12 variables at 0.5 µg/mL, 1.0 µg/mL, and
2.0 µg/mL values of Ag. Apart from Tn, IL-2, and M2, all variables exhibited pronounced
increases in their concentrations on increasing Ag loads, whereas DCN decreased with
increasing Ag loads. The reciprocal response pattern of DCN can be understood from
Equation (2) where Ag drives the differentiation of DCN into DCA and M2 leading to
decreases in DCN with increasing Ag. This explains why M2 does not change with varying
doses of Ag see Equation (4). Naive T-cell profiles are nearly independent of Ag concentra-
tion because of M2 behavior and saturation effects of DCA at their higher concentrations.
Increasing doses of Ag increases the overall concentration profile of Ag but its decaying
behavior remains the same. Since the kinetics of IL-2 is determined by the time-dependent
behavior of Th and Treg, changes in absolute numbers of Th and Treg cells in the presence of
Ag are compensated by rates of IL-2 production and consumption rates. For this reason,
the IL-2 profile does not change much with Ag. There is a steep increase in the slope of
Th at higher Ag load (2.0 g/mL) before it peaks. The behavior of Treg cells as a function
of increasing Ag is similar to Th cells, however, Treg showed a much stronger increase at
its peak. The B-cell population also increases with Ag dose but only at later times after
activation. Increasing B-cell population increases the PC profile and, in turn, increases Ig
production, which continues to increase even beyond the time frame of 3 weeks shown
here. Ag dose clearly affects the peak height and peak position of immune cell profiles.

The changes in the values of the peak heights of some of the selected variables—Th,
Treg, B-cell, PC, and Ig—are shown in Figure 4B (left panel). All these variables show a
linear increase in the peak heights with increasing Ag dose. The concentration of Th cells at
the peak increases by a factor of 1.5 while that of Treg at the peak increases by a factor of 2.3.
The B-cell and plasma cell numbers increase by a factor of 2 and 2.5, respectively. Figure 4B
right panel shows shifts in the profile patterns of Th, Treg, and PC with increasing Ag loads.
Other variables did not show changes in their peak patterns and hence are not shown here.
The most remarkable increase occurred in the Treg pattern that increased to day 11 from
day 4 with increasing Ag dose, while the Th peak position shifted to day 6 from day 4. PC
peak position showed a gradual increase with increasing Ag load.

3.3. Effects of Varying Initial Value of Tregs on the Dynamics of Immune Response

Given that Tregs in healthy subjects vary from 1 to 10% of Th, simulations were
conducted at 1%, 5%, and 10% of Th (Figure 5A). Th, Treg, B, PC, and Ig were the components
that apparently changed with varying initial values of Tregs. The shifts for each of the
above-mentioned components were statistically different by <0.05. Except for Tregs, all
other variables decreased by ~10%. The most remarkable was a 5× increase in Treg cells
while Th showed a ~16% decline when the initial value of Treg was increased from 1 to 10%.
Similarly, B-cells, PC, and Ig showed a decline in their overall profiles when Treg initial
values increased to 10%. Changes in peak heights of these variables are shown in Figure 5B
(left panel). Unlike the Treg population, B-cells, PC, Th, and Ig decrease in magnitude. This
behavior is consistent with a healthy immune system response. B-cells declined by 32%
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while PC declined by 22% when Tregs increased from 1 to 10%. There was a concomitant
decline in Ig synthesis while the PC numbers declined. In Figure 5B (right panel), we show
the shifts in the peak positions of immune variables. Th, Treg, and PC showed decreases
in the peak position with increasing Treg initial numbers. The largest shift is in the Treg
maximum peak position, which shifted to day 6 from day 10 on increasing proportions of
Tregs from 1% to 10%.
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4. Discussion

This study reports a mathematical model for normal T-cell-dependent B-cell antibody
synthesis using PWM. This system reflects changes in tightly regulated responses by helper
and regulatory T-cells that could be used to simulate dysregulated immune responses [6,63].
The kinetics of the temporal interactions for Th, Tregs, B, and dendritic cells were incor-
porated in the model for optimum production of PWM-stimulated antibody production,
which is consistent with in vitro experimental data [13,16,19,64,65]. The key question for
this model was “what are best proportions of T-cells, T-cell subsets, B-cells, and APC
required to generate optimal antibody synthesis in a 3-week time frame? To address this
question, various conditions were simulated using different parameter values to optimize
the differentiation of B-cells to Ig-producing PC (Figure 3). The peak proliferative response
of Th was on day 6, which was associated with a concurrent rise in PC numbers that peaked
on day 8. Unlike the rapid increase in PC, the increase in the accumulated Ig production
continued up to day 21 (Figure 3k,l). Data in Figure 3 were consistent with our previous
in vitro studies [13,16,19,64,65] that were considered optimal for all immune parameters.

Increasing or decreasing the Ag dose altered Ig production when compared to a
standard dose of PWM (1.0 µg/mL) shown in Figure 3. As the Ag dose is increased, both
qualitative and quantitative changes occur in immune response profiles and their peak
responses (Figure 4A,B). The number of Th cells increased by 32% and the number of B-cells
increased by 54%, which led to a ~70% increase in PC. As a result of the increase in PCs,
there is a corresponding increase in Ig production, which continues even after three weeks
as seen in Figure 4A. Similar to Th cells, Treg cells also increased by 90%. Interestingly, Treg
cells did not negatively impact Ig synthesis at higher numbers.

Decreasing Ag load by half (0.5 µg/mL) leads to a 20–40% decrease in the profiles of Th
cells, PC, and Ig production as well as a reduction in B-cells differentiating into PCs. On the
other hand, Tregs decreased by 20% at their peak value on day 12 (Figure 4A,B). The weaker
stimulatory effect of reduced Ag dose on Th and B-cells resulted in reduced differentiation
of B-cells to PC and thus reduced Ig production regardless of Treg numbers. The features of
other cells and IL-2 remain almost the same on reducing the Ag dose. Our model shows
that Ag concentration levels have noteworthy effects on the immune cell profiles.

The effects of increasing or decreasing the proportion of Tregs on Ig production are
shown in Figure 5A,B. Similar to the simulation results of varying the Ag dose, changing the
proportion of Treg initial value qualitatively and quantitatively affects profiles of immune
response. As the value of Tregs increased from 5% to 10% (2×), there was a ~10% decrease
in Th cells accompanied by a slight decrease in their peak position while the peak value
of Tregs increased by 60% compared to standard Tregs numbers at 5%. The number of PCs
diminished by 10%, resulting in a corresponding decrease in Ig produced.

Increasing Tregs was associated with changes in the immune response profiles; how-
ever, decreasing Tregs to 1% showed a marked decrease by 70% in Tregs followed by a delay
in the peak performance on day 10 at 1% compared to day 8 at 5%. Decreasing Tregs cells
showed positive effects on Th cells and B-cell numbers while decreasing to 1% showed
much less of an effect on PC numbers and slightly enhanced Ig synthesis (Figure 5B). How-
ever, a number of antibodies producing PCs remain more or less unchanged, suggesting
that decreasing or increasing Tregs may enhance or suppress antibody synthesis, respec-
tively, by augmenting or suppressing Th cells so that B-cells and PCs receive less help to
drive B-cell proliferation and differentiation.

The development of an in vitro model that simulates an in vivo systemic immune
response to the “vaccination” of normal subjects or patients provides a model for dissecting
immunopathologic mechanisms, as well as helps estimate and/or predict the effects of
immunomodulatory drugs on patients ongoing immunotherapy [66]. In this model, ex-
posure to pathogenic Ags or tumor-associated antigens would trigger network responses
via cell–cell interactions leading to a concerted immune response to secrete antibodies
and cytokines [4,67]. This model shows how network interactions between Ag dose, type,
and dose of various cell types, and cytokines are dependent on initial or basal states of
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these variables and the strength or potency of the immune component. The model permits
exploration of how manipulating specific or multiple components can provide insight
into the type and magnitudes of immune responses or outcomes. Over the past decade,
mathematical models describing T-cell activation [45], specific immune response to infec-
tions [68], cancer cell growth [69,70], and autoimmune diseases [71,72] were successful in
explaining experimental observations, providing new insights, and making predictions of
complex immunological processes [40,73]. In addition to predicting immune response for
various triggers, another major application of mathematical modeling has been on the dose
estimation and schedule to deliver immunotherapeutic or anti-cancer agents. Recently,
Carla et al. [66] developed a mathematical model to determine the minimum dose for the
yellow fever vaccine to achieve optimal immunity. The parameter values of such models can
provide insights into the clearance of the infection, maintenance of a chronic infection, or
recurring infections [74–76]. Earlier, some mathematical models [77–79] have investigated
the role of tumor-immune interaction and provided some insight into tumor progression,
therapeutic dose estimation, therapeutic efficacy, and treatment regimens [77–79].

In summary, the model we presented here provides a real-time relationship among
some of the mutually competing immune response variables in normal physiological
conditions when challenged by some external antigen. It provides a predictive framework
to address immune responses not only to preclinical models for immune therapeutics but
also for clinical interventions such as vaccines for infectious diseases, immune-modulating
agents in cancer, or immune deficiency disorders. In the future direction, we would like
to investigate preventive modeling for autoimmune diseases and treatment response of
infections and inflammation. We expect, in the future, with the advancement of new
techniques in computer science and mathematics, mathematical modeling may provide
novel insights into the cellular mechanisms of system biology.
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