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Abstract: This manuscript derives optimal consumption and investment strategies for risk-averse
investors under the 4/2 stochastic volatility class of models. We work under an expected utility
(EUT) framework and consider a Constant Relative Risk Aversion (CRRA) investor, who may also
be ambiguity-averse. The corresponding Hamilton–Jacobi–Bellman (HJB) and HJB–Isaacs (HJBI)
equations are solved in closed-form for a subset of the parametric space and under some restrictions
on the portfolio setting, for complete markets. Conditions for proper changes of measure and well-
defined solutions are provided. These are the first analytical solutions for the 4/2 stochastic volatility
model and the embedded 3/2 model for the type of excess returns established in the literature. We
numerically illustrate the differences between the 4/2 model and the embedded cases of the 1/2
model (Heston) as well as the 3/2 model under the same data, and for two main cases: risk-averse
investor in a complete market with consumption, and ambiguity-averse investor in a complete market
with no consumption. In general, the 4/2 and 1/2 models recommend similar levels of consumption
and exposure, while the 3/2 leads to significantly different recommendations.

Keywords: 4/2 stochastic volatility; CRRA (power) utility; optimal portfolio investment and
consumption; Heston’s model; 3/2 model

MSC: 91G10; 60G10; 93E20

1. Introduction

Dating back to the 1980s, in the seminal work of [1] (Equations II.1–II.8), the excess
return of a security, also known as its risk premium, has been prescribed as proportional to
powers of the volatility. Specifically, three models were proposed, all presented in terms of
the market price of risk (MPR) —that is, technically the ratio of the excess return and the
volatility of the security. The first model, type I, assumed an MPR proportional to volatility
(i.e., power 1/2). This model implies that each risk factor earns a risk premium that is
proportional to the variance of the factor’s return. The second and the third models (types
II and III) postulate constant MPR (i.e., power 0 on variance) and constant excess return
(i.e., power −1/2 on variance, inversely proportional to volatility), respectively. These
models have been widely used in the literature; see [2–4] for examples involving stochastic
volatility (SV), stochastic interest, and jumps.

Thespecification of MPRs play a very important role in expected utility portfolio
optimization. In this context, ref. [5] solved the portfolio optimization problem for MPR
of types I and II, in a setting of CRRA (power) utility, in an incomplete market with
finite horizon for the Heston model (also known as the 1/2 model). Ref. [6] considered
the optimal investment and consumption problem in an incomplete market for the 3/2
model of [7] with Epstein–Zin–Weil recursive utility and an infinite horizon, which implies
a value function independent of time. In particular, the authors considered two forms
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of excess return —constant and linear in the variance (i.e., the MPRs of types I and III).
Nevertheless, the exact solution is only available when the agent’s elasticity of intertemporal
substitution is one with constant excess return (type III). For all other cases, the solutions
are approximations.

Our paper presents the very first closed-form analysis for type I MPR on the recently
proposed 4/2 model (see [8]) with a finite horizon, consumption, and complete markets.
This leads, as a by-product, to the first analysis of type I MPR on the 3/2 model. We
incorporate several ingredients of interest to practitioners in an EUT setting: complete
markets (incomplete market solutions follow trivially from our setting), consumption and
terminal wealth, and ambiguity aversion.

Two recent studies have been conducted on the 4/2 model under MPRs outside of the
settings in [1], while excluding consumption in their analyses. First, ref. [9] explored the
optimal investment problem for a risk-averse investor in both incomplete and complete
market in the absence of consumption. The authors employed the same MPR for the 1/2
and 3/2 components —proportional to

√
vt, the driver of variance. This means that the

Heston component follows the type II MPR in [5], whereas the 3/2 component follows type
I MPR in [6]. Second, the work of [10] considered an investor that is not only risk-averse,
but also ambiguity-averse.

Solving the optimal consumption and asset allocation with the advanced 4/2 model for
a type I MPR is challenging. The fact that our closed-form solutions are non-affine is proof
of this challenge and an important departure from the exiting literature. When the MPR is
proportional to a 4/2-structured volatility, the risk premium/excess return is proportional

to the variance,
(

a
√

vt +
b√
vt

)2

. This means that there are nonlinear elements in the drift

of the equity, which jeopardizes affine solutions and the solvability of the implied partial
differential equations (PDEs) in the corresponding Hamilton–Jacobi–Bellman (HJB) and
HJB Isaacs (HJBI) equations.

The contributions of our work are as follows:

• We conduct the first risk-averse, expected utility analysis in the presence of consump-
tion for the non-affine class of SV models known as 4/2, under the preferable setting of
MPR proportional to variance (type I). Our closed-form solutions, see Propositions 2,
are of a non-affine nature, requiring confluent hypergeometric functions. As a by-
product, we produce the very first closed-form portfolio analysis for the 3/2 model
for finite horizons.

• We extend the solutions described above to an ambiguity-averse investor, leading to
the very first related analyses for the 4/2 and 3/2 models, see Proposition 3. In all
cases, we consider complete markets, providing conditions for well-defined solutions
under the assumption of existence, and proper changes of measure.

• For a risk-averse investor, in a complete market, we illustrate the differences between
the 4/2 model and the popular embedded cases of the 1/2 (Heston) and 3/2 models.
On the one hand, the 4/2 and 1/2 models recommend similar levels of consumption
and exposure. On the other hand, the 3/2 leads to 20% or higher levels of consumption
and absolute exposures (see Figures 1–6).
The difference in terms of exposures is exacerbated when considering an ambiguity-
averse investor in a complete market. In such case, the 3/2 model performance could
double absolute exposures compared to the 1/2 and 4/2 models (see Section 5.1).

This paper contains five sections. Section 2 describes the 4/2 model under consid-
eration and the derivatives needed in the portfolio. Section 3 presents and solves the
consumption and terminal wealth expected utility problem for a risk-averse investor.
Section 3.1 focuses on the complete market case. Section 4 then extends the problematic to
an ambiguity-averse investor, with a section on complete markets (Section 4.1). Section 5
studies and implements the top three main cases numerically. First, Section 5.1 analy-
ses a risk-averse investor in a complete market with consumption. Second, Section 5.2
studies an ambiguity-averse complete market investor with no consumption. Finally,
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Section 6 provides conclusions. All proofs are provided with details in a complementary
Appendix A.

2. Description of the Model

The stochastic processes in the financial market are defined on a complete probability
space (Ω,F ,P) with a right-continuous filtration {Ft}t∈[0,T]. The price process St of the
risky asset follows the 4/2 model described next:

dSt

St
=

(
r + (ρλ̄1 +

√
1− ρ2λ̄2)(a

√
vt +

b√
vt
)2
)

dt + (a
√

vt +
b√
vt
)dWt, (1)

dvt = κ(θ − vt)dt + σ
√

vtdZ1,t, v(0) = v0 > 0, (2)

where vt drives the variance, and it follows a CIR with mean-reversion rate κ > 0. The
long-run mean is captured by θ > 0, and the volatility of volatility is denoted σ > 0. The
Feller condition (i.e., 2κθ ≥ σ2) is imposed to ensure the process vt is strictly positive.
The standard Brownian motions (BMs) Wt in dynamic of risky asset St and Z1,t in the
dynamic of variance driver vt are correlated with parameter ρ ∈ (−1, 1). Thus, we will
write dWt = ρdZ1,t +

√
1− ρ2dZ2,t, where Z2,t is another standard BM, independent of

Z1,t. The variance, denoted by zt = z(vt) is given as follows:

zt =

(
a
√

vt +
b√
vt

)2

= a2vt +
b2

vt
+ 2ab. (3)

This setting implies market prices of risk with the following representation:
λ1(vt) = λ̄1

(
a
√

vt +
b√
vt

)
,

λ2(vt) = λ̄2

(
a
√

vt +
b√
vt

)
,

λ(vt) = ρλ1(vt) +
√

1− ρ2λ2(vt) = λ̄
(

a
√

vt +
b√
vt

)
,

(4)

where λ̄ =
(

ρλ̄1 +
√

1− ρ2λ̄2

)
, a and b are positive constants, λ̄1 and λ̄2 are constant. The

process λ1(vt) represents the market price of variance risk, and λ(vt) is the market price of
stock risk. Moreover, λ2(vt) can be understood as the market price of stock idiosyncratic
risk (i.e., with respect to Z2,t). Note that in this form of market price of risk, the excess
return of the risky asset is proportional to its variance, as recommended in the economics
literature; see [1] Equation (II.6), type I. As for the market price of variance risk λ1(vt), we
use Ito’s lemma to create the process of the variance:

dzt =
((

a2 − b2

v2
t

)
κ(θ − vt) +

b2σ2

v2
t

)
dt + (a− b

vt
)
(
a
√

vt +
b√
vt

)
dZ1,t. (5)

Hence, our choice of market price of variance risk is λ̄1

(
a
√

vt +
b√
vt

)
= λ̄1

√
zt. That

is, it is proportional to the volatility of the asset. This is similar to the proposal in [2].
As pointed out by [8], a risk-neutral measure may not exist in the 4/2 model. This

is inherited from the embedded 3/2 model [11]. This implies that the discounted asset
price process may be a strict Q-local martingale. Thus, we explore the topic of changing
measures under the market price of risk introduced in Equation (4).

In the next proposition, we find parametric conditions for the existence of a valid
risk-neutral measure Q, which follows [9,12]. These conditions will be assumed throughout
this paper.
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Proposition 1. The change of measure is well defined under the following conditions:

max
{∣∣aλ̄1

∣∣, ∣∣aλ̄2
∣∣} <

κ

σ
,

σ2 ≤ 2κθ − 2σ max
{∣∣λ̄1b

∣∣, ∣∣λ̄2b
∣∣},

σ2 ≤ 2κθ − 2|σρb|,
κ + σρa > 0,

κ + σλ̄1 > 0.

(6)

See Appendix A.1 for the complete proof.
Furthermore, we assume the investor can also allocate on a financial derivative on

the underlying. Let Ot = m(St, vt, t) denote the price of the option. Using multivariate
Ito’s lemma, it can be shown that the option price evolves with the stochastic differential
equation (SDE):

dOt

Ot
= rdt +

1
Ot

[mSρSt + mv
σ
√

vt(
a
√

vt +
b√
vt

)
(a

√
vt +

b√
vt

)](
λ̄1(a
√

vt +
b√
vt
)dt + dZ1,t

)

+
1

Ot

[(
mS

√
1− ρ2St

)(
a
√

vt +
b√
vt

)](
λ̄2(a
√

vt +
b√
vt
)dt + dZ2,t

)
,

(7)

where mS = dm
dS , and mv = dm

dv capture the partial derivatives of the option price, m, with
respect to St and vt. Equations (1), (2), and (7) are considered as the reference model.

3. Portfolio Optimization under EUT

We consider that the investor exhibits CRRA utility for both intermediate consumption
and terminal wealth with the same risk-aversion level γ. That is, we define the utility
functions for consumption and for terminal wealth (abusing notation slightly):

u(c) = ε1
cγ

γ
, u(XT) = ε2

Xγ
T

γ
, (8)

where coefficients ε1 and ε2 are non-negative. The ratio ε1/ε2 indicates the relative impor-
tance of intermediate consumption and terminal wealth, and it thus affects decision-making
(optimal strategy). Without loss of generality, we can set ε2 = 1, and let ε1 determine the
relative importance ratio.

The objective of the investor is to maximize their utility from intermediate consump-
tion ct and terminal wealth XT ; therefore, the reward functional for the investor is defined
as follows:

w(x, v, t; Θ, c) = Ex,v,t

[
ε1

∫ T

t
e−δ(τ−t) cγ

τ

γ
dτ + e−δ(T−t) Xγ

T
γ

]
, (9)

where δ is a discount rate, Θ is a control variable to be clarified in the next section, and the
goal is

J̄(x, v, t) = sup
(Θ,c)∈U

w(x, v, t; Θ, c), (10)

where J̄(x, v, t) is the value function and the space U of admissible controls {Θt, ct}t∈[0,T]
with Θt ∈ R2, ct ∈ R+, is the set of feedback strategies that satisfy standard conditions
(see [13]).
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3.1. Complete Market Analysis

Let πS
t be the fraction of wealth invested in the stock, πO be the fraction of wealth

invested in the option that follows dynamic (7), (1− πS
t − πO

t ) be the portion of wealth
invested in the money account, and ct the consumption at time t. The wealth Xt of the
investor follows the SDE:

dXt = Xt

[
πS

t
dSt

St
+ πO

t
dOt

Ot
+ (1− πS

t − πO
t )rdt

]
− ctdt

= Xt

[
r + Θv

t λ̄1(a
√

vt +
b√
vt
)2 + ΘS

t λ̄2(a
√

vt +
b√
vt
)2
]

dt− ctdt

+ Xt

[
Θv

t

(
a
√

v +
b√
v

)
dZ1,t + ΘS

t

(
a
√

v +
b√
v

)
dZ2,t

]
,

(11)

where we have assumed the money market account evolves as dB
B = rdt, and

[
Θv

t
ΘS

t

]
=

 ρ 1
Ot

(
mSρSt + mv

σ
√

vt(
a
√

vt+
b√vt

)
)

√
1− ρ2 1

Ot

(
mS
√

1− ρ2St

)
[πS

t
πO

t

]
. (12)

For simplicity of presentation, we will drop the subindex t in Θt.
Under Bellman principle, the value function satisfies the HJB equation:

sup
ΘS ,Θv ,c

{
u(c)− δ J̄ + J̄t +

(
x
[

r + Θvλ̄1(a
√

vt +
b√
vt
)2 + ΘSλ̄2(a

√
vt +

b√
vt
)2
]
− c
)

J̄x

+
1
2

x2
(

a
√

vt +
b√
vt

)2[
(Θv)2 + (ΘS)2

]
J̄xx + κ(θ − vt) J̄v +

1
2

σ2vt J̄vv + σx(avt + b)Θv J̄xv

}
= 0,

(13)

with boundary condition J̄(x, v, T) = xγ

γ . In our notation, J̄t, J̄x, J̄v, J̄xx, J̄vv, and J̄xv represent
first and second partial derivatives of J̄ with respect to t, x, and v.

We conjecture that our value function can be represented as follows:

J̄(x, v, t) =
xγ

γ

(
h̄(t, v)

)1−γ

, (14)

where h̄(T, v) = 1 for all v. This conjecture leads to the following PDE for h:

(ε1)
− 1

γ−1 + h̄t +

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1

]
γ

1− γ︸ ︷︷ ︸
,V(v,t)

h̄

+

[
(−1− γ)σλ̄1(av + b)

γ− 1
+ γ(γ− 1)σ(av + b)λ̄1 + κ(θ − v)

]
︸ ︷︷ ︸

,Γ(v,t)=κ̃θ̃−κ̃v

h̄v +
1
2

σ2vh̄vv = 0,

(15)

where Γ(v, t), V(v, t): R+ × [0, T] −→ R are measurable functions, and

κ̃ =

(
− γ2(γ− 2)− 1

γ− 1
σaλ̄1 + κ

)
,

κ̃θ̃ =

(
γ2(γ− 2)− 1

γ− 1
σbλ̄1 + κθ

)
.

(16)
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Details of this calculation can be found in Appendix A.2. Next, we provide the solution
to the HJB equation.

Proposition 2 (4/2 model in complete market). Let us define

µ =
1
2
−γ

(1− γ)2

(
λ̄2

1 + λ̄2
2

)
a2,

ν =
1
2
−γ

(1− γ)2

(
λ̄2

1 + λ̄2
2

)
b2.

(17)

If the parameters satisfy the conditions in Proposition 1 and the following three conditions:

κ̃θ̃ ≥ σ2

2
, µ >

−κ̃2

2σ2 , ν ≥ − (2κ̃θ̃ − σ2)2

8σ2 , (18)

then the candidate solution of the HJB Equation (13) is well defined and has the representation (14), with

h̄(v, t) = (ε1)
− 1

γ−1

∫ T

t
g(v, τ̃)dτ̃ + g(v, τ), (19)

where (τ(t) = T − t ≥ 0):

g(v, τ) = exp

{
γ

1− γ

(
r− δ

γ
−

λ̄2
1ab

γ− 1
−

λ̄2
2ab

γ− 1

)
(T − t)

}
× q(T − t, v; µ, ν) (20)

q(τ, v; µ, ν) =

(
β(τ, v)

2

)m+1

v−
κ̃θ̃
σ2 K(τ)−(

1
2+

m
2 +

κ̃θ̃
σ2 ) × e

1
σ2

(
κ̃2 θ̃τ−

√
Dv coth(

√
Dτ
2 +κ̃v)

) Γ
(

1
2 + m

2 + κ̃θ̃
σ2

)
Γ(m + 1)

× 1F1

(
1
2
+

m
2
+

κ̃θ̃

σ2 , m + 1,
β(τ, v)2

4K(τ))

)
,

(21)

where 1F1 denotes the hypergeometric confluent (see [14]) function, with

m =
1
σ2

√
(2κ̃θ̃ − σ2)2 + 8σ2ν, D = κ̃2 + 2µσ2,

β(τ, v) =
2
√

Dv

σ2 sinh
(√

Dτ
2

) , K(τ) =
1
σ2

(
√

D coth

(√
Dτ

2

)
+ κ̃

)
.

(22)

Moreover the optimal consumption–wealth ratio, and variance–stock exposures are given by(
c
x

)?

= h̄−1(ε1)
− 1

γ−1 ,

(Θv)? =
σ
√

v(
a
√

vt +
b√
vt

) h̄v

h̄
− λ̄1

(γ− 1)
,

(ΘS)? =
−λ̄2

γ− 1
.

(23)

See proof in Appendix A.2.
It should be noted that, in case of no consumption, we can assume a simpler value

function representation:

J̄(x, v, t) =
xγ

γ
h̄(v, t), (24)

and solving the maximization problem in (13), we obtain
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0 = rγh̄ + h̄t +
1
2

σ2vh̄vv + κ(θ − v)h̄v

− 1
2

σ2v
(

γ

γ− 1
h̄2

v
h̄

)
− 1

2
(λ̄2

1 + λ̄2
2)(a
√

v +
b√
v
)2
(

γ

γ− 1
h̄
)
− σλ̄1(av + b)

(
γ

γ− 1
h̄v

)
.

Nonetheless as γ 6= 0, the nonlinear term h̄2
v

h̄ cannot be eliminated in the PDE for h̄,
thus rendering a closed-form solution impossible under the 4/2 SV model. Moreover, a
closed-form solution is available in [15] (Example 1) for stock prices following the 1/2 SV
model in a complete market without ambiguity.

4. Robust Consumption Portfolio Optimization under EUT

The investor, in our problem, is uncertain about the probability distribution for the
reference model. He/She considers a set of plausible, alternative models when making
investment decisions. In particular, the investor is uncertain about the distribution function
of Z1,t and Z2,t.

Let e := (ev
t , eS

t ) be an R2-valued F -progressively measurable process. Let us define
the Radon–Nikodym derivative process by

ξe
t =

dPe

dP |Ft = exp
{
−
∫ t

0

(
(ev

τ)
2 + (eS

τ)
2

2
dτ + ev

τdZ1τ + eS
τdZ2τ

)}
. (25)

According to Girsanov’s theorem, the process[
Z̃1t
Z̃2t

]
=

[∫ t
0 ev

τdτ∫ t
0 eS

τdτ

]
+

[
Z1,t
Z2,t

]
, (26)

is a Wiener process under probability measure Pe. Here, ε[0, T] denotes the set of all
Ft-progressively measurable processes. In this set, the process (25) is a well-defined
Radon–Nikodym derivative process. This representation of model uncertainty allows for
uncertainty on the drift of diffusion risk factors of the stock and its variance’s driver (i.e.,
Z2,t and Z1,t, respectively).

The alternative model follows:

dSt

St
=

[
r + ρλ̄1(a

√
vt +

b√
vt
)2 +

√
1− ρ2λ̄2(a

√
vt +

b√
vt
)2 − ρ(a

√
vt +

b√
vt
)ev

t

−
√

1− ρ2(a
√

vt +
b√
vt
)eS

t

]
dt +

(
a
√

vt +
b√
vt

)(
ρdZ̃1t +

√
1− ρ2dZ̃2t

)
,

dvt = (κ(θ − vt)− σ
√

vtev
t )dt + σ

√
vtdZ̃1t,

dOt

Ot
= rdt +

1
Ot

[mSρSt + mv
σ
√

vt(
a
√

vt +
b√
vt

)
(a

√
vt +

b√
vt

)][(
λ̄1(a
√

vt +
b√
vt
)− ev

t

)
dt + dZ̃1t

]

+
1

Ot

[(
mS

√
1− ρ2St

)(
a
√

vt +
b√
vt

)][(
λ̄2(a
√

vt +
b√
vt
)− eS

t

)
dt + dZ̃2t

]
.

(27)

The reward functional can be defined as in the previous section for a given probability
measure Pe:

we(x, v, t; Θ, c) = EPe

x,v,t

[
ε1

∫ T

t
e−δ(τ−t) cγ

τ

γ
dτ + e−δ(T−t) Xγ

T
γ

]
. (28)
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In the presence of a preference for robustness, the investor’s objective is to minimize
the penalty term and maximize his utility from intermediate consumption ct and terminal
wealth XT :

J̄(x, v, t) = sup
ΘS ,Θv ,c∈U

inf
eS ,ev∈V

(
we(x, v, t; Θ, c) +EPe

t

[ ∫ T

t

( (ev
τ)

2

2Φ1(x, v, τ)
+

(eS
τ)

2

2Φ2(x, v, τ)

)
dτ

])
, (29)

where J̄(x, v, t) is the value function, and the last two terms serves as the penalty term
for deviating too far from the reference model. The space V of Ft-adapted process
et = {eS, ev} ∈ R2, is the set of perturbations; the space U of admissible controls {Θt, ct}t∈[0,T]
(i.e., Θt ∈ R, ct ∈ R+) is the set of feedback-admissible strategies. The perturbations ev

t and
eS

t are scaled by Φ1 and Φ2, respectively. That is, the larger the values of Φ1 and Φ2. One
can notice that the smaller the penalties for deviating from the reference model, the more
uncertain the investor is about the model. Following [16], we assume

Φi =
φi

γ J̄(x, v, t)
, i = 1, 2, (30)

where φi > 0 denotes the ambiguity-aversion parameters. In this specification, the optimal
strategy is independent of the current wealth level for a CRRA utility investor, see [16].
Furthermore, φ1 can be interpreted as ambiguity aversion regarding the volatility driver,
while φ2 represents ambiguity about the stock process.

4.1. Complete Market Analysis

Let πS
t be the fraction of wealth invested in the stock, πO

t be the fraction of wealth
invested in the option, and (1− πS

t − πO
t ) be the remaining portion of wealth invested in

the money account, while ct is consumption at time t. The wealth Xt follows the process

dXt = Xt

[
r + Θvλ̄1(a

√
vt +

b√
vt
)2 −Θv

(
a
√

v +
b√
v

)
ev

t + ΘSλ̄2(a
√

vt +
b√
vt
)2 −ΘS

(
a
√

v +
b√
v

)
eS

t

]
dt

− ctdt + Xt

[
Θv
(

a
√

v +
b√
v

)
dZ̃1t + ΘS

(
a
√

v +
b√
v

)
dZ̃2t

] , (31)

where [
Θv

ΘS

]
=

 ρ 1
Ot

(
mSρSt + mv

σ
√

vt(
a
√

vt+
b√vt

)
)

√
1− ρ2 1

Ot

(
mS
√

1− ρ2St

)
[πS

t
πO

t

]
. (32)

That is, if we can find wealth exposures Θv and ΘS to the fundamental risk factors
Z̃1t and Z̃2t, the corresponding wealth weights πS

t and πO
t can also be obtained. The value

function satisfies the HJBI (robust) equation:

sup
ΘS ,Θv ,c

inf
eS ,ev

{
u(c)− δ J̄ + J̄t +

(
x
[

r + Θvλ̄1(a
√

vt +
b√
vt
)2 −Θv

(
a
√

v +
b√
v

)
ev

t + ΘSλ̄2(a
√

vt +
b√
vt
)2

−ΘS
(

a
√

v +
b√
v

)
eS

t

]
− c

)
J̄x

+
1
2

x2
(

a
√

v +
b√
v

)2[
(Θv)2 + (ΘS)2

]
J̄xx +

[
κ(θ − v)− σ

√
vev

t

]
J̄v

+
1
2

σ2vJ̄vv + σx(av + b)Θv J̄xv +
(ev)2

2Φ1
+

(eS)2

2Φ2

}
= 0,

(33)
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with boundary condition J̄(x, v, T) = xγ

γ . Similarly to Section 3.1, after solving the first
order conditions, we conjecture a value function as follows:

J̄(x, v, t) =
xγ

γ

(
h̄(t, v)

)1−γ

, (34)

where h̄(T, v) = 1 for all v. This leads to the following PDE for h̄:

(1− γ)(ε1)
− 1

γ−1 + (1− γ)h̄t +

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1− φ1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1− φ2

]
γh̄

+

[
( φ1

γ − 1− γ + φ1)σλ̄1(av + b)

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σ(av + b)λ̄1 + κ(θ − v)

+ φ1
( φ1

γ − 1)σ(av + b)λ̄1

(γ− 1− φ1)2

]
(1− γ)h̄v +

[
1
2

σ2v(1− γ)

]
h̄vv

+

[
1
2
(γ− φ1)

( φ1
γ − 1)σ2v

(γ− 1− φ1)
− 1

2
σ2v
(

γ

1− γ
+

φ1

γ

)]
(1− γ)2 (h̄v)2

h̄
= 0.

(35)

Details of this calculation can be found in Appendix A.3. In order to find a solution

we need to eliminate the term (h̄v)2

h̄ , which means

1
2
(γ− φ1)

( φ1
γ − 1)σ2v

(γ− 1− φ1)
− 1

2
σ2v
(

γ

1− γ
+

φ1

γ

)
= 0,

(γ− φ1)(
φ1
γ − 1)

(γ− 1− φ1)
=

γ

1− γ
+

φ1

γ
,

φ1 = 0.

(36)

By setting φ1 = 0, and rearranging terms, we obtain

(ε1)
− 1

γ−1 + h̄t +

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1− φ1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1− φ2

]
γ

1− γ︸ ︷︷ ︸
,V(v,t)

h̄ +
1
2

σ2vh̄vv

+

[
(

φ1
γ − 1− γ + φ1)σλ̄1(av + b)

γ− 1− φ1
− γ(γ− 1)(

φ1
γ
− 1)σ(av + b)λ̄1 + κ(θ − v) + φ1

(
φ1
γ − 1)σ(av + b)λ̄1

(γ− 1− φ1)2

]
︸ ︷︷ ︸

,Γ(v,t)=κ̃θ̃−κ̃v

h̄v = 0,

(37)

where

κ̃θ̃ =
( φ1

γ − 1− γ + φ1)σλ̄1b

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σbλ̄1 + φ1

( φ1
γ − 1)σbλ̄1

(γ− 1− φ1)2 + κθ,

κ̃ = −
( φ1

γ − 1− γ + φ1)σλ̄1a

γ− 1− φ1
+ γ(γ− 1)(

φ1

γ
− 1)σaλ̄1 − φ1

( φ1
γ − 1)σaλ̄1

(γ− 1− φ1)2 + κ.

(38)

Next, we present the main result of the section.
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Proposition 3 (4/2 model in complete market, robustness). Let

µ =
1
2

γ

1− γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
a2,

ν =
1
2

γ

1− γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
b2,

(39)

and φ1 = 0 (condition (36)). Assume κ̃ θ̃, µ, and ν satisfy conditions (18) and Proposition 1. Then,

the solution of the HJBI Equation (33) is J̄(x, v, t) = xγ

γ

(
h̄(t, v)

)1−γ

, and h̄ solves the PDE in

Equation (37) and admits the representation

h̄(v, t) = (ε1)
− 1

γ−1

∫ T

t
g(vτ̃ , τ̃)dτ̃ + g(v, τ), (40)

g(v, τ) = exp

{
γ

1− γ

(
r− δ

γ
−

λ̄2
1ab

γ− 1− φ1
−

λ̄2
2ab

γ− 1− φ2

)
(T − t)

}
× q(τ, v; α, λ, µ, ν), (41)

where τ(t) = T − t, and q(τ, v; α, λ, µ, ν) follows from Equation (21) with associated m, D, β,
and K.

Moreover, the optimal consumption–wealth ratio, and variance–stock exposures are given by(
c
x

)?

= h̄−1(ε1)
− 1

γ−1 ,

(Θv)? =
σ
√

v
(a
√

vt +
b√
vt
)

h̄v

h̄
− λ̄1

γ− 1
,

(ΘS)? =
−λ̄2

(γ− 1− φ2)
.

(42)

The worst case measure is determined by

(ev)? = 0,

(eS)? =
−φ2λ̄2

γ− 1− φ2

(
a
√

v +
b√
v
)
.

(43)

See proof in Appendix A.3.
The previous result can be seen as a generalization of Proposition 2 by setting φ2 = 0.

It should be noted that the closed-form solution does not support ambiguity-aversion or
uncertainty on the variance driver (i.e., φ1 must be zero). Conditions on the parametric
space are provided next, to ensure that the optimal change of measure ξe

t is well-defined in
the complete market.

Proposition 4. The optimal Radon–Nikodym ξe?
t in the complete market is a well-defined density,

under the following parameter conditions:

− K̄1 > − κ2

2σ2 ,

− K̄2 ≥ −
(2κθ − σ2)2

8σ2 ,
(44)

where K̄1 =
a2φ2

2 λ̄2
2

(γ−1−φ2)2 , and K̄2 =
b2φ2

2 λ̄2
2

(γ−1−φ2)2 .

See proof in Appendix A.4.
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Important solutions can be produced in the absence of consumption. In this case, the
candidate for the solution of HJBI Equation (33) is J̄(x, v, t) = xγ

γ h̄(t, v), where h̄ solves
the PDE

h̄t +

[
r− 1

2

λ̄2
1(a
√

v + b√
v )

2

(γ− 1− φ1)
− 1

2

λ̄2
2(a
√

v + b√
v )

2

(γ− 1− φ2)

]
γ︸ ︷︷ ︸

,V(v,t)

h̄ +

[
(φ1 − γ)σ(av + b)λ̄1

(γ− 1− φ1)
+ κ(θ − v)

]
︸ ︷︷ ︸

,Γ(v,t)=κ̃θ̃−κ̃v

h̄v +
1
2

σ2vh̄vv = 0,
(45)

with

κ̃θ̃ = κθ − (φ1 − γ)σbλ̄1

(γ− 1− φ1)
,

κ̃ = κ − (φ1 − γ)σaλ̄1

(γ− 1− φ1)
.

(46)

The main result is reflected in the next proposition.

Proposition 5 (4/2 model in complete market, robustness, no consumption). Let

µ =
γ

2

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
a2,

ν =
γ

2

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
b2.

(47)

Assume correct ε1 = 0, and

φ1 =
γ2

γ + 1
,

κθ − (φ1 − γ)σbλ̄1

(γ− 1− φ1)
≥ σ2

2
,

(48)

while µ, and ν satisfy conditions (18) and Proposition 1. Then, J̄(x, v, t) = xγ

γ h̄(t, v), and h̄ has
the representation

h̄(v, t) = exp

{(
rγ− γab

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

))
(T − t)

}
× q(τ, v; α, λ, µ, ν), (49)

where τ(t) = T − t, and q(τ, v; α, λ, µ, ν) is the same as Equation (21) with associated m, D, β,
and K.

Moreover, correct the optimal variance–stock exposures are given by

(Θv)? =
σ
√

v(
a
√

vt +
b√
vt

) h̄v

h̄
− λ̄1,

(ΘS)? =
−λ̄2

(γ− 1− φ2)
.

(50)

The correct worst case measure is determined by

(ev)? = σ
√

v
h̄v

h̄
γ− λ̄1

γ2

γ + 1
(
a
√

v +
b√
v
)
,

(eS)? =
−φ2λ̄2

γ− 1− φ2

(
a
√

v +
b√
v
)
.

(51)

See proof in Appendix A.5.
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In contrast to a solution in the presence of consumption (Proposition 3), here we can
entertain non-zero ambiguity-aversion on variance (φ1) and stock (φ2), which provides a
window into the impact of ambiguity-aversion in general.

5. Numerical Analysis

This section is divided into three subsections corresponding to the two most important
contributions of this paper. First, Section 5.1 presents the findings of closed-form solutions
to a complete market with consumption (from Section 3.1). Second, Section 5.2 presents
the solution to complete markets for ambiguity-averse investors (from Section 4.1).

Note that we cannot use the estimation results of the “drift group” from [9] due to the
new choice of MPR for 4/2 and 3/2 models. To accommodate to our choice of MPR, we re-
estimate the rate of market price of risk λ̄ for each model by fixing the excess return at vt = θ
(long-term value), in line with [9]. Then, we follow the procedure of [9] and substitute λ̄
into the regression to update ρ for each model. The estimation results and the other baseline
parameters are presented in Tables 1 and 2, respectively. In this section, we set λ̄2 = 2, and
solve for λ̄1 for each model according to the relationship λ̄ = ρλ̄1 +

√
1− ρ2λ̄2.

Table 1. Estimates correct among the various models.

4/2 Model 3/2 Model Heston

κ̂ 7.3479 6.9884 14.6290
θ̂ 0.0328 0.0323 0.0315
σ̂ 0.6612 0.3760 0.5210
â 0.9051 0 1
b̂ 0.0023 0.0268 0
ρ −0.7689 0.7910 −0.8129
λ̄ 3.0176 4.2973 2.8689
Theoretical leverage (vt = θ) −0.7689 −0.7910 −0.8129

Table 2. Baseline correct parameters.

r δ γ v0 t T ε vN

0.05 0.02 −0.5 0.04 0 10 1 0.04

5.1. Complete Market Analysis with Consumption

Figures 1–3 present the optimal consumption–wealth ratio c/x as a function of stan-
dard deviation (SD), investment horizon T, and risk-averse level γ, respectively. Intuitively,
the optimal consumption–wealth ratio is related to the state of the economy. All models
recommend an increase in consumption in a highly volatile economic state. In particular,
the 4/2 model slightly recommends more consumption than the Heston model, while the
3/2 model suggests at least 20% more consumption. This behaviour of the 3/2 model may
be explained by its excess return (i.e., b2/vt), which decreases with the increase in vt. That
is, the more volatile the market, the less excess return the 3/2 investor may obtain from
investing in a risky asset. As a result, the investor may allocate his wealth into consumption
to obtain higher utility.

On correct the other hand, both the Heston and 4/2 models compensate the investor
with higher excess return if the market becomes more risky. Hence, only a small portion of
wealth is shifted from investing in risk assets into consumption. In general, the 3/2 model
always implies the most wealth exposures, while the 4/2 model lies in between, closer
to the conservative Heston model but with higher sensitivity to the changes in market
conditions (SD), and risk-averse level γ.
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Figure 1. c/x vs. SD.

Figure 2. c/x vs. T.

Figure 3. c/x vs. the figures shall not be modified, it would take a few weeks more of work. γ.

Figures 4–6 present the plots of the optimal wealth exposure to variance driver’s risk
Θv as a function of SD, investment horizon T, and risk-averse level γ, respectively. In
contrast to the 3/2 model, the exposures to variance driver’s risk under the Heston and
4/2 models are insensitive to the changes in market conditions. That is, both the Heston
and 4/2 models suggest a constant level of total wealth exposure to variance risk. However,
the 3/2 model disinvests the risk of variance driver as the market gets into a highly volatile
state, which can be understood as decreasing the holding on the asset associated with less
excess return.

The correct positiveness of the wealth exposures among models may be explained
by the correlation ρ between the risk factors of asset price and its variance driver for each
model. Moreover, all three models recommend a constant level of wealth exposure in terms
of investment horizon, as shown in Figure 5. Furthermore, if the investor is less risk-averse,
all the three models suggest more aggressive wealth exposure in the absolute sense.

The plot of optimal wealth exposure to stock’s risk ΘS versus risk-averse level γ is
given in Figure 7. As we expect, less risk-averse investors allocate more wealth to stocks.

The correct sensitivity analysis of parameters a, b on the optimal consumption–wealth
ratio c/x and optimal wealth exposure Θv with the 4/2 model are explored in Figures 8–11,
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respectively. Although the 3/2 model behaves differently from the Heston model from
our previous observation, the consumption–wealth ratio trends seem dominated by b (i.e.,
more sensitivity to b), while the wealth exposure Θv is dominated by the 1/2 component
(i.e., more sensible to changes in a).

Figure 4. Θv vs. SD.

Figure 5. Θv vs.T.

Figure 6. Θv vs.γ.

Figure 7. ΘS vs. γ.
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Figure 8. c/x vs. a.

Figure 9. c/x vs. b.

Figure 10. Θv vs. a.

Figure 11. Θv vs. b.

5.2. Complete Market Analysis without Consumption for Ambiguity-Averse Investors

In this case, we have a constraint in the level of ambiguity-aversion and risk-aversion
allowed to produce closed-form solutions, as seen in Equation (48), which is

φ1 =
γ2

γ + 1
. (52)
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In correct this section, we continue using the baseline parameters, φ1 = 0.5 with
γ = −0.5, and we further set φ2 = 2 in this section. The plots of optimal wealth expo-
sures to variance driver’s risk Θv versus SD and investment horizon T are displayed in
Figures 12 and 13. It can be seen that all the three models are rather insensitive to changes
in the state of volatility and investment horizon, whereas the 3/2 model is apparently
more aggressive than the Heston and 4/2 model by suggesting an almost double exposure
to wealth.

Figure 12. Θv vs. SD.

Figure 13. Θv vs. T.

The impact of parameters a, b on wealth exposure Θv with the 4/2 model can be found
in Figures 14 and 15, respectively. The marginal effect of the 1/2 component decreases
dramatically when a is greater than 0.5, while the 3/2 component b suggests a slight
increase in the exposure of wealth to variance driver’s risk.

Figure 14. Θv vs. a.
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Figure 15. Θv vs. b.

6. Conclusions

In this paper, an optimal investment problem for a risk-averse investor under the 4/2
SV model and a 4/2-structured MPR is considered by combining with various elements
of interest to scholars and practitioners. These elements include market completeness, ter-
minal wealth with consumption, and ambiguity-aversion. By employing a corresponding
derivative to complete the market, taking consumption into account, and allowing for dif-
ferent levels of uncertainty with respect to different risk factors, we orient our setting closer
to the real world, which implies the importance in finding a closed-form solution. Although
the non-affine nature of the 4/2 volatility and the 4/2-structured MPR is challenging, we
found a closed-form solution for the case of complete market with consumption, and for all
the other interesting cases under certain conditions.

In the numerical part, we present and compare the portfolio strategies recommended
by the 4/2, 3/2, and 1/2 models for an investor who either cares about consumption
or concerns about mis-specification of the model in a complete market using real-data
parameters. The 4/2 and 1/2 models generally behave similarly in wealth exposures
compared to that of 3/2 model. The 4/2 model behaves like an average by lying in-between
the Heston and 3/2 models in consumption in a complete market.
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preparation; writing—review and editing; visualization; supervision; project administration. All
authors have read and agreed to the published version of the manuscript.
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Appendix A. Proofs

Appendix A.1. Proof, Conditions for Proper Change of Measure

Proof. The first step is to verify whether the change of measure is well-defined. Here, we
use Novikov’s condition, i.e., generically for i = 1, 2

E
[

exp

(
1
2

∫ T

0
λ̄2

i

(
a
√

vs +
b√
vs

)2
ds

)]
= eλ̄2

i abTE
[

exp

(
λ̄2

i a2

2

∫ T

0
vsds +

λ̄2
i b2

2

∫ T

0

1
vs

ds

)]
< ∞.

From correct [8], in order for this expectation to exist, we need two conditions: correct

−
λ̄2

i a2

2
> − κ2

2σ2 =⇒ |λ̄i||a| <
κ

σ
,

−
λ̄2

i b2

2
≥ − (2κθ − σ2)

8σ2 =⇒ σ2 ≤ 2κθ − 2|λ̄i||b|σ.

(A1)
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The correct condition in Equation (A1) implies that our volatility processes satisfy
the Feller’s condition under P and Q; hence, the CIR processes stay away from zero under
both measures. That is,

max
{∣∣aλ̄1

∣∣, ∣∣aλ̄2
∣∣} <

κ

σ
,

σ2 ≤ 2κθ − 2σ max
{∣∣λ̄1b

∣∣, ∣∣λ̄2b
∣∣}.

The correct second step is to verify whether the drift of the asset price equals the short
rate under Q, which is also satisfied here.

The correct third step addresses the discounted asset price process, S̃t = e−rtSt, it
must ensure that it is a true Q-martingale and not just a local Q-martingale. It concerns
with the martingale properties of the asset price under Q (see [8], Section 2 for a similar
situation). Therefore, we test the martingale property using the Feller nonexplosion test for
volatilities under the measure that takes asset price as numeraire, measure Q and measure
P, and it leads to

σ2 ≤ 2κθ − 2|σρb|,
κ + σρa > 0,

κ + σλ̄1 > 0.

(A2)

These correct together lead to conditions in Proposition 1.

Appendix A.2. Proof of Proposition 2 (Complete Market, No Robustness, Consumption)

Solving the maximization problem for intermediate consumption:

0 = u′(c)− J̄x = ε1cγ−1 − J̄x (A3)

That correct is,
c? = ( J̄x)

1
γ−1 (ε1)

− 1
γ−1 , (A4)

where risk averse parameter γ < 1.
Solving correct the maximization problem for wealth exposures:0 = xλ̄1(a

√
vt +

b√
vt
)2 J̄x + x2

(
a
√

v + b√
v

)2
Θv J̄xx + σx(av + b) J̄xv

0 = xλ̄2(a
√

vt +
b√
vt
)2 J̄x + x2

(
a
√

v + b√
v

)2
ΘS J̄xx

(A5)

That correct is, 
(Θv)? =

−xλ̄1(a
√

vt+
b√vt

)2 J̄x−σx(av+b) J̄xv

x2
(

a
√

v+ b√
v

)2
J̄xx

(ΘS)? =
−xλ̄2(a

√
vt+

b√vt
)2 J̄x

x2
(

a
√

v+ b√
v

)2
J̄xx

= −λ̄2 J̄x
xJ̄xx

.
(A6)

Under the conjecture of the value function in (14):

J̄(x, v, t) =
xγ

γ

(
h̄(t, v)

)1−γ

, (A7)

where h̄(T, v) = 1 for all v, we compute partial derivatives and substitute into the can-
didates of optimal consumption–wealth ratio from Equation (A4), wealth exposures in
Equation (A6), and the PDE (13), we have
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(1− γ)(ε1)
− 1

γ−1 + (1− γ)h̄t +

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1

]
γh̄

+

[
(−1− γ)σλ̄1(av + b)

γ− 1
+ γ(γ− 1)σ(av + b)λ̄1 + κ(θ − v)

]
(1− γ)h̄v +

[
1
2

σ2v(1− γ)

]
h̄vv = 0.

(A8)

It correct can be seen that there is no nonlinear term in the PDE; thereby, no parameter
condition is needed to find explicit solution for h̄.

For correct clarity, we divide both sides of the equation by (1−γ) so that the coefficient
of h̄t is 1:

(ε1)
− 1

γ−1 + h̄t + V(v, t)h̄ + Γ(v, t)h̄v +
1
2

σ2vh̄vv = 0, (A9)

where V(v, t) and Γ(v, t) are defined as follows:

V(v, t) =

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1

]
γ

1− γ

=
(λ̄2

1 + λ̄2
2)γ

2(γ− 1)2 (a
√

v +
b√
v
)2 +

δ− rγ

γ− 1

= ãv + b̃
1
v
+ c̃

Γ(v, t) =

[
(−1− γ)σλ̄1(av + b)

γ− 1
+ γ(γ− 1)σ(av + b)λ̄1 + κ(θ − v)

]
= κ̃θ̃ − κ̃v

with ã = a2γ
(λ̄2

1+λ̄2
2)

2(γ−1)2 , b̃ = b2γ
(λ̄2

1+λ̄2
2)

2(γ−1)2 , c̃ = 2ab (λ̄2
1+λ̄2

2)γ

2(γ−1)2 + δ−rγ
γ−1 and κ̃ and θ̃ can be found in

Equation (16).
We correct aim at an expected value representation of h where v stands for a convenient

stochastic process. This is an application of the Feynman–Kac formula; therefore, the
coefficients in (15) must satisfy the conditions of Theorem 1 and Lemmas 2 and 3 in [17].

In correct the notation of [17], we have the following: X = v, D = (0, ∞), b(t, v) =

Γ(v, t), Σ(t, v) = σ
√

v, c(t, v) = V(t, v), g(t, v) = (ε1)
− 1

γ−1 , h(t, x) = 1, u(t, v) = h(t, v),
u(T, v) = h(T, v) = 1 and a(t, x) = σ2v. The process vt should follow the SDE: dvt =
Γ(v, t)dt + σ

√
vtdZ1,t.

Using correct the same arguments as in their Section 2.1 (see in [17]) (an application
on the Heston model), we can conclude that h̄ admits the Feynman–Kac representation:

h̄(v, t)

= EQ
[ ∫ T

t
exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}(
(ε1)

− 1
γ−1

)
dτ̃ + exp

{ ∫ T

t
V(vτ , τ)dτ

}
h(v, T) | vt

]
.

(A10)

Moreover, correct we have exp

{ ∫ T
t V(vτ , τ)dτ

}
≥ 0; hence, we can apply Tonelli’s

Theorem to exchange integral and expectation on the first term:
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h̄(v, t) =
∫ T

t
EQ
[(

(ε1)
− 1

γ−1

)
exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}
| vt

]
dτ̃ +EQ

[
exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]

= (ε1)
− 1

γ−1

∫ T

t
EQ
[

exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}
| vt

]
︸ ︷︷ ︸

,g(v,τ̃)

dτ̃ +EQ
[

exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]
︸ ︷︷ ︸

,g(v,τ)

.
(A11)

Here, correct τ(t) = T − t, and g(v, τ) can be rewritten as

g(v, τ) = EQ
[

exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]

= exp

{
γ

1− γ

(
r− δ

γ
−

λ̄2
1ab

γ− 1
−

λ̄2
2ab

γ− 1

)
(T − t)

}
×EQ

[
exp

{
− µ

∫ T

t
vτdτ − ν

∫ T

t

1
vτ

dτ

}
| vt

]
︸ ︷︷ ︸

,q(τ,v;α,λ,µ,ν)

,
(A12)

with parameters

α = 0, λ = 0, µ =
1
2

γ

1− γ

(
λ̄2

1
γ− 1

+
λ̄2

2
γ− 1

)
a2, ν =

1
2

γ

1− γ

(
λ̄2

1
γ− 1

+
λ̄2

2
γ− 1

)
b2. (A13)

Note correct that the conditional expectation in g(v, t) is taken under probability
measure Q such that vt has drift Γ(v, t) in Equation (15) instead of κ(θ − v). The Feller
condition is assumed to be satisfied by the new drift; hence, we have

Γ(v, t) =
(−1− γ)σλ̄1(av + b)

γ− 1
+ γ(γ− 1)σ(av + b)λ̄1 + κ(θ − v)

=

(
γ2(γ− 2)− 1

γ− 1
σbλ̄1 + κθ

)
︸ ︷︷ ︸

κ̃θ̃

−
(
− γ2(γ− 2)− 1

γ− 1
σaλ̄1 + κ

)
︸ ︷︷ ︸

κ̃

v

=⇒ γ2(γ− 2)− 1
γ− 1

σbλ̄1 + κθ ≥ σ2

2
.

(A14)

Furthermore, correct the function q(v, t) of (A12) can be solved explicitly by directly
using [8]’s result for all τ ≥ 0 where τ(t) = T − t:

q(τ, v; α, λ, µ, ν) = EQ
[

exp

{
− µ

∫ T

t
vτdτ − ν

∫ T

t

1
vτ

dτ

}
| vt

]

=

(
β(τ, v)

2

)m+1

v−
κ̃θ̃
σ2 (λ + K(τ))−(

1
2+

m
2 −α+ κ̃θ̃

σ2 )

× e
1

σ2

(
κ̃2 θ̃τ−

√
Dv coth(

√
Dτ
2 +κ̃v)

) Γ
(

1
2 + m

2 − α + κ̃θ̃
σ2

)
Γ(m + 1)

× 1F1

(
1
2
+

m
2
− α +

κ̃θ̃

σ2 , m + 1,
β(τ, v)2

4(λ + K(τ)))

)
,

(A15)
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with

m =
1
σ2

√
(2κ̃θ̃ − σ2)2 + 8σ2ν, D = κ̃2 + 2µσ2,

β(τ, v) =
2
√

Dv

σ2 sinh
(√

Dτ
2

) , K(τ) =
1
σ2

(
√

D coth

(√
Dτ

2

)
+ κ̃

)
,

(A16)

Furthermore, correct if α, λ, µ, and ν in Equation (A13) satisfy the following conditions,

µ >
−κ̃2

2σ2 , ν ≥ − (2κ̃θ̃ − σ2)2

8σ2 ,

α <
1

2σ2

(
2κ̃θ̃ + σ2

√
(2κ̃θ̃ − σ2)2 + 8σ2ν

)
, λ ≥ −

√
κ̃2 + 2µσ2 + κ̃

σ2 .
(A17)

Moreover, correct the optimal wealth exposures and consumption–wealth ratio are
given by 

(
c
x

)?

= h̄−1(ε1)
− 1

γ−1

(Θv)? =
−(1−γ)σ

√
vh̄v−λ̄1(a

√
vt+

b√vt
)h̄

(γ−1)h̄
(

a
√

vt+
b√vt

) = σ
√

v
(a
√

vt+
b√vt

)
h̄v
h̄ −

λ̄1
γ−1

(ΘS)? = −λ̄2
γ−1

. (A18)

Appendix A.3. Proof of Proposition 3 (Complete Market, Robustness, Consumption)

Proof. Solving the minimization problem in (33) first, we obtain:


ev

Φ1
= Θv

(
a
√

v + b√
v

)
xJ̄x + σ

√
vJ̄v

eS

Φ2
= ΘS

(
a
√

v + b√
v

)
xJ̄x

=⇒


(ev)? = Φ1

[
Θv
(

a
√

v + b√
v

)
xJ̄x + σ

√
vJ̄v

]
(eS)? = Φ2

[
ΘS
(

a
√

v + b√
v

)
xJ̄x

]
(A19)

Substituting correct the values of (ev)? and (eS)? from Equation (A19) into the robust
HJB equation, i.e., Equation (33), we obtain the following equation that function J̄ has to
satisfy. After canceling and recombining terms, we obtain

sup
ΘS ,Θv ,c

{
u(c)− δ J̄ + J̄t + x

[
r + Θvλ̄1(a

√
vt +

b√
vt
)2 + ΘSλ̄2(a

√
vt +

b√
vt
)2
]

J̄x − cJ̄x

+
1
2

x2
(

a
√

v +
b√
v

)2[
(Θv)2 + (ΘS)2

]
J̄xx + κ(θ − v) J̄v +

1
2

σ2vJ̄vv + σx(av + b)Θv J̄xv

− 1
2

Φ1

[
(Θv)2

(
a
√

v +
b√
v

)2
x2( J̄x)

2 + σ2v( J̄v)
2 + 2Θv(av + b)σxJ̄x J̄v

]
− 1

2
Φ2

[
(ΘS)2

(
a
√

v +
b√
v

)2
x2( J̄x)

2
]}

= 0

(A20)

Solving correct the maximization problem for intermediate consumption:

0 = u′(c)− J̄x = ε1cγ−1 − J̄x (A21)

That correct is,
c? = ( J̄x)

1
γ−1 (ε1)

− 1
γ−1 , (A22)

where risk averse parameter γ < 1.
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Solving correct the maximization problem for wealth exposures:
0 = xλ̄1(a

√
vt +

b√
vt
)2 J̄x + x2

(
a
√

v + b√
v

)2
Θv J̄xx + σx(av + b) J̄xv −Φ1Θv

(
a
√

v + b√
v

)2
x2( J̄x)2

−Φ1(av + b)σxJ̄x J̄v

0 = xλ̄2(a
√

vt +
b√
vt
)2 J̄x + x2

(
a
√

v + b√
v

)2
ΘS J̄xx −Φ2ΘS

(
a
√

v + b√
v

)2
x2( J̄x)2

(A23)

That correct is,


(Θv)? =

Φ1(av+b)σxJ̄x J̄v−xλ̄1(a
√

vt+
b√vt

)2 J̄x−σx(av+b) J̄xv

x2
(

a
√

v+ b√
v

)2
J̄xx−Φ1

(
a
√

v+ b√
v

)2
x2( J̄x)2

(ΘS)? =
−xλ̄2(a

√
vt+

b√vt
)2 J̄x

x2
(

a
√

v+ b√
v

)2
J̄xx−Φ2

(
a
√

v+ b√
v

)2
x2( J̄x)2

, (A24)

where Φ1 = φ1
γ J̄ , and Φ2 = φ2

γ J̄ by following [16].
We conjecture the following representation of the value function:

J̄(x, v, t) =
xγ

γ

(
h̄(t, v)

)1−γ

, (A25)

where h̄(T, v) = 1 for all v. Substituting the partial derivatives into the candidates of opti-
mal consumption wealth ratio from Equation (A22) and wealth exposures in Equation (A24),
we have 

(
c
x

)?

= h̄−1(ε1)
− 1

γ−1

(Θv)? =
(1−γ)

(
φ1
γ −1

)
σ
√

vh̄v−λ̄1(a
√

vt+
b√vt

)h̄

(γ−1−φ1)h̄
(

a
√

vt+
b√vt

)
(ΘS)? = −λ̄2

(γ−1−φ2)

. (A26)

Next, correct we substitute the above expressions of c?, (Θv)?, and (ΘS)? into
Equation (A20) to eliminate “sup”, divide term xγ

γ h̄−γ, regrouping and simplifying which
leads to

(1− γ)(ε1)
− 1

γ−1 + (1− γ)h̄t

+

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1− φ1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1− φ2

]
γh̄

+

[
( φ1

γ − 1− γ + φ1)σλ̄1(av + b)

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σ(av + b)λ̄1 + κ(θ − v)

+ φ1
( φ1

γ − 1)σ(av + b)λ̄1

(γ− 1− φ1)2

]
(1− γ)h̄v +

[
1
2

σ2v(1− γ)

]
h̄vv

+

[
1
2
(γ− φ1)

( φ1
γ − 1)σ2v

(γ− 1− φ1)
− 1

2
σ2v
(

γ

1− γ
+

φ1

γ

)]
(1− γ)2 (h̄v)2

h̄
= 0.

(A27)
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In correct order to find a solution, we need to eliminate the term (h̄v)2

h̄ , which means

1
2
(γ− φ1)

( φ1
γ − 1)σ2v

(γ− 1− φ1)
− 1

2
σ2v
(

γ

1− γ
+

φ1

γ

)
= 0,

(γ− φ1)(
φ1
γ − 1)

(γ− 1− φ1)
=

γ

1− γ
+

φ1

γ
,

φ1 = 0.

(A28)

Then, correct we have a linear PDE,

(ε1)
− 1

γ−1 + h̄t +

[
r− δ

γ
− 1

2

λ̄2
1(a
√

v + b√
v )

2

γ− 1− φ1
− 1

2

λ̄2
2(a
√

v + b√
v )

2

γ− 1− φ2

]
γ

1− γ︸ ︷︷ ︸
,V(v,t)

h̄ +
1
2

σ2vh̄vv

+

[
(

φ1
γ − 1− γ + φ1)σλ̄1(av + b)

γ− 1− φ1
− γ(γ− 1)(

φ1
γ
− 1)σ(av + b)λ̄1 + κ(θ − v) + φ1

(
φ1
γ − 1)σ(av + b)λ̄1

(γ− 1− φ1)2

]
︸ ︷︷ ︸

,Γ(v,t)=κ̃θ̃−κ̃v

h̄v = 0.

(A29)

Furthermore, in order to apply the Feynman–Kac formula, we divide both sides of the
equation by (1− γ) so that the coefficient of h̄t is 1:

(ε1)
− 1

γ−1 + h̄t + V(v, t)h̄ + Γ(v, t)h̄v +
1
2

σ2vh̄vv = 0. (A30)

This correct is an application of the Feynman–Kac formula; therefore, the coefficients
in (37) must satisfy the conditions of Theorem 1 and Lemmas 2 and 3 in [17] (Given the
length of these three results, we kindly refer the reader to the cited paper correct).

In correct the notation of [17], we have: X = v, D = (0, ∞), b(t, v) = Γ(v, t), Σ(t, v) =

σ
√

v, c(t, v) = V(t, v), g(t, v) = (ε1)
− 1

γ−1 , h̄(t, x) = 1, u(t, v) = h̄(t, v), u(T, v) = h̄(T, v) =
1 and a(t, x) = σ2v. The implied process, vt, must follow the SDE:

dvt = Γ(v, t)dt + σ
√

vtdZ1,t.

Using correct the same arguments as in their Section 2.1 (an application on the Heston
model), we can conclude that h̄ admits the Feynman–Kac representation:

h̄(v, t) = EQ
[ ∫ T

t
exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}(
(ε1)

− 1
γ−1

)
dτ̃ + exp

{ ∫ T

t
V(vτ , τ)dτ

}
h(v, T) | vt

]
. (A31)

Moreover, correct given that V(v, t): R+ × [0, T] −→ R is a measurable function, and

exp

{ ∫ T
t V(vτ , τ)dτ

}
≥ 0, then we can apply Tonelli’s Theorem to the first term:

h̄(v, t) =
∫ T

t
EQ
[(

(ε1)
− 1

γ−1

)
exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}
| vt

]
dτ̃ +EQ

[
exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]

= (ε1)
− 1

γ−1

∫ T

t
EQ
[

exp

{ ∫ τ̃

t
V(vτ , τ)dτ

}
| vt

]
︸ ︷︷ ︸

,g(v,τ̃)

dτ̃ +EQ
[

exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]
︸ ︷︷ ︸

,g(v,τ)

.
(A32)

Here, correct τ(t) = T − t and g(v, τ) can be rewritten as
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g(v, τ) = EQ
[

exp

{ ∫ T

t
V(vτ , τ)dτ

}
| vt

]

= exp

{
γ

1− γ

(
r− δ

γ
−

λ̄2
1ab

γ− 1− φ1
−

λ̄2
2ab

γ− 1− φ2

)
(T − t)

}
×EQ

[
exp

{
− µ

∫ T

t
vτdτ − ν

∫ T

t

1
vτ

dτ

}
| vt

]
︸ ︷︷ ︸

,q(τ,v;α,λ,µ,ν)

,
(A33)

with parameters

α = 0, λ = 0,

µ =
1
2

γ

1− γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
a2,

ν =
1
2

γ

1− γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
b2.

(A34)

Note correct that the conditional expectation in g(v, t) is taken under probability
measure Q such that vt has drift Γ(v, t) in Equation (37) instead of κ(θ − v). The Feller
condition is assumed to be satisfied by the new drift:

Γ(v, t) =
( φ1

γ − 1− γ + φ1)σλ̄1(av + b)

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σ(av + b)λ̄1 + κ(θ − v) + φ1

( φ1
γ − 1)σ(av + b)λ̄1

(γ− 1− φ1)2

=

( ( φ1
γ − 1− γ + φ1)σλ̄1b

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σbλ̄1 + φ1

( φ1
γ − 1)σbλ̄1

(γ− 1− φ1)2 + κθ

)

−
(
−

( φ1
γ − 1− γ + φ1)σλ̄1a

γ− 1− φ1
+ γ(γ− 1)(

φ1

γ
− 1)σaλ̄1 − φ1

( φ1
γ − 1)σaλ̄1

(γ− 1− φ1)2 + κ

)
v

=⇒
( φ1

γ − 1− γ + φ1)σλ̄1b

γ− 1− φ1
− γ(γ− 1)(

φ1

γ
− 1)σbλ̄1 + φ1

( φ1
γ − 1)σbλ̄1

(γ− 1− φ1)2 + κθ ≥ σ2

2
.

(A35)

Furthermore, correct if α, λ, µ, and ν satisfy conditions in Equation (A17), then h̄
can be solved explicitly by [8]’s result in Equation (21) with associated m, D, β, and K like
Equation (22). Note that the last two conditions for α = λ = 0 are satisfied directly. Thus,
the dependence of function q(·) on α and λ can be omitted. Moreover, the optimal wealth
exposures and consumption–wealth ratio with φ1 = 0 are given by

(
c
x

)?

= h̄−1(ε1)
− 1

γ−1

(Θv)? =
(γ−1)σ

√
vh̄v−λ̄1(a

√
vt+

b√vt
)h̄

(γ−1)h̄
(

a
√

vt+
b√vt

) = σ
√

v
(a
√

vt+
b√vt

)
h̄v
h̄ −

λ̄1
γ−1

(ΘS)? = −λ̄2
(γ−1−φ2)

. (A36)

The correct worst-case measure is determined by{
(ev)? = 0

(eS)? = −φ2λ̄2
γ−1−φ2

(
a
√

v + b√
v

)
.

(A37)

Note correct that the setting of Proposition 2 can be seen as a particular case of the
robust analysis here by enforcing a zero ambiguity aversion, i.e., φ = 0 hence Φ = 0.
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Appendix A.4. Proof of Proposition 4

First, we compute the optimal Radon–Nikodym derivative of Pe? with respect to P in
the complete market.

ξe?
t =

dPe?

dP |Ft = exp
{
−
∫ t

0

(
(ev?

τ )2 + (eS?
τ )2

2
dτ + ev?

τ dZ1τ + eS?
τ dZ2τ

)}
(A38)

We correct need to ensure that it is a P-martingale. We consider sufficient conditions
based on Novikov’s equation:

EP
[

exp
{ ∫ T

0

(ev?
t )2 + (eS?

t )2

2
dt
}]

< ∞, (A39)

where the optimal perturbations are given in Equation (43):

(ev)? = 0

(eS)? =
−φ2λ̄2

γ− 1− φ2

(
a
√

v +
b√
v
)
.

(A40)

We correct then consider the process ξt defined as

ξt = (ev?
t )2 + (eS?

t )2

=
φ2

2λ̄2
2

(γ− 1− φ2)2

(
a
√

v +
b√
v
)2

= K̄0 + K̄1vt + K̄2
1
vt

,

(A41)

where K̄0 =
2abφ2

2 λ̄2
2

(γ−1−φ2)2 , K̄1 =
a2φ2

2 λ̄2
2

(γ−1−φ2)2 , and K̄2 =
b2φ2

2 λ̄2
2

(γ−1−φ2)2 .

Hence, correct the Novikov’s condition of the Radon–Nikodym derivative becomes

EP
[

exp
{ ∫ T

0

ξ2
t

2
dt
}]

= e
1
2 K̄0TEP

[
exp
{

1
2

∫ T

0
K̄1vtdt +

1
2

∫ T

0
K̄2

1
vt

dt
}]

< ∞. (A42)

For correct this expectation to exist, by [8], we need

− K̄1 > − κ2

2σ2 ,

− K̄2 ≥ −
(2κθ − σ2)2

8σ2 .
(A43)

Appendix A.5. Proof of Proposition 5 (Complete Market, Robustness, No Consumption)

In the case of no intermediate consumption, we conjecture our value function as
follows:

J̄(x, v, t) =
xγ

γ
h̄(t, v), (A44)

where h̄(T, v) = 1 for all v. Substituting the partial derivatives into the optimal exposures
(Θv)?, (ΘS)? from Equation (A24), and then into Equation (A20) to eliminate “sup”:(Θv)? =

(
φ1
γ −1

)
σ
√

vh̄v−λ̄1(a
√

vt+
b√vt

)h̄

(γ−1−φ1)h̄
(

a
√

vt+
b√vt

)
(ΘS)? = −λ̄2

(γ−1−φ2)

, (A45)
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Simplifying, correct substituting Φ1 = φ1

γ xγ

γ h̄
= φ1

xγ h̄ , and Φ2 = φ2

γ xγ

γ h̄
= φ2

xγ h̄ , dividing

each term by xγ

γ and regrouping leads to

h̄t +

[
r−

λ̄2
1(a
√

v + b√
v )

2

(γ− 1− φ1)
−

λ̄2
2(a
√

v + b√
v )

2

(γ− 1− φ2)
+

1
2

λ̄2
1(a
√

v + b√
v )

2

(γ− 1− φ1)
2 (γ− 1)

+
1
2

λ̄2
2(a
√

v + b√
v )

2

(γ− 1− φ2)2 (γ− 1)− 1
2

φ1

λ̄2
1(a
√

v + b√
v )

2

(γ− 1− φ1)
2 −

1
2

φ2

λ̄2
2(a
√

v + b√
v )

2

(γ− 1− φ2)2

]
γh̄

+

[( φ1
γ − 1

)
σ(av + b)λ̄1γ

(γ− 1− φ1)
−

(
φ1
γ − 1

)
σ(av + b)λ̄1

(γ− 1− φ1)
2 (γ− 1)γ + κ(θ − v)− λ̄1σ(av + b)

(γ− 1− φ1)
γ

+ φ1γ

(
φ1
γ − 1

)
σ(av + b)λ̄1

(γ− 1− φ1)
2 + φ1

λ̄1σ(av + b)
(γ− 1− φ1)

]
h̄v +

1
2

σ2vh̄vv

+

[
1
2

(
φ1
γ − 1

)2
σ2v

(γ− 1− φ1)
2 (γ− 1)γ +

(
φ1
γ − 1

)
σ2v

(γ− 1− φ1)
γ− 1

2
φ1γ

(
φ1
γ − 1

)2
σ2v

(γ− 1− φ1)
2

− 1
2

φ1
σ2v
γ
− φ1

(
φ1
γ − 1

)
σ2v

(γ− 1− φ1)

]
h̄2

v
h̄

= 0.

(A46)

Simplifying correct leads to

h̄t +

[
r− 1

2

λ̄2
1(a
√

v + b√
v )

2

(γ− 1− φ1)
− 1

2

λ̄2
2(a
√

v + b√
v )

2

(γ− 1− φ2)

]
γh̄

+

[
(φ1 − γ)σ(av + b)λ̄1

(γ− 1− φ1)
+ κ(θ − v)

]
h̄v +

1
2

σ2vh̄vv

+

[
− 1

2

(φ1 − γ)
(

φ1
γ − 1

)
σ2v

(γ− 1− φ1)
− 1

2
φ1

σ2v
γ

]
h̄2

v
h̄

= 0.

(A47)

In order to eliminate the non-linear term, we need

φ1 =
γ2

γ + 1
. (A48)

Thereby, we have a linear PDE

h̄t + V(v, t)h̄ + Γ(v, t)h̄v +
1
2

σ2vh̄vv = 0. (A49)

Furthermore, correct if the coefficients of the above PDE satisfy the conditions of [17]
as per the previous proposition, then h̄ admits the Feynman–Kac representation:

h̄(v, t)

= EQ
[

exp

{ ∫ T

t
V(vτ , τ)dτ

}
h̄(v, T) | vt

]

= exp

{(
rγ−

λ̄2
1ab

γ− 1− φ1
−

λ̄2
2ab

γ− 1− φ2

)
(T − t)

}
×EQ

[
exp

{
− µ

∫ T

t
vτdτ − ν

∫ T

t

1
vτ

dτ

}
| vt

]
︸ ︷︷ ︸

,q(T−t,v;α,λ,µ,ν)

,

(A50)
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with parameters

α = 0,

λ = 0,

µ =
1
2

γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
a2,

ν =
1
2

γ

(
λ̄2

1
γ− 1− φ1

+
λ̄2

2
γ− 1− φ2

)
b2.

(A51)

Note correct that the conditional expectation is taken under probability measure Q
such that vt has drift Γ(v, t). The Feller condition is assumed to be satisfied by the new drift:

Γ(v, t) =
(φ1 − γ)σ(av + b)λ̄1

(γ− 1− φ1)
+ κ(θ − v)

=

(
κθ − (φ1 − γ)σbλ̄1

(γ− 1− φ1)

)
−
(

κ − (φ1 − γ)σaλ̄1

(γ− 1− φ1)

)
v

=⇒ κθ − (φ1 − γ)σbλ̄1

(γ− 1− φ1)
≥ σ2

2
.

(A52)

Furthermore, correct if α, λ, µ, and ν satisfy conditions (A17), h̄(v, t) can be solved
explicitly by [8]’s result like Equation (21) with associated m, D, β, and K like Equation (22).
Note that the last two conditions for α = λ = 0 are satisfied directly. Thus, the dependence
of function q(·) on α and λ can be omitted. Moreover, the optimal wealth exposures with

φ1 = γ2

γ+1 are given by

(Θv)? =

(
φ1
γ −1

)
σ
√

vh̄v−λ̄1(a
√

vt+
b√vt

)h̄

(γ−1−φ1)h̄
(

a
√

vt+
b√vt

) =

(
γ2

(γ+1)γ−1
)

σ
√

vh̄v−λ̄1(a
√

vt+
b√vt

)h̄(
γ−1− γ2

γ+1

)
h̄
(

a
√

vt+
b√vt

) =
σ
√

vh̄v−λ̄1(a
√

vt+
b√vt

)h̄

h̄
(

a
√

vt+
b√vt

)
= σ

√
v(

a
√

vt+
b√vt

) h̄v
h̄ − λ̄1

(ΘS)? = −λ̄2
(γ−1−φ2)

. (A53)

The correct worst-case measure is determined by
(ev)? = φ1

[
σ
√

v h̄v
h̄

γ+1
γ − λ̄1

(
a
√

v + b√
v

)]
= σ
√

v h̄v
h̄ γ− λ̄1

γ2

γ+1
(
a
√

v + b√
v

)
(eS)? = −φ2λ̄2

γ−1−φ2

(
a
√

v + b√
v

)
.

(A54)
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