
Citation: Štěpánek, L.; Dlouhá, J.;

Martinková, P. Item Difficulty

Prediction Using Item Text Features:

Comparison of Predictive

Performance across Machine-

Learning Algorithms. Mathematics

2023, 11, 4104. https://doi.org/

10.3390/math11194104

Academic Editors: Huawen Liu,

Gaige Wang and Ioannis G. Tsoulos

Received: 1 July 2023

Revised: 8 September 2023

Accepted: 22 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Item Difficulty Prediction Using Item Text Features:
Comparison of Predictive Performance across
Machine-Learning Algorithms
Lubomír Štěpánek 1,2,* , Jana Dlouhá 1,3 and Patrícia Martinková 1,4

1 Institute of Computer Science of the Czech Academy of Sciences, 182 07 Prague, Czech Republic;
dlouha@cs.cas.cz (J.D.); martinkova@cs.cas.cz (P.M.)

2 First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
3 Faculty of Arts, Charles University, 116 38 Prague, Czech Republic
4 Faculty of Education, Charles University, 110 00 Prague, Czech Republic
* Correspondence: lubomir.stepanek@cs.cas.cz

Abstract: This work presents a comparative analysis of various machine learning (ML) methods for
predicting item difficulty in English reading comprehension tests using text features extracted from
item wordings. A wide range of ML algorithms are employed within both the supervised regression
and the classification tasks, including regularization methods, support vector machines, trees, random
forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are
compared to the performance of domain experts. Using f -fold cross-validation and considering the
root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches
in a continuous item difficulty prediction. Within classifiers, random forests returned the highest
extended predictive accuracy. We demonstrate that the ML algorithms implementing item text
features can compete with predictions made by domain experts, and we suggest that they should
be used to inform and improve these predictions, especially when item pre-testing is limited or
unavailable. Future research is needed to study the performance of the ML algorithms using item
text features on different item types and respondent populations.

Keywords: text-based item difficulty prediction; text features and item wording; machine learning;
regularization methods; elastic net regression; support vector machines; regression and decision trees;
random forests; neural networks; algorithm vs. domain expert’s prediction performance

MSC: 62H12; 62H30; 68T50

1. Introduction

In educational assessment, the analysis of test items is crucial for designing reliable,
valid and fair tests. Item difficulty, the most important item characteristic, is commonly
estimated using classical test theory (CTT) and item response theory (IRT) models based
on test-taker responses [1]; however, item pre-testing is not always possible, or it may be
limited, e.g., due to security or legal reasons. In such situations, automated estimation of
item difficulty based on their wording can inform test construction.

Various properties of text wording of a given test item determine how difficult the
item is for a test-taker. The item text features, such as length, word frequencies related
to established corpora, characteristics of linguistic similarities, and readability indices,
can be used to predict item difficulty using machine learning (ML) algorithms. ML and
natural language processing (NLP) are already used in different areas of education for
automated essay or item scoring [2–4], automated item generation [5–9], data-driven
intelligent tutoring systems [10], online proctoring and cheating detection [11–13], and in
other situations [14–17]. In addition to commonly used methods such as linear regression

Mathematics 2023, 11, 4104. https://doi.org/10.3390/math11194104 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194104
https://doi.org/10.3390/math11194104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8308-4304
https://orcid.org/0000-0001-8396-2069
https://orcid.org/0000-0003-4754-8543
https://doi.org/10.3390/math11194104
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194104?type=check_update&version=1

Mathematics 2023, 11, 4104 2 of 30

or decision trees [18], regularization approaches and neural networks are sometimes used
to estimate the item difficulty from item wording based on item features [19]. A wide range
of ML algorithms has been used in this context in the past [18,20]. However, their predictive
performance is usually not compared; moreover, ML algorithms are rarely compared to
the performance of domain experts, which is crucial to determine to what extent the ML
algorithms are capable of improving the predictive accuracy of human raters. This is an
area of focus in the study.

To address this gap, we introduce a framework for predicting item difficulty using
textual features from item wording. We assess the predictive accuracy of multiple ML
methods, and we compare them with the predictions made by domain experts. The tools of
choice for the prediction we apply on the item features are supervised ML regression meth-
ods, namely regularization techniques—such as the least absolute shrinkage and selection
operator, ridge regression and elastic net regression—support vector machines, regression
trees, random forests, and artificial neural networks with back-propagation [9,21]. We
predict the item difficulty as a continuous dependent variable, as it would be returned
from student response data. Furthermore, switching the same algorithms into a classifica-
tion fashion, we predict the membership of each item in one of the predefined difficulty
intervals. We assume that classification into one of a few item difficulty intervals could be
easier and more accurate for the algorithms than predicting a precise difficulty point value.
We hypothesize that ML algorithms are able to compete with human domain experts in
predicting (or classifying) item difficulty and that they may further inform and improve
the experts’ predictions.

The paper proceeds as follows. We start by describing the data preparation needed for
the implementation of ML algorithms on cognitive test items, including the text preprocess-
ing and extraction of item features. We then describe the ML algorithms used in this study
in Section 2, Materials and Methods. We briefly describe applied software, model architecture,
algorithms’ pre-setting, and tuning parameter values in Section 3, Implementation. Next, in
Section 4, Results, we describe the results, namely the comparison of the accuracy of item
difficulty predictions returned by different artificial ML algorithms and those performed
by domain experts. Finally, we discuss the key findings in Section 5, Discussion, and offer
some deductions in Section 6, Conclusions.

2. Materials and Methods

A description of a dataset we used for item difficulty prediction and of the applied
ML algorithms we built on follows.

2.1. Dataset and Item Text Processing

For this study, we use item wordings from the English as a foreign language test
administered over eight years (2016–2023) as a part of the Czech matura exam. We use
items from reading comprehension sections containing multiple-choice items with a single-
paragraph passage and four response options, denoted as Section 5. We also utilize a dataset
of test-takers’ answers for the calculation of difficulty for each item as described in more
detail in the next section. Finally, item difficulty evaluation by domain experts comes from
another (internal) dataset.

Item text wordings are extracted from portable document format-based files (with
suffixes .pdf) using optical character recognition (OCR). Then, we apply the scraping
methods employing empirical approaches such as regular expressions’ masking, by which
we obtain an unstructured text for each item’s wording, split into item passage, item
question, key option (the correct answer), and distractors (incorrect answers). Next, the text
is tokenized, i.e., sentences are split into atomic parts (tokens), in this case, words. In the
next step, stopwords and special characters are removed, and the tokens are lemmatized,
i.e., they are transformed into their corresponding lemmas [22], as schematically indicated
in Figure 1.

Mathematics 2023, 11, 4104 3 of 30

• text tokenized
• stopwords removed
• tokens lemmatized

• word counts
• word frequencies
• lexical similarity
• readability indices

text processing feature extraction

Figure 1. A scheme of text processing procedures and extraction of item text features.

Finally, item text features are derived [23]. We consider four types of item text features.
Firstly, the word counts feature is easily calculated using lengths of vectors of item text
tokens. Secondly, using The Corpus of Contemporary American English (COCA) [24,25],
the word frequencies are assessed compared to usual frequencies of given words in ordinary
language. Then, the lexical similarity is calculated using Euclidean and cosine metrics to
describe how textually similar (or close) are vectors of tokens of item wording’s different
parts, e.g., how similar the item question and its key option, i.e., the correct answer, are,
considering that their high lexical similarity may tend to make the item easier. Additionally,
the lexical similarity between the key option and the distractors, i.e., incorrect answers, is
calculated, considering that large dissimilarity can make the item easier. Lastly, we compute
the readability indices depicting how easy-to-read and easy-to-understand the wording of
the text is. In general, the readability indices usually follow formulae of the form

readability index = f
(

νT
word counts, νT

word frequencies, νT
word counts ⊗ word frequencies

)
,

where f is a function in an explicit form using a vector of absolute and relative counts of
words and parts of speech of a given text νT

word counts, a vector of common or unique word’s
frequencies compared to everyday language, νT

word frequencies, and various combinations of

previous two properties, νT
word counts ⊗ word frequencies, as suggested by [26]. A more detailed

explanation of individual item features derived using the above-described approaches is in
Appendix A.

Eventually, using the above techniques, we derive more than 60 text features per item
and list them into a structured dataset of size n× k so that each column represents one
feature for each of n items, and each row contains a vector of all k features for a given item.

2.2. Item Difficulty Based on Student Responses

Having data from more than 50 thousand test-takers answering the items each year, we
enrich the dataset of item text features constructed in the previous step by the item difficulty
estimated using Rasch model [1] (p. 158), [27,28] from student responses. The Rasch model
is relatively simple but can estimate item difficulty for each item; more complex models can
describe other item parameters, such as item discrimination or item guessing, that are not
of interest in this study. The Rasch models assumes that a test-taker with ability θp answers
item i correctly with a probability

P(test-taker with ability θp answers item i correctly) =
eθp−yi

1 + eθp−yi
, (1)

where yi is the difficulty Y of item i, that is of main interest in this study (thus the notation).
We use the conditional maximum likelihood method [1] (p. 165) to estimate difficulties

for each item i ∈ {1, 2, . . . , n} based on the Rasch model (1). The conditional likelihood
method accounts for the overall ability of the tested sample, which may differ each year;
the item difficulty’s estimate is proportional to a portion of incorrect answers to the item
adjusted by a proportion of the total number of correct answers. As an output, we obtain
a vector (y1, y2, . . . , yn)T of n values of item difficulty Y for each item. Note that estimates
of item difficulty based on student responses are close to the true item difficulties when
a representative and a sufficiently large sample of test-takers are available. This was the
case in our study; however, such a respondent sample may not be available in all situations.

Mathematics 2023, 11, 4104 4 of 30

2.3. Machine Learning Algorithms

In this study, we compare the performance of several ML methods for predicting
and classifying item difficulty. Let us define the regression and classification tasks more
formally before describing the supervised regression and classification algorithms.

Assume we initially have k ∈ N item text features X1, X2, . . . , Xk and (k+ 1)-th variable
Y, a dependent one, i.e., item difficulty, derived as indicated in the previous section. As
an output of the Rasch model from Formula (1), the item difficulty Y is estimated as
a continuous variable. The regression task algorithms predict a value yi of the item difficulty
Y for item i using values xi,1, xi,2, . . . , xi,k of all item text features X1, X2, . . . , Xk as predictors.

However, for test construction, predicting an exact point value from an item difficulty
continuum is unnecessary; test developers often rely on the item difficulty category, thus
classifying item difficulty into only a few, e.g., five categories, is sufficient. Thus, we
also implement the classification task. As the first step, the item difficulty Y is categorized,
obtaining Yc, so that it is split into m ∈ N disjunctive intervals {c1, c2, . . . , cm} of the same
size using appropriate quantiles. Thus, union

⋃m
`=1 c` is a range of item difficulty variable

Y, i.e.,

m⋃
`=1

c` = {∀y ∈ R : Ymin ≤ y ≤ Ymax},

and intersection
⋂m
`=1 c` is an empty set,

m⋂
`=1

c` = ∅.

Then, within the classification task, item feature Xj, where j ∈ {1, 2, . . . , k}, is treated as
an independent variable for a classification model, which predicts the most-likely interval
c∗` ∈ Yc of the categorized item difficulty Yc.

A flowchart of the regression task is in Figure 2; similarly, a classification task scheme
is in Figure 3. Regardless of the regression or classification task, the predicted item difficulty
values are compared to the ’true’ ones as estimated using the Rasch model. To increase
reproducibility as much as possible, algorithms are learned on training subsets, while point
estimates of the predictive metrics are estimated on testing subsets. This is repeated several
times to obtain a more robust estimate of the predictive performance, averaging all point
estimates collected from individual iterations.

Domain experts estimate the item difficulty Y using their empirical knowledge in the
field, and their item difficulty estimates Y might also be categorized to create Yc. Thus, do-
main experts can be treated as “another” regression and “another” classification algorithm
and their performance can be compared to the predictive and classification performance
of ML algorithms. Many ML algorithms have both the regression and classification ver-
sion [29], as we describe in more detail in the next section.

2.3.1. Regularization

Although regularization techniques could serve as regression algorithms, they also
offer an option to select a subset of item features used for model building. Therefore, regu-
larization methods enable feature selection, which helps reduce the problem’s dimensionality
with minimal loss of information.

LASSO (Least Absolute Shrinkage and Selection Operator) regression estimates a value
yi of item i’s difficulty Y using least squares and L1 regularization-based coefficients
β0, β1, . . . , βk minimizing the following term,

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λLASSO ·
k

∑
j=1
|β j|, (2)

Mathematics 2023, 11, 4104 5 of 30

where xi,j is a value of j-th feature of i-th item with j ∈ {1, 2, . . . , k} and λLASSO > 0 is
a penalization term [30].

training set X1 . . . , Xk

’true’ item difficulty Y

regression model
predicted

model
training

difficulty
estimation

regression model

model
testing

difficulty
estimation

predicted

item difficulty Ŷ

comparison and point estimate of predictive performance’s metric calculation

(i) model training phase

(ii) model testing phase

continuous

continuous

testing set X1, . . . , Xk

’true’ item difficulty Y

trained model

item difficulty Ŷ

Figure 2. A flowchart of the regression task. The model is built using a training set, while item
difficulty Y is predicted using a testing set. The training and testing phase are repeated several
times within the cross-validation to increase the robustness and reproducibility of the predictive
performance metric estimate. The ‘true’ item difficulty Y is in quotes since it is estimated from student
response data rather than simulated.

classification
predicted

model
training

difficulty
classification

model
testing

difficulty
classification

predicted

(i) model training phase

(ii) model testing phase

categorized

categorized

model

classification
model

comparison and point estimate of predictive performance’s metric calculation

testing set X1, . . . , Xk

’true’ item difficulty Yc

’true’ item difficulty Yc

trained model

item difficulty Ŷc

item difficulty Ŷc

training set X1 . . . , Xk

Figure 3. A flowchart of the classification task. The model is built using a training set, while item
difficulty Yc is classified using a testing set. The training and testing phase are repeated several
times within the cross-validation to increase the robustness and reproducibility of the predictive
performance metric estimate. The ‘true’ item difficulty category Yc is in quotes since it is estimated
from student response data rather than simulated.

Similarly, ridge regression uses L2 penalization and penalization term λridge > 0 to
minimize

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λridge ·
k

∑
j=1

β2
j , (3)

Mathematics 2023, 11, 4104 6 of 30

while item difficulty Y’s value yi is estimated for item i using its item text features xi,j with
j ∈ {1, 2, . . . , k} [31].

Finally, elastic net regression combines both L1 and L2 penalization and minimizes the
following function,

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λLASSO ·
k

∑
j=1
|β j|+ λridge ·

k

∑
j=1

β2
j (4)

to estimate item i’s difficulty Y using its text features xi,j, where j ∈ {1, 2, . . . , k}. Assuming
both penalizations, i.e., the L1 and L2 terms in Formula (4) are convex [32], elastic net
usually reaches values of the function in Formula (4) as minimal as LASSO or ridge
regression individually does, and, thus, performs at least as good as the previous two
regularization algorithms [33].

Since Formulae (2)–(4) are minimized while coefficients β0, β1, . . . , βk are estimated,
the terms λLASSO ∑k

j=1|β j|, λridge ∑k
j=0 β2

j are also minimized. Thus, if λLASSO = 0 or
λridge = 0, penalization terms in Formulae (2)–(4) are removed, and the functions in the
formulae become ordinary least squares usual for multivariate linear regression. Otherwise,
whenever is λLASSO > 0 and λridge > 0, then, for β j close to zero, such a coefficient tends to
be shrunk towards zero, and, consequently, j-th item feature is removed from the model
while β̂ j = 0. Thus, regularization techniques could also work as feature selectors. LASSO
is considered a better feature selector than ridge regression [34]. Intuitively, assuming j-th
item feature Xj is likely to be removed from the model, so it is 0 < |β j| < 1, then also
0 · |β j| < |β j| · |β j| < 1 · |β j| and, consequently, β2

j < |β j| (†). Whenever is λridge · β j or

λridge · β2
j term large enough so that removing the j-th item feature Xj from the model

would reduce the penalization term significantly, the j-th item feature is removed. Thus,
for constant values of λLASSO = λridge, due to (†), term λridge · β2

j in the ridge regression
is not as large as term λLASSO · |β j| in the LASSO, and, consequently, it is less likely that
j-th item feature Xj is removed from the ridge regression model than from LASSO model,
keeping the penalization levels the same for the two models.

2.3.2. Naïve Bayes Classifier

Naïve Bayes classifier classifies i-th item into the most likely class c∗` of item diffi-
culty Y. The Bayes theorem assumes that a relationship between conditional probabilities
P(Yi = cl | ∀xi,j) and P(∀xi,j | Yi = c`), where ∀xi,j term stands for a joint proposition{

Xi,1 = xi,1 ∧ Xi,2 = xi,2 ∧ · · · ∧ Xi,k = xi,k
}

, is

P(Yi = c` | ∀xi,j) =
P(∀xi,j | Yi = c`)P(Yi = c`)

P(∀xi,j)
. (5)

The non-conditional probabilities P(Yi = c`) and P(∀xi,j) are constant for a given
dataset [35] and can be easily estimated as

P̂(Yi = c`) =
1
n

n

∑
i=1
I(Yi = c`) and P̂(∀xi,j) =

1
n · k

n

∑
i=1

k

∑
j=1
I(Xi,j = xi,j), (6)

where I(A) is an identifier function which is equal to 1 if and only if proposition A is true,
otherwise it is equal to 0, i.e.,

I(A) =
{

1, proposition A is true,
0, proposition A is false.

(7)

Thus, proportion P(Yi=c`)
P(∀xi,j)

is constant and Formula (5) can be rewritten as

P(Yi = c` | ∀xi,j) ∝ P(∀xi,j) | Yi = c`),

Mathematics 2023, 11, 4104 7 of 30

and as far as we assume classes c1, c2, . . . cm are independent, we may also write

P(Yi = c` | ∀xi,j) ∝ P(∀xi,j | Yi = c`) ∝

∝ P(Xi,1 = xi,1 ∧ Xi,2 = xi,2 ∧ · · · ∧ Xi,k = xi,k | Yi = c`) ∝

∝
k

∏
j=1

P(Xi,j = xi,j | Yi = c`).

With Naïve Bayes, item i is classified into interval c∗` so that

c∗` = argmax
`∈{1,2,...,m}

{
P(Yi = c` | ∀xi,j)

}
= argmax

`∈{1,2,...,m}

{
k

∏
j=1

P(Xi,j = xi,j | Yi = c`)

}
.

For categorical item features Xj, probability P(Xi,j = xi,j | Yi = c`) is estimated
similarly to Formula (6); for continuous variables Xj, it is estimated using cumulative
version of normal distribution function, i.e., P̂(Xi,j = xi,j | Yi = c`) = Φ(xi,j ± ε | Yi = c`)
for small positive ε > 0.

2.3.3. Support Vector Machines

Assuming the space of all item features X1 × X2 × · · ·Xk, support vector machines use
a hyperplane to split the space into two disjunctive subspaces (of different classes). The
splitting maximizes the margins, i.e., the distance between the two closest points, so that
the first comes from one subspace (of the first class) while the latter comes from the second
subspace (of the latter class). The hyperplane is orthogonal to the distance of the two closest
points, assuming each subspace contains ideally observations of only one class; see Figure 4
for details. Assuming m classes, since one model of support vector machines can classify
into only two classes, (m

2) models in total are built [36].
Each model of support vector machines searches for a splitting hyperplane that follows

a form of
wTxi − b = 0,

where w is a vector orthogonal to the splitting hyperplane, and b is maximally tolerated
margin’s width. Additionally, the two closest points from both subspaces are elements of
mutually parallel hyperplanes (and also parallel to the splitting hyperplane), i.e., wTxi −
b > 0 and wTxi − b < 0, respectively. Finally, the distance between the two closest points
of different classes is

{
2b
‖w‖

}
, i.e., a width of both margins, and it should be maximized

with respect to the existence of two distinguishable hyperplanes for two closest points of
different classes, so that

max
{

2b
‖w‖

}
subject to |wTxi − b| > 0,

where b as the tolerated margin width, i.e., a user’s tuning parameter, is usually chosen as
b ≥ 1.

A kernel trick with various kernel functions is applied when the points that belong
to different classes are not linearly separable. In principle, the universe of item features,
X1 × X2 × · · · × Xk, is extended by new variables U1, U2, . . ., that increase the universe
dimensionality [37] and, eventually, after that, it becomes linearly separable as indicated
in Figure 5.

Mathematics 2023, 11, 4104 8 of 30

1
‖w‖

wTx + b > 0

wTx + b = 0

wTx + b < 0

1
‖w‖

Figure 4. The margin between the hyperplane of the support vector machines (solid line) and the
closest points of both subspaces (dashed lines) is maximized by the algorithm.

The classification of item i into difficulty Y’s class c∗` is then performed using a voting
scheme, i.e., the class c∗` is the one that the majority of all (m

2) models votes for, i.e.,

c∗` = argmax
`∈{1,2,...,m}

(m

2)

∑
µ=1
I(µ-th model votes for class `)

,

using the same mathematical notation and identifier function as defined in Formula (7).
When regression is applied, trivial (usually constant) models are built for each sub-

space of the space, divided by the splitting hyperplane. Therefore, averages of all coordi-
nates of all observations belonging to a given subspace are calculated, representing the
regression model of the given subspace.

X1

X2

X1

X2

U1

Figure 5. A visualization of the kernel trick’s principle.

2.3.4. Regression and Classification Trees and Random Forests

Classification trees, also called decision trees, partition the dataset into subdatasets to
contain ideally observations of only one class of item difficulty Y. The partitioning is
performed successively from the original dataset by binary splitting; a given criterion is
minimized within each dataset splitting. In other words, item features’ universe X1 ×
X2 × · · · × Xk is split into disjunctive orthogonal subspaces, including, if not all, then the
vast majority of all points from one class of item difficulty Y. Each step of the dataset
partitioning, i.e., splitting a parenting dataset into two new child subdatasets, enables
the growth of a typical tree plot, dendrogram, by adding two new child branches; see
Figure 6. The partitioning is applied multiple times until the dataset is split according to
item difficulty Y classes’ distribution [38].

Mathematics 2023, 11, 4104 9 of 30

X1

X2

4

7

Y = c1

Y = c2

Y = c3

X1 ≥ 4

yes

X2 ≥ 7

yes

Y = c2

no

Y = c3

no

Y = c1

Figure 6. Linear splitting of the variables’ space (on the left) and an appropriate tree representation
(on the right).

Assuming ρη,` is a proportion of observations of class c` in part of the dataset that is
defined by all node rules from root to node η, then ρη,` should be maximized as much as
possible using an impurity criterion Q(η). The most often used impurity measures are the
misclassification error,

Q(η) = 1− ρη,`, (8)

the Gini index,

Q(η) =
m

∑
`=1

ρη,`(1− ρη,`), (9)

and the deviance, also called cross-entropy,

Q(η) = −
m

∑
`=1

ρη,` · log ρη,`. (10)

Obviously, the impurity measure Q(η) is minimized in each dataset’s partitioning
since the lower the impurity measure is, the larger the proportion ρη,` is. Trees tend to
overfit the distribution of classes in the dataset; it means the tree growth is stopped no
sooner than all leave nodes have the impurity criterion as minimized as possible. To avoid
overfitting, various stopping criteria or pruning are applied [39].

Once the tree is grown, it enables to classify item i into difficulty Y’s class c∗` , so that

c∗` = argmax
`∈{1,2,...,m}

{
ρleaf node determined by all node rules from root to the node, `

}
,

using the introduced notation and identifier function from Formula (7). Trivial (constant)
models constructed for each subspace transform the classification trees into regression
trees [40].

Multiple trees create a structure called random forest. Individual trees of a given random
forest are mutually independent and different. This is ensured by applying only a subset
of all item features pre-selected using a bootstrap for each new tree growing in a random
forest. Finally, the classification or regression output of the random forest is determined
by the voting scheme of individual trees [41], similarly as for the support vector machines:
item i is classified into such a difficulty Y’s class c∗` for which the majority of all trees in the
random forest votes, i.e.,

c∗` = argmax
`∈{1,2,...,m}

 ∑
τ∈{trees of random forest}

I(tree τ votes for class `)

,

using the same mathematical notation as above.

Mathematics 2023, 11, 4104 10 of 30

2.3.5. Neural Networks

Neural networks are universal algorithms suitable for regression and classification tasks.
An architecture of a neural network consists of a layer of input and output neuron(s) and
several hidden layers so that each hidden layer consists of multiple neurons [42].

An example of the neuron is in Figure 7. On input of the neuron, there is a vector
of signals from neurons of a previous layer, i.e., zl−1 = (zl−1,1, zl−1,2, . . .)T , multiplied
by a vector of weights wl−1 = (wl−1,1, wl−1,2, . . .)T . If l = 1, the neurons of the first
layer accept weighted signals from a vector of item i’s features, xi = (xi,1, xi,2, . . . , xi,k)

T .
Weighted signals from (l − 1)-th layer are summed up together with bias term bl within Σ
function, i.e.,

Σ = wl−1 · zl−1 + bl ,

and proceeded to the σ function, which is an activating function, usually of the sig-
moid form,

σ(ζ) =
1

1 + e−ζ
,

so that signal yl,1 on output from the neuron of l-th layer is

yl,1 = σ(Σ + bl) = σ(wl−1 · zl−1 + bl) =
1

1 + e−(wl−1·zl−1+bl)
,

which is finally transcended to the next, (l + 1)-th layer. Vectors of weights, wl =
(wl,1, wl,2, . . .)T are adjusted within each iteration of so-called backpropagation when the
weights are increased or decreased by small gradients to minimize the loss function, often
implemented as L1 or L2 penalization [43].

zl−1,3 wl−1,3 Σ σ

activating
function

yl,1

output
zl−1,2 wl−1,2

zl−1,1 wl−1,1

zl−1,• wl−1,•

weights

...
...

bias bl

inputs

Figure 7. A scheme of one neuron in neural network.

In the regression framework, besides neurons in a hidden layer, we implement a single
neuron in the output layer, returning continuous estimate ŷi of item i’s difficulty. In the
classification framework, there are m output neurons representing classes {c1, c2, . . . , cm}
and we adopt voting for c∗l in classifying network [44], as follows

c∗` = argmax
`∈{1,2,...,m}

{
y# of layers, `

}
.

2.3.6. Variable Importance Analysis

While the importance analysis is not a stand-alone algorithm for item difficulty (or its
categorized variant) prediction, it enables us to evaluate how “important” a given variable
is for a model, considering the predictive performance; in other words, how much poorer
the model would predict if it lacked the given variable [45].

We apply two measures of variable importance; each variable, i.e., item feature, has its
own value of the importance measure, considering a given dataset and model. Before we
introduce the measures, we define the mean square error, MSE, as

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2, (11)

Mathematics 2023, 11, 4104 11 of 30

for vectors y = (y1, y2, . . . , yn)T and ŷ = (ŷ1, ŷ2, . . . , ŷn)T of observed and predicted
difficulties of n items, respectively. The first importance measure is MSEincrease(Xj), which
is equal to an increase of mean square error of item difficulty prediction in such a model
where values of the given item feature, Xj, are randomly permuted [45]. To be more
specific, we firstly calculate mean square error MSE{−∅} of a full model with all original
item features, then we compute mean square error MSE{−j} of a model where item feature
Xj has randomly shuffled values. Finally, MSEincrease(Xj) is defined as

MSEincrease(Xj) =
MSE{−j} −MSE{−∅}

MSE{−∅}
. (12)

The more important item feature Xj for adequate and accurate prediction of item
difficulty, the larger the prediction error, measured using mean square error MSE, when
the item feature Xj is missing in the model. Thus, the greater the value of MSEincrease(Xj),
the more important the item feature Xj for item difficulty prediction.

The second importance measure, node purity increase, NodePurityincrease(Xj) is de-
fined similarly. Once impurity metric Q(η) is chosen, i.e., either misclassification error (8),
Gini index (9) or deviance (10), the node purity increase, NodePurityincrease(Xj), for item
feature Xj is simply an increase of “1 minus impurity metric” term averaged over all leaf
nodes if the item feature Xj is newly introduced into a new model [45]. Thus, having the
averaged “1− node impurity” term, (1−Q(η)){−j}, of a tree model with all original item

features except for item feature Xj, and averaged “1− node impurity”, (1−Q(η)){−∅}, of
a model where item feature Xj is already included, the NodePurityincrease(Xj) is then

NodePurityincrease(Xj) =
(1−Q(η)){−∅} − (1−Q(η)){−j}

(1−Q(η)){−j}
. (13)

Again, the more important item feature Xj for the predictive model performance, the
higher average “1−node impurity” increase, i.e., the higher average purity increase we can
expect once the item feature Xj is introduced into the model. Thus, the larger the value of
NodePurityincrease(Xj), the more important the item feature Xj for item difficulty prediction.
According to some sources, e.g., [46], MSEincrease(Xj) measure should be preferred to
NodePurityincrease(Xj), since the latter one is biased.

2.4. Evaluation of Algorithm Performance

Regression and classification tasks are evaluated using mutually different performance
metrics. To obtain more robust estimates of the performance metrics, both regression
and classification models are trained multiple times using various training sets, which
enables us to average the metrics using all point estimates, collected one per each cross-
validation iteration [47]; see Figures 2 and 3. We also compare an item difficulty prediction
performance of the ML approaches with the performance of domain experts.

2.4.1. Evaluation of Regression Performance

The models within the regression task are evaluated and compared using root mean
square error (RMSE), i.e.,

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)2 (14)

for vectors y = (y1, y2, . . . , yn)T and ŷ = (ŷ1, ŷ2, . . . , ŷn)T of observed and predicted
difficulties of n items, respectively. Obviously, inspecting Formulae (11) and (14), we obtain
the following identity, MSE(y, ŷ) = RMSE(y, ŷ)2. Since RMSE indicates the significance
of error between observed and predicted item difficulties, the lower RMSE indicates the
better predictive performance of a given regression algorithm.

Mathematics 2023, 11, 4104 12 of 30

2.4.2. Evaluation of Classification Performance

Assuming there are m observed classes that are predicted using a classifier, we could
calculate a number of cases nu,v when ’true’ class cu is predicted as class cv, where
u ∈ {1, 2, . . . , m} and v ∈ {1, 2, . . . , m}. Listing these frequencies in a table, we obtain
Table 1, called the confusion matrix.

Table 1. A confusion matrix for m observed, ‘true’ classes Yc ∈ {c1, c2, . . . , cm} (in rows) and m
predicted classes Ŷc ∈ {c1, c2, . . . , cm} (in columns).

Predicted Class (Ŷc)
c1 c2 · · · cm

‘true’ class (Yc)

c1 n1,1 n1,2 · · · n1,m
c2 n2,1 n2,2 · · · n2,m

...
...

...
. . .

...
cm nm,1 nm,2 · · · nm,m

The better and more accurate the classification is, the higher frequencies ni,i are aligned
across the confusion matrix’s principal diagonal. Thus, marking the confusion matrix as C
and assuming vectors yc of observed item difficulty classes and ŷc of predicted difficulty
classes, we define predictive accuracy as the ratio of correctly classified items,

predictive accuracy(yc, ŷc) =
1
n

n

∑
i=1
{I(ŷc,i = c` ∧ yc,i = c`)} =

=
tr C
∑ C

=
∑m

u=1 nu,u

∑m
u=1 ∑m

v=1 nu,v
. (15)

The higher the predictive accuracy, the better and more accurate the classification
is [48]. Each of m classes of item difficulty Yc are of equal size in the dataset (classes are
split using quantiles) (†). Assuming a classifier would predict difficulties yc as vector ŷc,r
as a random guessing algorithm, then an expected value of its predictive accuracy is

E(predictive accuracy(yc, ŷc,r)) =
m

∑
`=1

P(Ŷc = c` | Yc = c`) · P(Yc = c`)
(†)
=

(†)
=

m

∑
`=1

1
m
· 1

m
=

m

∑
`=1

1
m2 =

m
m2 =

1
m

.

Values of predictive accuracy greater than 1
m indicate that a classifier performs better

than a random guessing algorithm.
In practice, the very accurate prediction of a correct difficulty class is unnecessary.

A prediction close enough to the correct difficulty class, i.e., the correct one or one class below
or above the correct one, is still useful. Thus, we also measure the classifiers’ performance
using an extended predictive accuracy. The item i is evaluated as correctly classified if it is
classified in the correct difficulty class ŷc,i = yc,i = c`, or one class higher if such a class
exists, ŷc,i = c`+1, or one class lower if such a class exists, ŷc,i = c`−1, compared to the
difficulty class estimated from student response data, thus

extended predictive accuracy(yc, ŷc) =
1
n

n

∑
i=1
{I(ŷc,i ∈ {c`−1, c`, c`+1} ∧ yc,i = c`)}, (16)

where c`−1 is one class below c`, and c`+1 is one class above c`, respectively, if it exists,
and an empty set otherwise. Thus, a probability that a classifier in this sense correctly
classifies category with subscript ` ∈ {2, 3, . . . , m− 1} is equal to |{`−1,`,`+1}|

m = 3
m , while

a probability that a classifier correctly classifies the first or last category with subscript

Mathematics 2023, 11, 4104 13 of 30

` = 1 or ` = m is equal to |{`,`+1}|
m = 2

m or |{`−1,`}|
m = 2

m , respectively. Again, assuming
a classifier would predict difficulties yc as vector ŷc,r as a random guessing algorithm, then
an expected value of its extended predictive accuracy is

E(extended predictive accuracy(yc, ŷc,r)) =

=
m

∑
`=1

P(Ŷc ∈ {c`−1, c`, c`+1} | Yc = c`) · P(Yc = c`)
(†)
=

(†)
=

 2
m

+
3
m

+ · · ·+ 3
m︸ ︷︷ ︸

(m− 2)-times

+
2
m

 · 1
m

=
3m− 2

m2 .

Thus, any values of extended predictive accuracy that are greater than 3m−2
m2 show that

a classifier predicts better than a random guessing procedure.

2.4.3. Cross-Validation

To obtain more robust estimates, the performance metrics are re-estimated multiple
times within f -fold cross-validation, where f ∈ N and f ≥ 2, using dataset splitting into
training and testing subset of sizes of f−1

f % and 1
f %, respectively, and then averaged [49],

see Figure 8.

iteration #1 M̂1

iteration #2 M̂2

...
...

...

iteration # f M̂ f

Figure 8. Within p-th iteration of f -fold cross-validation, where p ∈ {1, 2, . . . , f }, f > 1 and f ∈ N,
a model is trained using the training set (colored in white) and tested using the test set (colored in
grey), i.e., the (f − p + 1)-th of f equal-size parts, which the entire dataset was originally split into.

In particular, for even better comparison and integer-like sizes of both the training
and testing subsets, it might be optimal to choose f as a divisor of sample size n; then
the portions f−1

f % and 1
f % for training and testing subsets, respectively, are of integer

number sizes.
Assuming that p-th iteration of the f -fold cross-validation outputs point estimates of

root mean square error, predictive or extended predictive accuracy M̂p, finally, we could
average the estimates as

M̄ =
1
f

f

∑
p=1

M̂p,

to obtain a robust and unbiased estimate of Ê(M) = M̄, i.e., the root mean square error,
predictive or extended predictive accuracy [50], respectively.

2.4.4. Relationship between Model’s Predictive Performance and a Number of Item
Features in a Model

A value of the root mean square error, RMSE, following Formula (14) is not closely
related to a number of item features considered within a model. Thus, model enrichment
by any new extracted text item features could not necessarily improve predictive model
performance. There are more details, formal derivation, and mathematical rationale of the
relationship between the model predictive performance and the number of item features
on model input in Online Supplement listed in Data Availability Statement at the end of
the article.

Mathematics 2023, 11, 4104 14 of 30

3. Implementation

Text preprocessing and the entire analysis were implemented in statistical language
and environment R [51]. For evaluation of the classification task, the continuous difficulty
Y, estimated from student response data, of an original range 〈−2.48,+1.63) was split into
m = 5 disjunctive intervals, denoted Yc ∈ {c1, c2, c2, c4, c5}, of the same size using quintiles,
specifically 〈−2.48,−0.80), 〈−0.80,−0.44), 〈−0.44,+0.03), 〈+0.03,+0.52), 〈+0.52,+1.63),
and labeled as {very easy, easy, moderate, difficult, very difficult}. Thus, regarding item
difficulty, the dataset of item text wordings is well-balanced. While the final number of
item features derived from their text wording is k = 69, the number of items is n = 40.
Regarding the f -fold cross-validation, due to a straightforward advantage of whenever n is
divisible by f ≥ 2, we choose for f = 20. Thus, since n

f = 40
20 = 2, we applied a leave-two-out

cross-validation.
Domain experts’ evaluation of item difficulty originally uses an arbitrary scale of

〈1.0, 2.5〉. To make the experts’ evaluation comparable with the outputs of classifiers, we
split the experts’ scale in the original logic the scale was designed, i.e., we consider m = 5
equidistant intervals over the range of 〈1.0, 2.5〉. Thus, we create m = 5 intervals of length
0.3 and name them also as {very easy, easy, moderate, difficult, very difficult}. Given the
assumed Rasch model (1), the obtained ’true’ item difficulty is on a logistic scale where
very low and very high values are less common, yet possible. For this reason, we split
the Rasch-based item difficulty using quantiles. The domain experts, on the other hand,
naturally designed the difficulty evaluation scale in a linear fashion, which is our rationale
for equidistant scale splitting.

The difficulty of items was estimated from student responses data using the Rasch
model by the function RM() of eRm package [52]. Text preprocessing was performed using
R package quanteda [53]. Regularization was implemented with a function glmnet() of
glmnet package [54]. Naïve Bayes classifier and support vector machines were built using
naiveBayes() and svm() functions of e1071 package [55]. The radial kernel function was
chosen for the kernel trick if applied. Classification and regression trees were enumerated
by the function rpart() of rpart package [56]. Random forests’ models were learned using
function randomForest() from randomForest package [57], each time using 500 trees in
a model, similarly as neural networks were modeled using neuralnet() function and
neuralnet package [58]. The neural networks contain one hidden layer with the same
number of neurons as item features on input.

4. Results

To assess the possibility and performance of item difficulty prediction from their
textual wordings using ML methods, we applied the above-described methodology to
the dataset of our interest. Firstly, we built supervised models of the regression task to
estimate item difficulty as a continuous variable. There are outcomes of this approach more
in detail in Table 2 presented using the root mean square errors (RMSE) for the n = 40
single-paragraph items, averaged over all f = 20 iterations of the f -fold cross-validation,
across seven different regression algorithms and domain experts’ estimates, too. The lower
value of RMSE an algorithm outputs, the better accuracy and reliability its item difficulty
estimate reaches.

A comparison of the algorithms highlights the varying performance levels between the
models. Among the evaluated models, the regularization algorithms, i.e., LASSO regression,
ridge regression, and elastic net, demonstrated superior performance by yielding the lowest
RMSE value, indicating the highest accuracy and reliability. In particular, the elastic net
returned the lowest RMSE of 0.666 among the regularization approaches (and, thus, among
all models, too). Additionally, considering the data and model settings, the elastic net model
outperformed domain experts in the continuous item difficulty prediction since domain
experts reached an RMSE of 1.004. On the other hand, the regression trees and neural
networks algorithm produced the highest RMSE value of about 0.978 and 0.971, respectively,
suggesting less accuracy and reliability than the other models. The remaining algorithms

Mathematics 2023, 11, 4104 15 of 30

displayed moderate performance levels. Meanwhile, regression trees and domain experts
had higher but comparable RMSE values, further emphasizing the superior performance of
the elastic net algorithm in this analysis. Since the domain experts evaluate item difficulty
mostly using numbers such as 1.0, 1.5, 2.0, 2.5 as described in Section 3, Implementation, they
are a priori handicapped to estimate an exact point value of the item difficulty. Applying
Sheppard’s correction [59], their RMSE as a measure following the logic of the second
moment is overestimated by a term of width of the interval between valid values2

12 = 0.52

12 ≈ 0.02.
However, in case all domain experts would systematically over- or under-estimate the true
item difficulty, their RMSE could be, in theory, overestimated by the width of the interval
between valid values, thus, by 0.5.

Table 2. Values of root mean square error (RMSE) for seven regression algorithms and domain
experts, respectively, estimating item difficulty as a continuous variable, calculated over f = 20
iterations of the f -fold cross-validation.

Regression Algorithm Root Mean Square Error (RMSE)

LASSO regression 0.694
Ridge regression 0.719
Elastic net regression 0.666
Support vector machines 0.716
Regression trees 0.978
Random forests 0.719
Neural networks 0.971

Domain experts 1.004

Additionally, Table 3 presents the predictive and extended predictive accuracies of dif-
ferent classification algorithms, including Naïve Bayes classifier, support vector machines,
classification trees, random forests, neural networks, and domain experts.

Table 3. Values of averaged predictive and extended predictive accuracies for five classification
algorithms and domain experts, respectively, estimating item difficulty as a categorized variable,
calculated over f = 20 iterations of the f -fold cross-validation.

Classification Algorithm Predictive Accuracy Extended Predictive Accuracy

Naïve Bayes classifier 0.175 0.425
Support vector machines 0.000 0.575
Classification trees 0.150 0.525
Random forests 0.325 0.650
Neural networks 0.225 0.550

Domain experts 0.225 0.650

Assuming that only an approximate match of a true and predicted category of item
difficulty is sufficient for applications, we focus on extended predictive accuracy. From
the ML algorithms, random forests output the highest extended predictive accuracy with
a score of 0.650, while Naïve Bayes classifier showed the lowest extended predictive
accuracy, achieving a score of only 0.425. Domain experts achieved a superior accuracy of
0.650, indicating their important role in the classification of item difficulty.

For a better understanding of individual classifiers’ predictive capacity, we plot the
confusion matrices for each algorithm (see Figure 9), where each row represents numbers
of items in each of the observed classes, while each column represents numbers of items
in each of the difficulty classes predicted by the algorithm. The numbers in cells of the
confusion matrices are summations over all iterations of the f -fold cross-validation. Overall,
the results suggest that the ML algorithms could benefit from further improvement to
accurately classify items in all classes of difficulty, especially in the middle classes, i.e., from
easy to difficult. The domain experts did not use the highest category, very difficult much for

Mathematics 2023, 11, 4104 16 of 30

these items; this may be caused by the fact that the test is in general easy and especially
this type of item may appear simple compared to exercises from high school textbooks.

Tables 4 and 5 present the variable importance analysis of different item text features
applied in our model for item difficulty prediction and classification. While Table 4 uses
MSEincrease metric, Table 5 utilizes NodePurityincrease metric of variable importance. Both
measures are reported in Tables 4 and 5 as an average± standard deviation based on f = 20
point estimates from all iterations of f -fold cross-validation. The MSEincrease as a metric of
an item feature’s importance operates with mean square error (MSE), which is a squared
value of RMSE; it is more suitable for regression models and prediction of item difficulty as
a continuous variable. Whereas NodePurityincrease as a metric of item feature’s importance
calculates impurity of leaf nodes when classifying into a category of item difficulty; thus, it
performs better in the classification of item difficulty. Both measures can provide valuable
insights into feature importance; however, they may result in different rankings as they
capture distinct aspects of model prediction performance. By considering both metrics, we
can comprehensively understand item feature importance and make informed decisions
for analysis and interpretation.

According to Table 4, the number of all characters in item wording seems to be the
most crucial feature for item difficulty, with MSEincrease of 5.912± 0.0.673, followed by
the word length’s standard deviation (in characters) with MSEincrease about 4.845± 0.799.
Various features such as readability indices, indices of similarity or portion of shared
words between item passage, distractors, item question or key option, as well as longest
and average word length in item wording, follow, with MSEincrease between about 0.900
and 3.500.

In Table 5, the same two features seem to determine the classification of item difficulty
the most—the word length’s standard deviation (in characters) with NodePurityincrease
about 1.644± 0.121, and the number of all characters in item wording with NodePurityincrease
of 1.455± 0.137. Additionally, some of the readability indices, numbers of monosyllabic
and rare words, or similarity between different parts of item wording are important for
correct item difficulty prediction, returning NodePurityincrease in an interval of 0.030–0.080.

A detailed explanation of individual item features listed in Tables 4 and 5 is in
Appendix A. Note that although we sorted the item features in decreasing order according
to the importance measures in Tables 4 and 5, the intervals for importance measures’ mean
values, indicated by ± standard deviation terms, overlap between various item features.
Thus, the importance analysis is only illustrative.

Table 6 provides a summary of elastic net regression’s model following Formula (4)
that minimized the root mean square error, RMSE, with λ̂LASSO ≈ 1 and λ̂ridge ≈ 0. While
most item features were removed by shrinking their coefficients towards zero, the item
features listed in Table 6 are those that remained in the model. Compared to the item
features’ importance analysis, the elastic net model could tell us not only which item
features are essential for the final model but also what is the approximate direction of
a relationship between the features and item difficulty. The elastic net model suggests
that a larger total number of characters in item text wording increases item difficulty
(β̂ = 0.002 > 0), and that greater Dalle-Chall and FOG readability indices also make the
item more difficult (β̂ = 0.004 > 0 and β̂ = 0.026 > 0, respectively). In addition to this, an
increased standard deviation of word lengths within item wording (β̂ = 0.809� 0) and
an average sentence length (words) in distractors (β̂ = 0.002� 0) increase item difficulty
as well as does the greater proportion of common words in the passage and distractors
(β̂ = 0.630� 0) (the passage and distractors–common words1 is a proportion of a number
of common words in the item passage also found in the wording of distractors, to a number
of all words in the item passage).

Mathematics 2023, 11, 4104 17 of 30

3 0 1

2 0

6 1

3 0

5 0 2

't
ru

e
'
c
la

s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

naive bayes

1 3 1

2 1

0 1

0 4

0 2 2

't
ru

e
'
c
la

s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

support vector machine

0 3 1

1 1

1 1

3 3

1 2 2

'tr
u
e
' c

la
s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

decision trees

2 0 1

1 0

1 2

3 0

2 1 1

'tr
u
e
' c

la
s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

random forests

2 0 3

2 0

3 1

1 1

2 1 2

'tr
u
e
' c

la
s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

neural networks

1 1 0

2 1

1 0

0 5

0 3 0

'tr
u
e
' c

la
s
s

very easy

easy

moderate

difficult

very difficult

predicted class

ve
ry

 e
as

y

ea
sy

m
od

er
at

e

di
ffi
cu

lt

ve
ry

 d
iff
ic
ul
t

domain experts

Figure 9. Summative confusion matrices for five classification algorithms and domain experts,
respectively. For each algorithm, within each iteration of the f -fold cross-validation, a partial
confusion matrix was calculated from training 1

f fraction of the dataset, and the resulting f confusion
matrices were combined into one final summative confusion matrix, which is displayed. The blue
color indicates cells considered for calculating the extended predictive accuracy.

Mathematics 2023, 11, 4104 18 of 30

Table 4. Top twenty item features with the highest value of importance for item difficulty prediction,
measured using MSEincrease. The MSEincrease measure is reported as an average ± standard deviation
based on f = 20 point estimates from all iterations of f -fold cross-validation. A detailed explanation
of individual item features listed in the table is in Appendix A. The abbreviation COCA stands for
The Corpus of Contemporary American English, DF matrix for document-feature matrix.

Item Feature MSEincrease

Number of characters 5.912 ± 0.673
Word length’s standard deviation (characters) 4.845± 0.799
Passage and distractors–word2vec similarity 3.521± 0.823
Text readability–Traenkle-Bailer index 3.385± 0.767
Question and key item–word2vec similarity 2.447± 0.956
Distractors–average sentence length (words) 2.385± 0.838
Key option and distractors–number of features from a DF matrix 2.225± 0.697
Distractors–average word length (characters) 1.689± 0.827
Distractors–average word length (characters) 1.689± 0.827
Text readability–SMOG index 1.680± 0.790
Question and key option–number of features from a DF matrix 1.655± 0.807
Item passage and distractors–common words1 1.570± 0.832
Passage and key option–word2vec similarity 1.409± 0.979
Text readability–FOG index 1.355± 1.143
Question and passage–euclidean distance 1.341± 0.784
Average word length (characters) 1.322± 0.972
Passage and key option–euclidean distance 1.266± 0.997
Passage and distractors–euclidean distance 1.072± 1.218
Item passage and distractors–cosine similarity 1.018± 0.933
Question and distractors–euclidean distance 0.937± 0.927

Table 5. Top twenty item features with the highest value of importance for item difficulty pre-
diction, measured using NodePurityincrease. The NodePurityincrease measure is reported as an
average ± standard deviation based on f = 20 point estimates from all iterations of f -fold cross-
validation. A detailed explanation of individual item features listed in the table is in Appendix A.
The abbreviation CEFR stands for The Common European Framework of Reference for Languages,
DF matrix for document-feature matrix.

Item Feature NodePurityincrease

Word length’s standard deviation (characters) 1.644± 0.121
Number of characters 1.455± 0.137
Text readability–Traenkle-Bailer index 1.214± 0.118
Question and key item–word2vec similarity 0.820± 0.103
Passage and distractors–word2vec similarity 0.819± 0.097
Passage and distractors–euclidean distance 0.806± 0.128
Item passage and distractors–common words1 0.707± 0.099
Distractors–average word length (characters) 0.684± 0.153
Distractors–average word length (characters) 0.684± 0.153
Question and passage–number of features from a DF matrix 0.674± 0.063
Text readability–FOG index 0.631± 0.101
Text readability–Dale-Chall index 0.620± 0.095
Text readability–SMOG index 0.537± 0.067
Distractors–average sentence length (words) 0.514± 0.089
Key option and distractors–number of features from a DF matrix 0.508± 0.099
Item passage and distractors–cosine similarity 0.499± 0.087
Average word length (characters) 0.478± 0.068
Question and passage–euclidean distance 0.463± 0.083
Average sentence length (words) 0.458± 0.062
Passage and key option–euclidean distance 0.431± 0.047

Mathematics 2023, 11, 4104 19 of 30

Table 6. Coefficients of elastic net regression’s model that minimizes RMSE with λ̂LASSO ≈ 1 and
λ̂ridge ≈ 0.

Item Feature Coefficient

(intercept) −3.808
Number of characters 0.002
Word length’s standard deviation (characters) 0.809
Distractors–average sentence length (words) 0.002
Dale-Chall index 0.004
FOG index 0.026
Passage and distractors–common words1 0.630
Key option and distractors–word2vec similarity 0.023

Finally, considering Table 6, increased word2vec similarity between key option and
distractors is associated with a higher item difficulty (β̂ = 0.023 > 0) (the key option and
distractors–word2vec similarity is a similarity of the key option and distractors of the
item wording based on word2vec algorithms, where vectors of tokens for both parts are
generated and the similarity between them is captured from the context). These features
were also detected as important by the importance analysis.

An example of a decision tree, estimating categorized item difficulty as an interval,
is in Figure 10. The tree in the figure uses various item features such as the word length’s
standard deviation (in characters), frequency of uncommon words–according to COCA
corpus, item passage and key option–common words1, key option and distractors–number
of features from a document-feature matrix, distractors–average sentence length (in words),
passage and distractors–word2vec similarity, and number of all characters in item wording.
An interpretation is possible and relatively straightforward–in general, if the item’s words
vary significantly in their lengths, the frequency of uncommon words is high, the proportion
of words common for key option and distractors is low enough, item passage and distractors
are dissimilar enough, or the item wording is long enough, then the item’s difficulty is
relatively high.

More specifically, if the word length’s standard deviation (in characters) is not lower
than 2.3, then the item’s difficulty is difficult (in 〈+0.03,+0.52)) or very difficult (in 〈+0.52,
+1.63)). Otherwise, when the frequency of uncommon words–according to COCA corpus
is lower than 0.26, the item’s difficulty could be easy (in 〈−0.80,−0.44)) or difficult (in
〈+0.03,+0.52)), according to the common words1 among the item passage and key option.
Conditional on the previous rules, whenever the number of features from a document-
feature matrix of key option and distractors, i.e., a number of common words both in item
key option and distractors, is less than 15, the item’s difficulty is very easy (in 〈−2.48,−0.80))
easy (in 〈−0.80,−0.44)), or could be difficult (in in 〈+0.03,+0.52)) for the number of charac-
ters at least 1062. If the word2vec similarity between passage and distractors is lower than
0.79, then the item difficulty is moderate (in 〈−0.44,+0.03)). Otherwise, the item difficulty
depends on the number of characters in the item wording–usually, if the difficulty could be
one of two different difficulty classes, a lower character number in item wording tends to
classify the item into the easier class, as we can see in the last-but-one nodes in the tree in
Figure 10.

Mathematics 2023, 11, 4104 20 of 30

word length’s
standard deviation
(characters) < 2.3

yes

frequency of
uncommon

words–according
to COCA corpus

≥ 0.26

yes

key option and
distractors–

number of features
from a DF matrix

≥ 15

yes

passage and
distractors–
word2vec

similarity < 0.79

yes

moderate
〈−0.44,+0.03)

no

number of all
characters < 936

yes

easy
〈−0.80,−0.44)

no

number of all
characters < 1086

yes

number of all
characters < 1015

yes

very easy
〈−2.48,−0.80)

no

difficult
〈+0.03,+0.52)

no

very difficult
〈+0.52,+1.63)

no

distractors–
average sentence

length (words) < 8

yes

number of all
characters < 1062

yes

easy
〈−0.80,−0.44)

no

difficult
〈+0.03,+0.52)

no

very easy
〈−2.48,−0.80)

no

item passage and
key

option–common
words1 < 0.092

yes

easy
〈−0.80,−0.44)

no

difficult
〈+0.03,+0.52)

no

word length’s
standard deviation
(characters) ≥ 2.4

yes

difficult
〈+0.03,+0.52)

no

very difficult
〈+0.52,+1.63)

Figure 10. An example of a decision tree classifying the categorized item difficulty into a difficulty
class (and an appropriate interval).

5. Discussion

In this work, we provided a framework for predicting the difficulty of cognitive
test items from their wording. We extracted various text features from English reading
comprehension items and employed a number of ML algorithms. Our work is unique
in that it compares a wide range of ML algorithms, both for regression and classification
tasks, as well as in relating the predictions to those of domain experts. We also provide
reproducible R code, which can be used and built on in future studies. The prediction of
item difficulty using item text features may save time and resources needed for pre-testing
and may help especially in situations when pre-testing is limited or not feasible. ML
prediction of item difficulty presented in this work has the potential to be more precise
than domain experts, and if not fully replacing domain experts, it may be used to guide
and improve their predictions, as well as any imprecise estimates coming from pre-testing
based on small or less representative samples.

Among all regression task algorithms, regularization approaches seemed to overcome
others, similar to [60,61]. This is expectable given that the amount of data included in
the training subset was relatively low. All ML algorithms outperformed domain experts
in this task, although the domain experts are handicapped by not using a continuous

Mathematics 2023, 11, 4104 21 of 30

scale, as mentioned in Section 4. To govern the accuracy-precision trade-off towards
higher accuracy [62], we also considered the task of classifying the item difficulty into only
a few categories. Domain experts slightly outperformed ML algorithms in the accuracy of
difficulty classification when the task was to classify the item difficulty into five categories.
From the ML algorithms, the random forests predicted with the highest extended predictive
accuracy and performed almost as well as domain experts. We suppose that random forests
could return the best predictive performance since this algorithm is a priori ensembled,
embedding multiple decision trees.

It is hard to compare our results to those of other studies, given that different stud-
ies train ML algorithms on data which may differ in the topic, the number of available
items, variability of item content and difficulty, as well as used difficulty scale or diffi-
culty distribution among various parts of the scale. Benedetto et al. in [63] applied ML
techniques on multiple true-false questions from CloudAcademy to predict the question
difficulty and received RMSE about 0.700–0.900 for random forests, decision trees, support
vector machines, and linear regression. In another paper, Benedetto et al. [64] introduced
an R2DE model for newly generated items and automatically predicted their difficulty,
originating from interval 〈−5,+5〉 with RMSE of 0.823, which is approximately compa-
rable to our results, i.e., RMSE of 0.668 (elastic net) on item difficulty coming from an
interval 〈−2.48,+1.63). Using word embedding and support vector machine with the
radial kernel, Ehara in [65] reported RMSE about 3.632 for item difficulty prediction on
English vocabulary tests with a pre-estimated difficulty range in 〈−2,+4〉; since our dataset
if of similar difficulty range, we received better performance for item difficulty prediction
in case of support vector machines—an RMSE of 0.716. Lee et al. in [66] predicted item
difficulty for C-tests, i.e., tests where the second part of every second word is missing
and should be fulfilled by a test-taker, and reached an RMSE of 0.240 using advanced
architectures of support vector machines and neural networks. Regarding the adaptive
scenarios, Pandarova et al. in [67] predicted the difficulty of cued gap-filling items using
common item features and several ridge regression models and obtained an RMSE of 0.770.
Qiu et al. in [68] trained a document-enhanced attention-based neural network on data
from medical online education websites in China to predict the correct-answer ratio (in
the range of 0 to 1) and output RMSE of 0.131. They also compared the approach with
support vector machines-based prediction, yielding an RMSE of about 0.172, which is,
considering their difficulty range 〈0, 1〉, comparable with our results. Ha et al. in [69], and
Xue et al. in [70] published, besides response times, prediction of item difficulty using
medical datasets based on correct-answer ratios (i.e., difficulty in a range of 0 to 1) and
employing various ML methods and transfer learning, resulting in an RMSE in the range
of 0.200–0.300. Similar approaches and results as Ha et al. in [69] are also reported by
Yaneva et al. in [71]. Yin et al. in [72] proposed a new text-embedded and hierarchical
pre-trained model QuesNet for item representation, that is able to predict item difficulty,
ranged in the interval 0–1, with an RMSE of 0.253. Several studies went deeper into item
difficulty classification rather than continuous prediction. Hsu et al. in [73] predicted item
difficulty (of five levels, i.e., very easy, easy, moderate, difficult, very difficult) in social stud-
ies tests using semantic spaces and word embedding techniques, by which they reached
accuracy about 0.350 and extended accuracy about 0.780. Similar to our study, they also
found that semantic similarity between an item stem and the options strongly impacts item
difficulty. One year later, Lin et al. in [74] remade the analysis by Hsu and applied long
short-term memory on the same problem and datasets; they received an accuracy of 0.370
and extended accuracy of 0.840. Compared with the above-mentioned studies, our analysis
is limited by the number of items available for training the ML algorithms, as well as by
the relatively low and homogeneous item difficulty related to the level of the exam, which
was set to B1 according to the Common European Framework of Reference for Languages
(CEFR) standard.

This study opens several paths for further research. One possible path to improving
the algorithms presented here is to extend or improve the extracted item text features while

Mathematics 2023, 11, 4104 22 of 30

keeping in mind that simply boosting a number of item features would not necessarily
improve model predictive performance; see Section 2.4.4. We focused on text content rather
than context within the item difficulty prediction using their text wording. In our case,
various readability indices and indices of similarity between individual parts of item text
wording seemed to be important for the difficulty prediction, similarly to [73]. Additionally,
considering the elastic net summary, the standard deviation of item words’ length (in
characters) was of significant importance. The contentual features are easier to extract,
while they may reduce information encoded in the textual wording significantly [75].
Further research may consider also incorporating contextual analysis, which, however,
also requires extensive samples of textual data [76]. Other future paths include tuning the
settings of the involved ML algorithms or even including further ML methods.

Involving a wider range of training datasets is another possible path to follow. Our
work focused on predicting item difficulty in the reading comprehension section of the
English language test; however, the possible usage of the methods presented here is
much wider. Similar methods may find their use in the prediction of item difficulty in
other knowledge tests [69,70,77], or to provide a better understanding of the rating of the
quality of grant proposals [78,79] when a text complementing numerical ratings is available.
Text analysis and ML methods may provide a deeper insight into item-level differences
in responding and explain so-called differential item functioning (DIF) [80–82] or item-
level between-group differences in change after treatment (differential item functioning in
change, DIF-C) [83]. Given the increasing computational power, we expect more research
implementing textual data analysis will complement the analysis of rating data in the future.

6. Conclusions

To conclude, the text analysis of item wording may be useful for the prediction of item
difficulty, especially when item pre-testing is limited or not available. Machine learning al-
gorithms, particularly regularization or random forests, may be able to inform and improve
item difficulty estimates of the domain experts. Future studies should consider more com-
plex and deeper text analysis, including context analysis, as well as other ML methods, and
method tuning to even further improve the performance of the item difficulty prediction.

Author Contributions: Conceptualization, L.Š., J.D. and P.M.; Data curation, L.Š., J.D. and P.M.;
Formal analysis, L.Š., J.D. and P.M.; Funding acquisition, P.M.; Investigation, L.Š., J.D. and P.M.;
Methodology, L.Š., J.D. and P.M.; Project administration, P.M.; Resources, L.Š., J.D. and P.M.; Soft-
ware, L.Š., J.D. and P.M.; Supervision, P.M.; Validation, L.Š., J.D. and P.M.; Visualization, L.Š.;
Writing—original draft, L.Š., J.D. and P.M.; Writing—review & editing, L.Š., J.D. and P.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The study was supported by the Czech Science Foundation Grant Number 21-03658S, by
the institutional support RVO 67985807, and by the Charles University programme Progres Q15 “Life
course, lifestyle and quality of life from the perspective of individual adaptation and the relationship
of the actors and institutions”.

Data Availability Statement: Data, source code for the ML analysis, and further supplementary
material are available at OSF platform at https://osf.io/nzfgk/ (accessed on 27 September 2023).
Original data with item wordings are available at https://data.cermat.cz/ (in Czech) (accessed on 30
March 2023).

Acknowledgments: The authors thank the Centre for Evaluation of Educational Achievement for
sharing insights on item difficulty evaluation and for data of preliminary difficulty predictions by
domain experts. We also thank anonymous reviewers and Eva Potužníková for suggestions to
previous versions of the manuscript and Filip Martinek for assistance with software computations.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://osf.io/nzfgk/
https://data.cermat.cz/

Mathematics 2023, 11, 4104 23 of 30

Appendix A

In this part of the appendix, we describe selected item features and their definitions
in more detail, particularly those listed in Tables 4 and 5. The wording of an item usually
consists of the following parts: an item passage, a question, a key option, and distractors.
The item passage is an introductory text of varying length that mentions important terms
or definitions asked in the following item question or describes the item’s context. The item
question is followed by a permutation of a key option, i.e., a correct answer, and several
distractors, i.e., incorrect answers. In summary below, we mark any of the item wording
part as {A},

{A} ∈ {item passage, question, key option, distractors},

and any pair of the item wording parts as {A and B},

{A and B} ∈ {key option and distractors,

item passage and distractors,

item passage and key option,

question and distractors,

question and key option,

item passage and question}.

Each item feature is either a characteristic of an entire item text wording (i.e., there
is one numerical value of the item feature for the item) or of each item wording part (i.e.,
there is one numerical value for each wording part), or a pair of item wording parts. In
case the item feature is a numerical characteristic of part A of the item wording, or pair of
parts {A and B} of the item wording, it is indicated below using {A}: “item feature label”,
or {A and B}: “item feature label” notation, respectively.

Item Feature Description or Definition of the Item Feature

number of characters Total number of characters in a text of the item wording.

{A}–number of characters
Total number of characters in a text of part A of the item word-
ing.

number of tokens
Total number of unique tokens, i.e., words in a text of the item
wording.

{A}–number of tokens
Total number of unique tokens, i.e., words in a text of part A of
the item wording.

number of monosyllabic words
Number of monosyllabic words, i.e., words with only one sylla-
ble in a text of the item wording.

{A}–number of monosyllabic words
Number of monosyllabic words, i.e., words with only one sylla-
ble in a text of part A of the item wording.

number of multi-syllable words
Number of multi-syllable words, i.e., words with more than
three syllables in a text of the item wording.

{A}–number of multi-syllable words
Number of multi-syllable words, i.e., words with more than
three syllables in a text of part A of the item wording.

average word length (characters)
Average number of characters in words in a text of the item
wording.

{A}–average word length (characters)
Average number of characters in words in a text of part A of the
item wording.

longest word length (characters)
Number of characters contained by the longest word in a text of
the item wording.

Mathematics 2023, 11, 4104 24 of 30

{A}–longest word length (characters)
Number of characters contained by the longest word in a text of
part A of the item wording.

average sentence length (words)
Average number of words in sentences in a text of the item
wording.

{A}–average sentence length (words)
Average number of words in sentences in a text of part A of the
item wording.

word length’s standard deviation (characters)
Standard deviation of a number of characters in words in a text
of the item wording.

{A}–word length’s standard deviation (characters)
Standard deviation of a number of characters in words in a text
of part A of the item wording.

number of uncommon words, according to COCA corpus
Number of words in a text of the item wording that appear un-
commonly as defined in COCA (Corpus of Contemporary Ameri-
can English) corpus.

number of rare words, according to COCA corpus
Number of words in a text of the item wording that appear
rarely as defined in COCA (Corpus of Contemporary American
English) corpus.

frequency of the A1 words (CEFR)
Frequency of words in a text of the item wording at A1 level
in CEFR (Common European Framework of Reference for Lan-
guages) scale.

frequency of the B2–C2 words (CEFR)
Frequency of words in a text of the item wording at B2–C2
levels in CEFR (Common European Framework of Reference for
Languages) scale.

number of footnotes (hints) in the item Total number of footnotes or hints in a text of the item wording.

Dale-Chall index

The readability score of a text of the item wording based on
Dale-Chall readability formula. Dale-Chall readability formula
follows,

Dale-Chall index =

(
95 · ndifficult

nw

)
− (0.69 · w),

where ndifficult is a number of words not included in Dale-Chall
list of 3000 familiar words, nw is a total number of words in a text
of the item wording, and w is a value computed as a number of
words divided by a number of sentences, i.e., it is an average
number of words per a sentence [84]. The greater is a value of
Dale-Chall index for a given text, the more difficult is to read
the text.

FOG index

The readability score of a text of the item wording based on
Gunning’s Fog Index. The formula is

FOG index = 0.4 ·
(

w + 100 ·
nwords with ≥ 3 syllables

nw

)
,

where, again, w is a value computed as a number of words
divided by a number of sentences, i.e., it is an average num-
ber of words per a sentence, nw is a total number of words in
a text of the item wording, and nwords with ≥ 3 syllables is a num-
ber of words with three or more syllables in a text of the item
wording [85]. If the average length of a sentence or the number
of words with three or more syllables in a text increases, the
FOG index increases, too.

Mathematics 2023, 11, 4104 25 of 30

SMOG index

The readability score of a text of the item wording based on
Simple Measure of Gobbledygook (SMOG) index, so

SMOG index = 1.043 ·√nwords with ≥ 3 syllables ·
(

30
ns

)
+ 3.129,

where nwords with ≥ 3 syllables is a number of words with three or
more syllables in a text of the item wording and ns is a number of
sentences in a text of the item wording [86]. Whenever the term√nwords with ≥ 3 syllables

ns
increases, i.e., the square root of a number of

words with three or more syllables per a sentence, readability
increases in difficulty and the SMOG index increases.

Traenkle-Bailer index

The readability score of a text of the item wording based on
Traenkle-Bailer index (mostly used in German-speaking coun-
tries) is calculated as

T-B index = 224.68− (79.83 · c)− (12.24 · w)−
(

129.29 ·
nprep

nw

)
,

where c is an average number of characters per a word, w is
an average number of words per a sentence, nprep is a number
of prepositions and nw is a total number of words in a text of
the item wording [87]. Traenkle-Bailer index decreases, if the
average number of characters per a word, average number of
words per a sentence, or average number of prepositions per
a word increases.

{A and B}–euclidean distance

Let us assume two textual parts of item wording, A and B,
so that a union of their tokens has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
euclidean distance between the parts A and B is

d(A,B) =

√√√√ l

∑
i=1

(
tA,i − tB,i

)2.

The more similar the parts A and B of the item wording are, the
lower the value of euclidean distance d(A,B) is.

{A and B}–cosine similarity

Again, let us assume two textual parts of item wording, A and
B, so that a union of their tokens has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
cosine similarity between the parts A and B is

cos(A,B) = tA · tB
‖tA‖ ‖tB‖

=
∑l

i=1 tA,i · tB,i√
∑l

i=1 t2
A,i ·

√
∑l

i=1 t2
B,i

The more similar the parts A and B of the item wording are, the
higher the value of cosine similarity cos(A,B) is.

Mathematics 2023, 11, 4104 26 of 30

{A and B}–word2vec similarity

Similarity of parts A and B of the item wording based on
word2vec algorithms. Vectors of tokens for each part A and
B are generated, and the similarity between them is captured
from the context [88]. Thus, text parts with similar context end
up with similar vectors and high word2vec similarity.

{A and B}–common words1

Proportion of common words from a text of part A found in
a text of part B of the item wording. Let us assume two tex-
tual parts of item wording, A and B, so that a union of their
tokens, called also document-feature matrix has a length l ∈ N.
Additionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. Then
the {A and B}–common words1 is

{A and B}–common words1 =
tA · tB
‖tA‖2 =

∑l
i=1 tA,i · tB,i

∑l
i=1 t2

A,i

=

=
∑l

i=1 tA,i · tB,i

∑l
i=1 tA,i

.

{A and B}–common words2

Proportion of common words from a text of part B found in
a text of part A of the item wording. Let us assume two tex-
tual parts of item wording, A and B, so that a union of their
tokens, called also document-feature matrix has a length l ∈ N.
Additionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. Then
the {A and B}–common words2 is

{A and B}–common words2 =
tA · tB
‖tB‖2 =

∑l
i=1 tA,i · tB,i

∑l
i=1 t2

B,i

=

=
∑l

i=1 tA,i · tB,i

∑l
i=1 tB,i

.

{A and B}–number of features from a document-feature (DF)
matrix

Let us assume two textual parts of item wording, A and B,
so that a union of their tokens, called also document-feature
matrix (abbreviated as DF matrix) has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
number of features from a document-feature matrix for the parts
A and B is equal to

‖tA‖2 + ‖tB‖2 =
l

∑
i=1

t2
A,i +

l

∑
i=1

t2
B,i =

l

∑
i=1

tA,i +
l

∑
i=1

tB,i.

Obviously, since ∀i ∈ {1, 2, . . . , l} is either tA,i = 1, or tB,i = 1,
or tA,i = tB,i = 1, it is also

l ≤ ‖tA‖2 + ‖tB‖2 =
l

∑
i=1

t2
A,i +

l

∑
i=1

t2
B,i =

l

∑
i=1

tA,i +
l

∑
i=1

tB,i ≤ 2l.

Mathematics 2023, 11, 4104 27 of 30

References
1. Martinková, P.; Hladká, A. Computational Aspects of Psychometric Methods: With R; CRC Press: Boca Raton, FL, USA, 2023.
2. Kumar, V.; Boulanger, D. Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value. Front. Educ. 2020,

5, 572367.
3. Amorim, E.; Cançado, M.; Veloso, A. Automated Essay Scoring in the Presence of Biased Ratings. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
New Orleans, LA, USA, 1–6 June 2018; Association for Computational Linguistics: New Orleans, LA, USA, 2018; 1 (Long Papers),
pp. 229–237.

4. Tashu, T.M.; Maurya, C.K.; Horvath, T. Deep Learning Architecture for Automatic Essay Scoring. arXiv 2022, arXiv:2206.08232.
[CrossRef]

5. Flor, M.; Hao, J. Text Mining and Automated Scoring; Springer International Publishing: Cham, Switzerland, 2021; pp. 245–262.
[CrossRef]

6. Attali, Y.; Runge, A.; LaFlair, G.T.; Yancey, K.; Goodwin, S.; Park, Y.; Davier, A.A.v. The interactive reading task: Transformer-based
automatic item generation. Front. Artif. Intell. 2022, 5, 903077. [CrossRef]

7. Gierl, M.J.; Lai, H.; Turner, S.R. Using automatic item generation to create multiple-choice test items. Med. Educ. 2012, 46, 757–765.
[CrossRef]

8. Du, X.; Shao, J.; Cardie, C. Learning to Ask: Neural Question Generation for Reading Comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4
August 2017; Association for Computational Linguistics: Vancouver, Canada, 2017; pp. 1342–1352. [CrossRef]

9. Settles, B.; T LaFlair, G.; Hagiwara, M. Machine learning–driven language assessment. Trans. Assoc. Comput. Linguist. 2020,
8, 247–263. [CrossRef]

10. Kochmar, E.; Vu, D.D.; Belfer, R.; Gupta, V.; Serban, I.V.; Pineau, J. Automated Data-Driven Generation of Personalized
Pedagogical Interventions in Intelligent Tutoring Systems. Int. J. Artif. Intell. Educ. 2022, 32, 323–349. [CrossRef]

11. Gopalakrishnan, K.; Dhiyaneshwaran, N.; Yugesh, P. Online proctoring system using image processing and machine learning.
Int. J. Health Sci. 2022, 6, 891–899. [CrossRef]

12. Kaddoura, S.; Popescu, D.E.; Hemanth, J.D. A systematic review on machine learning models for online learning and examination
systems. PeerJ Comput. Sci. 2022, 8, e986. [CrossRef]

13. Kamalov, F.; Sulieman, H.; Santandreu Calonge, D. Machine learning based approach to exam cheating detection. PLoS ONE
2021, 16, e0254340. [CrossRef]

14. von Davier, M.; Tyack, L.; Khorramdel, L. Scoring Graphical Responses in TIMSS 2019 Using Artificial Neural Networks. Educ.
Psychol. Meas. 2023, 83, 556–585.

15. von Davier, M.; Tyack, L.; Khorramdel, L. Automated Scoring of Graphical Open-Ended Responses Using Artificial Neural
Networks. arXiv 2022, arXiv:2201.01783. [CrossRef]

16. von Davier, A.A.; Mislevy, R.J.; Hao, J. (Eds.) Computational Psychometrics: New Methodologies for a New Generation of Digital
Learning and Assessment: With Examples in R and Python; Methodology of Educational Measurement and Assessment; Springer
International Publishing: Cham, Switzerland, 2021. [CrossRef]

17. Hvitfeldt, E.; Silge, J. Supervised Machine Learning for Text Analysis in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021.
18. Ferrara, S.; Steedle, J.T.; Frantz, R.S. Response demands of reading comprehension test items: A review of item difficulty modeling

studies. Appl. Meas. Educ. 2022, 35, 237–253. [CrossRef]
19. Belov, D.I. Predicting Item Characteristic Curve (ICC) Using a Softmax Classifier. In Proceedings of the Annual Meeting of the

Psychometric Society; Springer: Cham, Switzerland, 2022; pp. 171–184. [CrossRef]
20. AlKhuzaey, S.; Grasso, F.; Payne, T.R.; Tamma, V. A systematic review of data-driven approaches to item difficulty prediction. In

Lecture Notes in Computer Science; Lecture notes in computer science; Springer International Publishing: Cham, Switzerland, 2021;
pp. 29–41.

21. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2021.
22. Jurafsky, D. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech

Recognition; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009.
23. Chomsky, N. Three models for the description of language. IEEE Trans. Inf. Theory 1956, 2, 113–124. [CrossRef]
24. Davies, M. The Corpus of Contemporary American English (COCA). 2008. Available online: http://corpus.byu.edu/coca/

(accessed on 29 June 2023).
25. Davies, M. Most Frequent 100,000 Word Forms in English (Based on Data from the COCA Corpus). 2011. Available online:

https://www.wordfrequency.info/ (accessed on 29 June 2023).
26. Tonelli, S.; Tran Manh, K.; Pianta, E. Making Readability Indices Readable. In Proceedings of the First Workshop on Predicting and

Improving Text Readability for Target Reader Populations; Association for Computational Linguistics: Montréal, QC, Canada, 2012;
pp. 40–48.

27. Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; The University of Chicago Press: Chicago, IL, USA, 1993.
28. Debelak, R.; Strobl, C.; Zeigenfuse, M.D. An introduction to the Rasch Model with Examples in R; CRC Press: Boca Raton, FL, USA,

2022.
29. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2010.

https://doi.org/10.48550/ARXIV.2206.08232
http://dx.doi.org/10.1007/978-3-030-74394-9_14
http://dx.doi.org/10.3389/frai.2022.903077
http://dx.doi.org/10.1111/j.1365-2923.2012.04289.x
http://dx.doi.org/10.18653/v1/P17-1123
http://dx.doi.org/10.1162/tacl_a_00310
http://dx.doi.org/10.1007/s40593-021-00267-x
http://dx.doi.org/10.53730/ijhs.v6nS5.8777
http://dx.doi.org/10.7717/peerj-cs.986
http://dx.doi.org/10.1371/journal.pone.0254340
https://doi.org/10.48550/ARXIV.2201.01783
http://dx.doi.org/10.1007/978-3-030-74394-9
http://dx.doi.org/10.1080/08957347.2022.2103135
http://dx.doi.org/10.1007/978-3-031-04572-1_13
http://dx.doi.org/10.1109/TIT.1956.1056813
http://corpus.byu.edu/coca/
https://www.wordfrequency.info/

Mathematics 2023, 11, 4104 28 of 30

30. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. (Methodol.) 1996, 58, 267–288. [CrossRef]
31. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67.

[CrossRef]
32. Tuia, D.; Flamary, R.; Barlaud, M. To be or not to be convex? A study on regularization in hyperspectral image classification. In

Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015;
IEEE: Piscataway, NJ, USA, 2015. [CrossRef]

33. Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. Stat. Methodol. 2005, 67, 301–320.
[CrossRef]

34. Fan, J.; Li, R. Comment: Feature Screening and Variable Selection via Iterative Ridge Regression. Technometrics 2020, 62, 434–437.
[CrossRef]

35. Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. [CrossRef]
36. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
37. Schölkopf, B. The Kernel Trick for Distances. In Proceedings of the 13th International Conference on Neural Information

Processing Systems (NIPS’00), Hong Kong, China, 3–6 October 2006; MIT Press: Cambridge, MA, USA, 2000; pp. 283–289.
38. Gray, N.A.B. Capturing knowledge through top-down induction of decision trees. IEEE Expert 1990, 5, 41–50. [CrossRef]
39. Breslow, L.A.; Aha, D.W. Simplifying decision trees: A survey. Knowl. Eng. Rev. 1997, 12, 1–40. [CrossRef]
40. Rutkowski, L.; Jaworski, M.; Pietruczuk, L.; Duda, P. The CART Decision Tree for Mining Data Streams. Inf. Sci. 2014, 266, 1–15.

[CrossRef]
41. Breiman, L. Classification and Regression Trees; Chapman & Hall: New York, NY, USA, 1993.
42. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
43. Rojas, R. The Backpropagation Algorithm. In Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; pp. 149–182.

[CrossRef]
44. Mishra, M.; Srivastava, M. A view of Artificial Neural Network. In Proceedings of the 2014 International Conference on Advances

in Engineering & Technology Research (ICAETR-2014), Unnao, Kanpur, India, 1–2 August 2014; IEEE: Piscataway, NJ, USA, 2014.
[CrossRef]

45. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [CrossRef]
46. Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics

2010, 26, 1340–1347. [CrossRef] [PubMed]
47. Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv

2020, arXiv:2010.16061.
48. Provost, F.J.; Fawcett, T.; Kohavi, R. The Case against Accuracy Estimation for Comparing Induction Algorithms. In Proceedings

of the Fifteenth International Conference on Machine Learning (ICML ’98), Madison, WI, USA, 24–27 July 1998; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1998; pp. 445–453.

49. Moore, A.W.; Lee, M.S. Efficient algorithms for minimizing cross validation error. In Proceedings of the 11th International
Conference on Machine Learning, New Brunswick, NJ, USA, 10–13 July 1994; Morgan Kaufmann: Burlington, MA, USA, 1994;
pp. 190–198.

50. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence–Volume 2 (IJCAI’95), Montréal, QC, Canada, 20–25 August 1995; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; pp. 1137–1143.

51. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021.
52. Mair, P.; Hatzinger, R.; Maier, M.J.; Rusch, T.; Debelak, R. eRm: Extended Rasch Modeling. 2021. Available online: https:

//cran.r-project.org/web/packages/eRm/index.html (accessed on 29 June 2023).
53. Benoit, K.; Watanabe, K.; Wang, H.; Nulty, P.; Obeng, A.; Müller, S.; Matsuo, A. Quanteda: An R Package for the Quantitative

Analysis of Textual Data. J. Open Source Softw. 2018, 3, 774. [CrossRef]
54. Friedman, J.; Tibshirani, R.; Hastie, T. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef]
55. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability

Theory Group (Formerly: E1071), TU Wien. 2023. R Package Version 1.7-13. Available online: https://rdrr.io/rforge/e1071/
(accessed on 29 June 2023).

56. Therneau, T.; Atkinson, B. rpart: Recursive Partitioning and Regression Trees, 2022. R Package Version 4.1.19. Available online:
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (accessed on 29 June 2023).

57. Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22.
58. Fritsch, S.; Guenther, F.; Wright, M.N. neuralnet: Training of Neural Networks, 2019. R Package Version 1.44.2. Available online:

https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf (accessed on 29 June 2023).
59. Craig, C.C. A Note on Sheppard’s Corrections. Ann. Math. Stat. 1941, 12, 339–345. [CrossRef]
60. Chen, J.; de Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt,

U.A.; Katsouyanni, K.; et al. A comparison of linear regression, regularization, and machine learning algorithms to develop
Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 2019, 130, 104934. [CrossRef]

http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1109/igarss.2015.7326942
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1080/00401706.2020.1801256
http://dx.doi.org/10.1023/A:1007465528199
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/64.54672
http://dx.doi.org/10.1017/S0269888997000015
http://dx.doi.org/10.1016/j.ins.2013.12.060
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/978-3-642-61068-4_7
http://dx.doi.org/10.1109/icaetr.2014.7012785
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1093/bioinformatics/btq134
http://www.ncbi.nlm.nih.gov/pubmed/20385727
https://cran.r-project.org/web/packages/eRm/index.html
https://cran.r-project.org/web/packages/eRm/index.html
http://dx.doi.org/10.21105/joss.00774
http://dx.doi.org/10.18637/jss.v033.i01
https://rdrr.io/rforge/e1071/
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://journal.r-project.org/archive/2010/RJ-2010-006/RJ-2010-006.pdf
http://dx.doi.org/10.1214/aoms/1177731716
http://dx.doi.org/10.1016/j.envint.2019.104934

Mathematics 2023, 11, 4104 29 of 30

61. Dong, Y.; Zhou, S.; Xing, L.; Chen, Y.; Ren, Z.; Dong, Y.; Zhang, X. Deep learning methods may not outperform other machine
learning methods on analyzing genomic studies. Front. Genet. 2022, 13, 992070. [CrossRef]

62. Su, J.; Fraser, N.J.; Gambardella, G.; Blott, M.; Durelli, G.; Thomas, D.B.; Leong, P.; Cheung, P.Y.K. Accuracy to Throughput
Trade-offs for Reduced Precision Neural Networks on Reconfigurable Logic. arXiv 2018, arXiv:1807.10577. [CrossRef]

63. Benedetto, L.; Cappelli, A.; Turrin, R.; Cremonesi, P. Introducing a Framework to Assess Newly Created Questions with Natural
Language Processing. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 43–54.
[CrossRef]

64. Benedetto, L.; Cappelli, A.; Turrin, R.; Cremonesi, P. R2DE: A NLP approach to estimating IRT parameters of newly generated
questions. In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge; ACM: New York, NY, USA, 2020.
[CrossRef]

65. Ehara, Y. Building an English Vocabulary Knowledge Dataset of Japanese English-as-a-Second-Language Learners Using
Crowdsourcing. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 7–12 May 2018; European Language Resources Association (ELRA): Miyazaki, Japan, 2018.

66. Lee, J.U.; Schwan, E.; Meyer, C.M. Manipulating the Difficulty of C-Tests. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics:
Florence, Italy, 2019; pp. 360–370. [CrossRef]

67. Pandarova, I.; Schmidt, T.; Hartig, J.; Boubekki, A.; Jones, R.D.; Brefeld, U. Predicting the Difficulty of Exercise Items for Dynamic
Difficulty Adaptation in Adaptive Language Tutoring. Int. J. Artif. Intell. Educ. 2019, 29, 342–367. [CrossRef]

68. Qiu, Z.; Wu, X.; Fan, W. Question Difficulty Prediction for Multiple Choice Problems in Medical Exams. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; ACM:
New York, NY, USA, 2019.

69. Ha, L.A.; Yaneva, V.; Baldwin, P.; Mee, J. Predicting the Difficulty of Multiple Choice Questions in a High-stakes Medical Exam.
In Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, Florence, Italy, 2
August 2019; Association for Computational Linguistics: Florence, Italy, 2019; pp. 11–20. [CrossRef]

70. Xue, K.; Yaneva, V.; Runyon, C.; Baldwin, P. Predicting the Difficulty and Response Time of Multiple Choice Questions Using
Transfer Learning. In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications,
Online, 10 July 2020; Association for Computational Linguistics: Seattle, WA, USA, 2020; pp. 193–197. [CrossRef]

71. Yaneva, V.; Ha, L.A.; Baldwin, P.; Mee, J. Predicting Item Survival for Multiple Choice Questions in a High-Stakes Medical Exam.
In Proceedings of the Twelfth Language Resources and Evaluation Conference,Marseille, France, 11–16 May 2020; European
Language Resources Association: Marseille, France, 2020; pp. 6812–6818.

72. Yin, Y.; Liu, Q.; Huang, Z.; Chen, E.; Tong, W.; Wang, S.; Su, Y. QuesNet. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019.

73. Hsu, F.Y.; Lee, H.M.; Chang, T.H.; Sung, Y.T. Automated estimation of item difficulty for multiple-choice tests: An application of
word embedding techniques. Inf. Process. Manag. 2018, 54, 969–984. [CrossRef]

74. Lin, L.H.; Chang, T.H.; Hsu, F.Y. Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term
Memory. In Proceedings of the 2019 International Conference on Asian Language Processing (IALP), Shanghai, China, 15–17
November 2019; IEEE: Piscataway, NJ, USA, 2019.

75. McTavish, D.G.; Pirro, E.B. Contextual content analysis. Qual. Quant. 1990, 24, 245–265. [CrossRef]
76. Stipak, B.; Hensler, C. Statistical Inference in Contextual Analysis. Am. J. Political Sci. 1982, 26, 151. [CrossRef]
77. Martinková, P.; Štěpánek, L.; Drabinová, A.; Houdek, J.; Vejražka, M.; Štuka, Č. Semi-real-time analyses of item characteristics for

medical school admission tests. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems,
Prague, Czech Republic, 3–6 September 2017; IEEE: Piscataway, NJ, USA, 2017.

78. Erosheva, E.A.; Martinková, P.; Lee, C.J. When zero may not be zero: A cautionary note on the use of inter-rater reliability in
evaluating grant peer review. J. R. Stat. Soc. Ser. (Stat. Soc.) 2021, 184, 904–919. [CrossRef]

79. Van den Besselaar, P.; Sandström, U.; Schiffbaenker, H. Studying grant decision-making: A linguistic analysis of review reports.
Scientometrics 2018, 117, 313–329. [CrossRef]

80. Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Psychometrics; Rao, C.R., Sinharay, S., Eds.; Handbook of
Statistics; Elsevier: Amsterdam, The Netherlands, 2006; Volume 26, pp. 125–167. [CrossRef]

81. Martinková, P.; Drabinová, A.; Liaw, Y.L.; Sanders, E.A.; McFarland, J.L.; Price, R.M. Checking equity: Why differential item
functioning analysis should be a routine part of developing conceptual assessments. CBE-Life Sci. Educ. 2017, 16, rm2. [CrossRef]

82. Hladká, A.; Martinková, P. difNLR: Generalized Logistic Regression Models for DIF and DDF Detection. R J. 2020, 12, 300–323.
[CrossRef]

83. Martinková, P.; Hladká, A.; Potužníková, E. Is academic tracking related to gains in learning competence? Using propensity score
matching and differential item change functioning analysis for better understanding of tracking implications. Learn. Instr. 2020,
66, 101286. [CrossRef]

84. Chall, J.S.; Dale, E. Readability REVISITED: The New Dale-Chall Readability Formula; Brookline Books: Cambridge, MA, USA, 1995.
85. Gunning, R. The Technique of Clear Writing; McGraw-Hill: New York, NY, USA, 1952.
86. McLaughlin, G.H. SMOG Grading: A New Readability Formula. J. Read. 1969, 12, 639–646.

http://dx.doi.org/10.3389/fgene.2022.992070
https://doi.org/10.48550/ARXIV.1807.10577
http://dx.doi.org/10.1007/978-3-030-52237-7_4
http://dx.doi.org/10.1145/3375462.3375517
http://dx.doi.org/10.18653/v1/P19-1035
http://dx.doi.org/10.1007/s40593-019-00180-4
http://dx.doi.org/10.18653/v1/W19-4402
http://dx.doi.org/10.18653/v1/2020.bea-1.20
http://dx.doi.org/10.1016/j.ipm.2018.06.007
http://dx.doi.org/10.1007/BF00139259
http://dx.doi.org/10.2307/2110845
http://dx.doi.org/10.1111/rssa.12681
http://dx.doi.org/10.1007/s11192-018-2848-x
http://dx.doi.org/10.1016/S0169-7161(06)26005-X
http://dx.doi.org/10.1187/cbe.16-10-0307
http://dx.doi.org/10.32614/RJ-2020-014
http://dx.doi.org/10.1016/j.learninstruc.2019.101286

Mathematics 2023, 11, 4104 30 of 30

87. Tränkle, U.; Bailer, H. Kreuzvalidierung und Neuberechnung von Lesbarkeitsformeln für die deutsche Sprache. Zeitschrift für
Entwicklungspsychologie und Pädagogische Psychologie 1984, 16, 231–244.

88. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.
arXiv:1301.3781.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Materials and Methods
	Dataset and Item Text Processing
	Item Difficulty Based on Student Responses
	Machine Learning Algorithms
	Regularization
	Naïve Bayes Classifier
	Support Vector Machines
	Regression and Classification Trees and Random Forests
	Neural Networks
	Variable Importance Analysis

	Evaluation of Algorithm Performance
	Evaluation of Regression Performance
	Evaluation of Classification Performance
	Cross-Validation
	Relationship between Model's Predictive Performance and a Number of Item Features in a Model

	Implementation
	Results
	Discussion
	Conclusions
	Appendix A
	References

