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Abstract: Crack problems in multilayered elastic media have attracted extensive attention for years
due to their wide applications in both a theoretical analysis and practical industry. The boundary
element method (BEM) is widely chosen among various numerical methods to solve the crack
problems. Compared to other numerical methods, such as the phase field method (PFM) or the finite
element method (FEM), the BEM ensures satisfying accuracy, broad applicability, and satisfactory
efficiency. Therefore, this paper reviews the state-of-the-art progress in a boundary-element analysis
of the crack problems in multilayered elastic media by concentrating on implementations of the
two branches of the BEM: the displacement discontinuity method (DDM) and the direct method
(DM). The review shows limitation of the DDM in applicability at first and subsequently reveals
the inapplicability of the conventional DM for the crack problems. After that, the review outlines a
pre-treatment that makes the DM applicable for the crack problems and presents a DM-based method
that solves the crack problems more efficiently than the conventional DM but still more slowly than
the DDM. Then, the review highlights a method that combines the DDM and the DM so that it shares
both the efficiency of the DDM and broad applicability of the DM after the pre-treatment, making it a
promising candidate for an analysis of the crack problems. In addition, the paper presents numerical
examples to demonstrate an even faster approximation with the combined method for a thin layer,
which is one of the challenges for hydraulic-fracturing simulation. Finally, the review concludes with
a comprehensive summary and an outlook for future study.

Keywords: displacement discontinuity method; direct method; crack problems; multilayered elastic
media

MSC: 65N38

1. Introduction

Recent decades saw an increasingly extensive interest in crack problems in multilay-
ered elastic media due to their wide range of applications, including a stability analysis of
construction for safety design [1–5], characterization of fractured porous media to optimize
transport efficiency [6–10], and hydraulic-fracturing simulation for economic development
of unconventional reservoirs [11–15], which has motivated the related works intensively
in the latest decade [16–20]. The core component of hydraulic-fracturing simulation is
well accepted to be the ability to model elastic response of a pressurized crack that in-
tersects a number of layers, each of which is assumed to be homogeneous and isotropic
individually [21–25].
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The phase field method (PFM) has become a popular numerical method for the
analysis of the crack problems in recent years, since its implementation is free of crack
tracking algorithms, enabling relatively easy simulation of complicated crack patterns,
such as nucleation, branching, and coalescence [25–28]. The PFM, however, requires highly
fine discretization due to the small length scale and becomes staggeringly computational-
resource intensive as a result [29–31], severely limiting its application in actual industry. In
addition, the PFM is usually incorporated with the finite element method (FEM) during
implementation. Therefore, some computational issues of the FEM, such as sensitivity to
geometry of the domain and size of discretization, also affect the PFM [31–33].

Among various numerical methods for the analysis of the crack problems to compute
crack opening displacement, the boundary element method (BEM) is widely chosen, be-
cause it only discretizes boundaries of a domain of interest and consequently enables a
more-efficient computation and a more-convenient implementation [34–37], while most of
the other methods, such as the PFM or FEM, require discretization of the whole domain [31].
Furthermore, the BEM exploits existed analytical fundamental solutions, ensuring a po-
tentially more accurate computation [38–41]. Thus, it is essential to determine analytical
fundamental solutions appropriately for precise determination of boundary-element equa-
tions and efficient implementation to subsequently solve the crack problems.

The governing equation of the multilayered media is well known as a system of partial
differential equations (PDEs) from the theory of elasticity [37,41]. Therefore, it is natural
to find the analytical fundamental solutions by reducing the PDEs to ordinary differential
equations (ODEs) for simpler calculation [42]. As a result, a variant of the BEM called
the Fourier transform (FT) method that utilizes FT-type convolution has been proposed
by many authors to reduce the PDEs of the system [19,40,42–45]. When the solutions of
stress and displacement to the ODEs are solved in the FT field, a following inverse FT-type
convolution leads to analytical fundamental solutions in the spatial field. Unfortunately,
the convolution that has to be conducted twice for the method often results in improper
integrals that require numerical evaluation, exacerbating accuracy and efficiency of the
subsequent boundary-element implementation [46–48]. In addition, the FT method requires
all the interfaces of the media to be parallel, otherwise the convolution cannot reduce the
PDEs to ODEs.

Unlike the FT method that requires elements along the interfaces, it is not necessary
for the displacement discontinuity method (DDM), a branch of the BEM, to take care of
interfaces [49–52], making itself perhaps the most efficient numerical method for an analysis
of the crack problems [37]. Therefore, after the statement of the crack problem in Section 2,
the following Section 3 outlines the DDM at first, showing its high efficiency and strict
limit for crack problems in general multilayered media, in which the number of layers is
more than three. Then, Section 4 describes the direct method (DM) that is short for the
direct boundary element method (DBEM), the other branch of the classical BEM, revealing
its inapplicability for crack problems. After that, Section 5 presents a pre-treatment that
turns the DM applicable for the crack problems and a DM-based method that solves the
problems more efficiently than the conventional DM but still more slowly than the DDM.
Having reviewed both the DDM and DM, the paper highlights a method that combines
the DDM and DM in Section 6 so that it shares both the efficiency of the DDM and broad
applicability of the DM after the pre-treatment, making it a promising candidate to solve the
crack problems. Section 6 also provides numerical examples to demonstrate an even faster
approximation with the combined method for a thin layer, which is one of the challenges for
actual hydraulic-fracturing simulation. Finally, Section 7 summarizes the current advances
of a boundary-element analysis of the crack problems and suggests future directions of the
study.

2. Statement of Problem

Figure 1 shows the configuration of the crack problem in the paper. A pressurized
crack under known pressure pc passes through a number of layers. Each layer, character-
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ized by Young’s modulus E and Poisson ratio v, is assumed homogeneous and isotropic
individually [53]. The objective is to determine the crack opening displacement D in the
quasi-static problem. We shall compare the crack opening displacement obtained with
a boundary-element method with those obtained with an analytical or semi-analytical
solution, if any. The percentage error of the method to be tested is defined as

Err% = 100% × (Dn − Da)/Da (1)

where Dn is the crack opening obtained with the method to be tested, and Da represents
the crack opening determined with the benchmark method.
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Figure 1. Schematic view of the crack problem [54].

The labeling in the figure follows the convention of the works authored by Maier and
Novati [54]. The index (i) denotes the i-th layer and ranges from 1 (the bottom layer) to
N (the top layer). The superscript i represents the material properties and quantities of
interest (traction and displacement) associated with the i-th layer. The long dash line in
the center implies the initial status of a slit-like crack characterized by two surfaces, one of
which overlaps the other effectively. The two short dash lines at the two sides indicate the
fictitious side boundaries, which are assumed in “undisturbed” regions and characterized
by vanishing (zero) displacement, since the distance of them, h, is assumed to be infinite.

Matrices and column vectors are denoted by bold symbols. Thus, vectors of the nodal
traction and displacement are indicated by p and u, respectively. The quantities pertaining
to the lower (bottom), upper (top), side boundaries, and crack surfaces of each layer are
denoted by the subscripts b, t, s, and c, respectively.

The boundary conditions of the multilayered system are usually of the type

ub
1 = 0, pt

N = p0 (2)

where 0 is the null matrix or vector, and p0 indicates the vector of the given nodal tractions
on the very top surface of the system. The former of Equation (1) usually reflects an
underlying rigid rock formation characterized by zero displacement beneath the bottom of
the multilayered media [45,54]. The boundary condition on the side boundaries is then

us
i = 0 (1 ≤ i ≤ N) (3)

As a result, the equations associated with the side boundaries can be split out of those
pertaining to other boundaries [54].

The local coordinate defined in [41] is adopted in the paper, leading to the following
interface continuity conditions (see the Appendix A for details).

ut
i = −ub

i+1, pt
i = pb

i+1 (4)
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3. Displacement Discontinuity Method (DDM)

The DDM, proposed by Crouch [49], exploits the physical analog of a slit-like crack
and a distribution of a series of constant displacement discontinuities or a distribution of
a series of edge-dislocation dipoles (Figure 2). As a result, the DDM only focuses on the
elements on the crack surface by discretizing it as a unity. In other words, it is not necessary
for the DDM to introduce elements along interfaces, if any, while other numerical methods
have to take care of the interfaces, making the DDM perhaps the most efficient numerical
method for an analysis of the crack problems [37].
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3.1. Homogeneous Medium

The DDM was proposed under the assumption that (1) a crack lies in a homogeneous
and isotropic medium and (2) equal loadings apply on the two crack surfaces (Figure 2a).
The boundary-element equation of the DDM can be written in a concise form as

KD = p (5a)

where K is the coefficient matrix obtained from the DDM. Its explicit form is referred to in
Ref. [49]. It is worth noting that the K obtained from the theory of constant displacement
discontinuities and that obtained from the theory of edge dislocation are mathematically
the same. D is the nodal opening displacement of the elements on the crack surface. p is
the known nodal pressure on the crack surface. Thus, the crack opening displacement is

D = (K)−1p (5b)

In addition, the analytical solution to the crack problem in a homogeneous medium is
given as the following [55,56]:

D0 = −4(1− v2)

E
p
√

l2 − x2 (6)

The percentage errors of the DDM with respect to the analytical solution with different
numbers of the uniform crack element are illustrated in Figure 3, in which only the left-half
part of the crack is displayed because of the symmetry. The abscissa is normalized by x/l,
so that the coordinate −1 represents the crack tip. Figure 3b involves 100 crack elements,
while only 11 elements are shown for visual simplicity.
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Figure 3 demonstrates that a refined mesh leads to a more satisfying accuracy along
the crack surface, except the tip, where the error of the DDM keeps around 26%.

3.2. The Higher-Order Tip-Element Approach

In order to improve the tip accuracy of the DDM, Shou and Crouch [57] developed
the tip-element approach by replacing the constant displacement discontinuity (DD), also
known as the zeroth-order element, at the tips with a higher-order quadratic DD (Figure 4).
Constant DD is still assumed for elements other than at the tip, while the higher-order tip
element assumes D~r1/2, where D is the opening displacement and r is the distance from a
point in the tip element to its nearer tip point (x = −l for the left tip element and x = l for
the right tip element). As a result, the approach captures the asymptotic behavior of the
near-tip stress field due to the DD, leading to better tip accuracy.
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The tip-element approach yields a boundary-element equation in the same form as
Equation (4), while the explicit form of the K is referred to in Ref. [57]. The errors of the
DDM with the tip element and the conventional DDM are displayed in Figure 5, which
demonstrates significant improvement of the tip accuracy due to the higher-order tip
element. The tip error decreases from around 26% to around 9%.
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The tip-element approach, however, is restricted to the homogeneous medium. Once
the media becomes inhomogeneous, the approach fails. In addition, some attempts have
been made to place higher-order elements on the whole crack surface for even better
accuracy [58,59]. Unfortunately, they are also limited to a homogeneous medium.

3.3. Two Bonded Half-Planes

Although the tip-element approach only applies to the homogeneous medium, the
conventional DDM can be extended to the two bonded half-planes (Figure 6), since the
Dundur’s equation that characterizes the stress field of an edge dislocation in the two
bonded half-planes can be used as an analytical fundamental solution [55,60].
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series of edge-dislocation dipoles.

The DDM for the two bonded half-planes results in a boundary-element equation in
the same form as Equation (4), while the explicit form of the K is based on the Dundur’s
equation and can be referred to Refs. [55,60]. A semi-analytical solution to the crack problem
in the two bonded half-planes is available with an additional continuity condition [61,62]:

1− v2
1

E1
p1 =

1− v2
2

E2
p2 (7)

The percentage error of the DDM with respect to the semi-analytical solution is
shown in Figure 7. In the computation, the material properties are set as E1 = 3.07 (GPa),
v1 = 0.35, E2 = 68.95 (GPa), and v2 = 0.3. The thickness of layer d is assumed to be 100 times
of the larger one of b1 and b2, approximating the condition of the infinite d. In total,
10 uniform elements are placed on the shorter segment of the crack for a reasonably refined
discretization.

In Figure 7, the abscissa is normalized using

ξ =

{
2x−b1

b1
, x < 0

2x−b2
b2

, x ≥ 0
(8)

Thus, coordinate −3 and 1 represent the two crack tips. The result shows that the
DDM matches well with the benchmark, except at the tip. Unfortunately, we cannot apply
the tip-element approach here since the media becomes inhomogeneous.

3.4. Summary

The section has reviewed the DDM and its implementation for the crack problems in a
homogeneous medium and two bonded half-planes. The method only requires elements
on the crack surface and provides well-accepted accuracy, except at the tip. The tip-
element approach improves the tip accuracy significantly, while it is not applicable to
inhomogeneous media. In addition, the DDM is restricted in the cases of a homogeneous
medium and two bonded half-planes since there are no existing analytical fundamental
solutions to construct the boundary-element equations for the DDM in general multilayered
media. Although some attempts [20,47,48] have been made to extend the DDM for general
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multilayered media, the extensions turn out to be first-order approximations, instead of
full solutions [63,64]. As a result, we turn to the DM, the other branch of the BEM, for a
more applicable implementation.
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4. Direct Method (DM)

Unlike the DDM that utilizes a physical analog of a slit-like crack and a distribution
of a series of DDs or edge-dislocation dipoles, the traditional boundary-element method
determines boundary-element equations directly by using the Kelvin’s solution and the
reciprocal theorem [65–69]. Thus, the method is also known as the direct method (DM) [41].
The implementation of the DM for the multilayered media involves construction of a
boundary-element equation for each layer and subsequent assembly of the equations with
the continuity conditions along interfaces. Such a procedure usually generates an awfully
large system of equations, of which all the unknowns are then solved simultaneously,
undermining both accuracy and efficiency significantly [70]. Thus, it becomes necessary to
decompose the large final system of equations into smaller ones by using the chain-like
properties, i.e., the continuity conditions on the interfaces of the multilayered media [53,71].
Unfortunately, the DM cannot distinguish the effects of elements placed along one crack
surface from those placed along the other surface. Thus, the DM cannot be applied to the
crack problems directly [41]. The implementation of the DM for the multilayered media
that does not contain cracks, however, inspires subsequent studies on the DM for the crack
problems in multilayered media. As a result, we shall still review the DM here in a relatively
concise manner.

4.1. Transfer Stiffness Method (TSM)

Maier and Novati [53] developed a method to decompose the final large system of a
boundary-element equation into smaller ones. The method sets up the boundary-element
equation for each layer of the multilayered media with the DM in the form

Hiui = pi (9)

where H is the stiffness matrix obtained from the DM, of which the explicit form is referred
to in [41]. It expresses the tractions in terms of the displacements. u and p are the nodal
displacement and traction of elements, respectively. The superscript i denotes the current
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layer (the i-th layer). We can rewrite Equation (9) to (10) by partitioning the boundary
elements according to the categorization of the boundaries:[

Hi
tt Hi

tb
Hi

bt Hi
bb

]{
ui

t
ui

b

}
=

{
pi

t
pi

b

}
(10)

When the elements on the top and bottom surfaces are placed in pair (Figure 8a),
Equation (10) can be rewritten to Equation (11) so that the quantities on the bottom interface
can be expressed in terms of those on the top interfaces after some basic arrangements:[

Ti
uu Ti

up
Ti

pu Ti
pp

]{
ui

t
pi

t

}
=

{
ui

b
pi

b

}
(11)

where Tuu
i = − (Htb

i)−1Htt
i, Tup

i = (Htb
i)−1, Tpu

i = Hbt
i − Hbb(Htb

i)−1Htt
i, and Tpp

i = Hbb
i

(Htb
i)−1.
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Equation (11) can be written into a more concise form as

Ti
{

ui
t

pi
t

}
=

{
ui

b
pi

b

}
(12)

From Equation (12), we can solve the unknown displacements and tractions on the very
top and bottom boundaries of the media using the chain-like property of the multilayered
media, i.e., Equation (3), as a continuity condition on the interface:

i

∏
1

Ti
{

ui
t

pi
t

}
=

{
(−1)i+1u1

b
p1

b

}
(13)

Equation (13) is a recursive formula. When i = N, we can solve pb
1 and ut

N, since ub
1

and pt
N are prescribed in Equation (1) as the boundary condition. Having obtained pb

1

and ut
N, we can evaluate i from 2 to N−1 to obtain all the unknown displacements and

tractions on the bottom and top interfaces of the layer that ranges from 2 to N−1. In other
words, the TSM solves the unknowns by transferring the displacements and tractions on
the bottom interface to those on the top interface of a layer with a sequential product of
matrices from T1 to Ti.

Although the TSM manages to decompose the large final system of equations into
smaller ones to improve efficiency, it suffers several computational issues that limit its
application severely [45,54]:

(1) It requires elements on the top and bottom interfaces in pair;
(2) It categorizes the elements according to the type of unknown (displacement or trac-

tion). In practical applications, however, the displacement in mm and traction in kPa
or MPa differs in magnitude of several orders. Therefore, an extra scaling that makes
displacement and traction in the same order is necessary in case of ill-conditioning,
undermining the efficiency of the method;

(3) It results in a highly ill-conditioned matrix H when dealing with a thick layer.

In order to address the issues above, Maier and Novati [54] proposed the successive
stiffness method (SSM) that can be implemented in a more robust manner.
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4.2. Successive Stiffness Method (SSM)

The SSM follows the same path of the TSM until Equation (10), from which the SSM
derives a recursive formula [54]:

pt
i = Ĥtt

iut
i (14)

where Ĥ is the stiffness matrix of the i-th layer. When i = 1,

Ĥtt
1 = Htt

1 (15)

When i = 2~N,
Ĥtt

i = Htt
i − Htb

i(Hbb
i + Ĥtt

i−1)Hbt
i (16)

Based on Equation (14), the SSM derived another two recursive formulae for i = 2~N:

ub
i = [(Ĥtt

i−1 − Hbb
i)−1Hbt

i]ut
i (17)

pb
i = Ĥtt

i−1ut
i (18)

Having obtained Equations (14), (17) and (18), we can firstly obtain ut
N from

Equation (14), since pt
N is given as a boundary condition. Substitution of the solved ut

N

into Equations (17) and (18) with i = N solves both ub
N and pb

N. The continuity condition
on the interface gives ut

N−1 = −ub
N and pt

N−1 = pb
N. Then, we can repeat the procedure

to obtain ub
N−1 and pb

N−1 by replacing i = N by i = N − 1 in Equations (17) and (18). In
such a recursive manner, we can compute all the unknowns successively from the very top
layer to the very bottom one in a descending order, making the method quite convenient
for numerical implementation. In addition, the method does not suffer the computational
issues of the TSM.

4.3. Summary

The section has reviewed the DM and its implementation for multilayered media. The
TSM decomposes the final large system of equations by utilizing the chain-like property
(continuity condition on interfaces) of the media and categorizing the boundary element
according to the type of unknown (displacement or traction). On the other hand, the SSM
categorizes the boundary element by the categorization of the boundaries (bottom or top)
and consequently overcomes the computational issues of the TSM. It is worth noting that
neither the two methods are applicable for the crack problems directly, since the DM cannot
distinguish the effects of elements placed along one crack surface from those placed along
the other crack surface. The development of the SSM, however, inspires us to conceive
a different approach to implement the DM so that it can be used for crack problems in
multilayered media.

5. Consecutive Stiffness Method (CSM)
5.1. Pre-Treatment

The inapplicability of the DM to solve crack problems is attributed to the incapability
of the DM to distinguish effects of the elements on the two overlapping crack surfaces [41].
If we divide the media artificially along the crack surface, however, the media will be
divided into two subdomains with a pair of imaginary interfaces denoted by I and I’
(Figure 9). Then, we construct the boundary-element equation for each subdomain and
assemble them with the continuity conditions on I and I’. The assembled equation turns
out to be applicable to computing opening displacement of a slit-like crack [38,41].
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We can now solve the crack problem in a homogeneous medium by dividing the
medium in the way shown in Figure 9 and obtain the assembled boundary-element equation
to compute the crack opening displacement. The details of the assembly and the consequent
discretization can be referred to in Ref. [72]. The results obtained with the DM are compared
to those obtained with the conventional DDM and the DDM with the tip element (Figure 10).
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(a) 5 crack elements and (b) 100 crack elements.

Figure 10 indicates that the DM shows the most satisfying accuracy except at the tip,
since the integrals involved in the implementation of the DM can be evaluated analytically
under the plane–strain condition [41]. Although the higher-order tip-element approach
yields the best tip accuracy, the DM that uses the zeroth-order element can still obtain a
comparable accuracy at the tip. On the other hand, the requirement of the pre-treatment
makes the DM much slower than the DDM (Table 1).

Table 1. Durations of the three methods for the case of homogeneous medium.

Method Duration for 5 Elements (s) Duration for 100 Elements (s)

DDM 0.0050 0.0068
DDM with tip element 0.0051 0.0071

DM 0.0650 1.2066

All the computations in the paper were conducted with MATLAB 2021a on a desktop
with an Intel(R) Core (TM) i9-13900KF 3.00GHz CPU and 32GB RAM. Table 1 clearly
indicates that the DM is much slower than the DDM, not only because of the pre-treatment
but also due to the necessity to take care of the elements on the resultant interfaces I and I’,
while the DDM only concentrates on the crack surface elements.

The pre-treatment shown in Figure 9 enables the application of the DM for crack
problems in multilayered media. In Figure 11, the blue and red lines represent the two
crack surfaces that effectively overlap each other, respectively. We cut the media along the
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crack surface (Figure 11a) artificially and acquire the resultant subdomains (Figure 11b).
After that, we set up a boundary-element equation for each subdomain and assembled the
equations with continuity conditions on all the interfaces.
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tion and (b) resultant configuration after the division.

It is obvious that an increase in the number of layers leads to a more cumbersome
implementation, as we need to set up the boundary-element equation for each subdomain
and assemble them all together. The procedure finally results in an extraordinarily huge
system of equations, further deteriorating the efficiency of the DM. In order to improve the
efficiency, Long et al. [72] proposed a consecutive stiffness method to break the huge system
of equations into smaller ones and enable a recursive formula for faster computation by
utilizing the chain-like property, i.e., the interfacial continuity condition of the media.

5.2. Formulations and Algorithm

The CSM divides the media and obtains the resultant subdomain in the way shown
in Figure 11. After setting up a boundary-element equation for each subdomain, the CSM
assembles two subdomains of a given layer through the resultant interface I’ and I”, if
any. If the given layer is an inner layer, e.g., the i-th layer in Figure 11b, the CSM simply
patches the two systems of equations into one, since there is no resultant interface for
the layer. Such a procedure eventually leads to a new system of equations for each layer,
instead of a system of equations for the whole multilayered media. After that, the CSM
derives recursive formulae to calculate unknowns for a faster computation by following the
procedure of the SSM. In addition, the CSM derives a particular recursive formula that only
focuses on the crack opening displacement uc so that all the other unknowns are eliminated
during intermediate procedures, ensuring a further faster computation. Considering the
limit of the page, we only present the four key equations of the method below. The detailed
derivation of the equations is referred to in Ref. [72].

ut
N = (ĤN

tt )
−1

pt
N −CNpc

N −G(N)(N−1)p̂N−1
t (19)

uc
N = −(

∼
Hcc

N
)
−1

[
∼
Hct

N
−
∼
Hcb

N(
AN − Ĥ1

tt

)−1
BN ]ut

N

+ (
∼
Hcc

N
)
−1

{[I−
∼
Hcb

N(
AN − ĤN−1

tt

)−1∼
Hcb

N(∼
Hcc

N)−1

]pc
N +

∼
Hcb

N(
AN − ĤN−1

tt

)−1
p̂N−1

t

(20)

uc
i−1 = −(

∼
Hct

i
Htt

i−1Htc
i−1∼Hcc

i−1
)
−1∼

Hct
i−1[

Hbc
iuc

i + ûi
b + Htt

i−1∼Htc
i−1∼

pc
i−1
]

, i = 2 ∼ N (21)

uc
1 = (

∼
Hcc

1
)−1[pc

1 +
∼
Hct

1
ut

1(Hbc
2uc

2 + ûi
b)] (22)
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Equation (21) is the particular recursive formula in which i ranges from 2 to N. In

Equations (19)–(22), the matrices, such as Ĥ,
∼
H, H, A, C, etc., and the vectors at the right-

hand side, such as pc, p̂t, ûb,
∼
pc, etc., are all known. The details of those quantities are

available in Ref. [72]. Having obtained the four equations, we can conduct a sequential
computation to solve the displacements on the crack surfaces consecutively in each layer in
a descending order from the very top layer to the very bottom one. The flowchart of the
computation is shown in Figure 12.
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CSM.

The calculated displacement of a crack surface in all the layers uc contains two parts:
the displacement of the upper crack surfaces, denoted by uc

+, and that of the lower crack
surfaces, denoted by uc

−. According to the local coordinate used in the work, the crack
opening displacement Dc is the following (see the Appendix A for details):

Dc = uc
− + uc

+ (23)

5.3. Numerical Examples

The discretization of the CSM is referred to in Ref. [72]. We compare the crack opening
displacements obtained with the DDM and the CSM for the crack problem in two bonded
half-planes (Figure 13).
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Figure 14 illustrates that both the DDM and the DM match the semi-analytical solu-
tion well along the crack surface, except at the tips. The CSM obtains tip errors that are 
lower than 20%, which is acceptable for practical engineering applications. Furthermore, 
the CSM leads to generally satisfactory results when the ratio of crack segments falls in 
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The parameters remain the same as in Section 3.3. The percentage errors of the DDM
and the CSM are displayed in Figure 14.

Figure 14 illustrates that both the DDM and the DM match the semi-analytical solution
well along the crack surface, except at the tips. The CSM obtains tip errors that are lower
than 20%, which is acceptable for practical engineering applications. Furthermore, the CSM
leads to generally satisfactory results when the ratio of crack segments falls in the practical
range, i.e., the value of b1/b2 falls in one order of magnitude. The durations of the DDM,
CSM, and DM with the artificial subdivision are listed in Table 2.
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Table 2. Durations of the DDM, CSM, and DM for the case of two bonded half-planes.

Method
Duration (s)

b1/b2 = 1/25 b1/b2 = 1/1 b1/b2 = 2/1

DDM 0.052 0.010 0.015
CSM 6.050 0.042 0.311
DM 70.24 0.153 1.914

Table 2 indicates that the CSM is faster than the DM. On the other hand, the CSM that
needs to take care of the elements on the interfaces is still slower than the DDM that only
focuses on the elements on crack surfaces. The difference gets even larger with an increase
in the number of elements.

5.4. Summary

The section has reviewed the CSM that implements the DM in a way that an artificial
division of the multilayered media is made, enabling sequential computation to solve the
displacements on the crack surfaces in each layer consecutively in a descending order from
the very top layer to the very bottom one. Figures 10 and 14 illustrate acceptable accuracy
of the DM even with the zeroth-order element because analytical evaluation is available
for the integrals involved in the DM under the plane–strain condition [41], indicating that
the DM-based CSM can be used as a convincing benchmark to test other methods for
crack problems in multilayered media. Furthermore, Tables 1 and 2 have demonstrated the
inefficiency of the CSM.

It is also worth noting that the inefficiency excludes the CSM for practical industrial
applications, such as hydraulic-fracturing treatment that usually sets up the system of
equations to conduct millions of time steps’ computation because of an excessively small
time step for numerical stability [73–76]. For each time step, the newly introduced ele-
ments on the imaginary interfaces due to the artificial division result in a larger system of
equations to manipulate [77–79], severely deteriorating the efficiency. In addition, when
multiple cracks are involved, the CSM gets even slower and cumbersome for numerical
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implementation, since each crack requires an artificial division and consequent additional
computation. Therefore, it is natural to conceive a method that shares both the efficiency of
the DDM and broad applicability of the DM after the division.

6. Combined Boundary-Element Method

Ref. [19] incorporated the generalized Kelvin’s solution, the fundamental analytical
solution of the DM, to the DDM with the Fourier transform, illustrating combination of
the two methods from the aspect of basic theory. On the other hand, Ref. [13] attempts to
extend the DDM with a “dividing and patch” approach, showing a simpler combination.
Inspired by the two works, Long and Xu [80] presented a method that sets up the stiffness
matrix of each layer with the DDM and characterizes the effects of the interfaces with the
DM. Thus, the method that combines the DDM and the DM shares both the efficiency of
the DDM and broad applicability of the DM after the artificial division.

6.1. Formulations and Algorithm

Figure 15 schematically illustrates a given (the i-th) layer after the deformation due to
crack opening. The interfaces are sketched parallel for visual simplicity. Then, two artificial
half-planes in the same material property marked in green and blue are patched with the
layer on its original bottom and top interfaces (vertical dash lines), respectively.

Mathematics 2023, 11, 4125 15 of 25 
 

 

  
(a) (b) 

Figure 15. Schematic view of the artificial patch: (a) the ith layer after the deformation and (b) the i-
th layer patched with two half-planes in the same material property. 

Having patched the two half-planes to the given layer, we apply tractions of the same 
magnitudes but in the opposite directions of the interfacial tractions. Thus, the interfaces 
of the two half-planes deform artificial nodal displacement vbi and vti, respectively (Figure 
15b). The nodal displacement discontinuities on the two interfaces are 

Dbi = ubi + vbi,  Dti = uti + vti (13)

In addition, the resultant medium becomes homogeneous, enabling implementation 
of the tip-element approach for the resultant artificial crack. Thus, we set up the matrix Ki 
for the elements at the crack tips marked by red circles in Figure 15b with the tip-element 
approach and construct Ki for the non-tip elements with the conventional DDM: 

KiDi = pi (25)

where the matrix Ki can be partitioned by the categorization of the boundaries: 

i i i i i
bb bc bt b b
i i i i i
cb cc ct c c
i i i i i
tb tc tt t t

     
     

    
    

     

K K K D p
K K K D p
K K K D p

 (26)

where the matrices Kcti, etc., are determined with the configuration of the ith layer. Thus, 
they can be treated as known quantities.  

On the other hand, we can also construct the boundary-element equation for the 
patched half-planes based on the DM: 

Hbbivbi = pbi, H ivti = pti (27)

where the matrices Hbbi and H i are determined with the configuration of the patched half-
planes only. Therefore, they can also be treated as known quantities. 

Equations (25) and (27) are the starting point of the combined method. The method 
derives recursive formulae to obtain the final equation system that contains only the crack 
opening Dc for an even faster computation. Similar to the review of the CSM (Section 5.2), 
we only present the key equations of the combined method here, considering the limit of 
the page. The detailed explanation and derivation are referred to in Ref. [80]. 

When i = 1, the stiffness matrices of the combined method are 

K̂cc1 = K̃cc1, K̂ct1 = K̃ct1, K̂tc1 = K̃tc1, K̂ 1 = K̃ 1 (28)

where the matrices K̃, etc., are resultant matrices after fundamental calculations of the 
basic matrices K, etc., and H, etc., in Equations (25) and (27). 

When i = 2~N, the stiffness matrices of the combined method are  

Figure 15. Schematic view of the artificial patch: (a) the i-th layer after the deformation and (b) the
i-th layer patched with two half-planes in the same material property.

Having patched the two half-planes to the given layer, we apply tractions of the
same magnitudes but in the opposite directions of the interfacial tractions. Thus, the inter-
faces of the two half-planes deform artificial nodal displacement vb

i and vt
i, respectively

(Figure 15b). The nodal displacement discontinuities on the two interfaces are

Db
i = ub

i + vb
i, Dt

i = ut
i + vt

i (24)

In addition, the resultant medium becomes homogeneous, enabling implementation
of the tip-element approach for the resultant artificial crack. Thus, we set up the matrix Ki

for the elements at the crack tips marked by red circles in Figure 15b with the tip-element
approach and construct Ki for the non-tip elements with the conventional DDM:

KiDi = pi (25)
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where the matrix Ki can be partitioned by the categorization of the boundaries:Ki
bb Ki

bc Ki
bt

Ki
cb Ki

cc Ki
ct

Ki
tb Ki

tc Ki
tt


Di

b
Di

c
Di

t

 =


pi

b
pi

c
pi

t

 (26)

where the matrices Kct
i, etc., are determined with the configuration of the i-th layer. Thus,

they can be treated as known quantities.
On the other hand, we can also construct the boundary-element equation for the

patched half-planes based on the DM:

Hbb
ivb

i = pb
i, Htt

ivt
i = pt

i (27)

where the matrices Hbb
i and Htt

i are determined with the configuration of the patched
half-planes only. Therefore, they can also be treated as known quantities.

Equations (25) and (27) are the starting point of the combined method. The method
derives recursive formulae to obtain the final equation system that contains only the crack
opening Dc for an even faster computation. Similar to the review of the CSM (Section 5.2),
we only present the key equations of the combined method here, considering the limit of
the page. The detailed explanation and derivation are referred to in Ref. [80].

When i = 1, the stiffness matrices of the combined method are

K̂1
cc =

∼
Kcc

1
, K̂1

ct =
∼
Kct

1
, K̂1

tc =
∼
Ktc

1
, K̂1

tt =
∼
Ktt

1
(28)

where the matrices
∼
K, etc., are resultant matrices after fundamental calculations of the basic

matrices K, etc., and H, etc., in Equations (25) and (27).
When i = 2~N, the stiffness matrices of the combined method are

K̂i
cc =

K̂i−1
cc − K̂i−1

ct

(
Qi−1

bb

)−1
K̂i−1

tc Ki
cb Ni

bbK̂i−1
tc

Jci−1bi Ki
bc Ki

cc −Mi
cbKi

bc

, K̂i
ct =

[
Jci−1bi Ki

bt
Ki

ct −Mi
cbKi

bt

]
,

K̂i
tc =

[
Ki

tb Ni
bbK̂i−1

tc Ki
tc −Mi

tbKi
bc

]
, K̂i

tt = Ki
tt −Mi

tbKi
bt

(29)

where the matrices J, M, N, Q, etc., are also resultant matrices after fundamental calcu-
lations of the basic matrices K, etc., and H, etc., in Equations (25) and (27). The details
of the matrices are referred to in Ref. [80]. Having calculated K̂N

cc, K̂N
ct , K̂N

tc , and K̂N
tt from

Equation (29), we can obtain the crack opening displacement D̂N
c :

D̂N
c = [K̂N

cc − K̂N
ct

(
K̂N

tt

)−1
K̂N

tc ]
−1

[p̂N
t − K̂N

ct

(
K̂N

tt

)−1
pt

N ] (30)

where D̂N
c contains the crack opening displacement of the elements from the bottom layer

(i = 1) to the top layer (i = N). From Equations (28) and (29), we can conduct a sequential
computation to compute the stiffness matrix K̂ of each layer in an ascending order from
the bottom layer to the top one. Having obtained the K̂N , we can solve the crack opening
displacement D̂N

c from Equation (30). The flowchart of the computation is shown in
Figure 16.
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pare the percentage errors of the DDM, the CSM, and the combined method for the crack 
problem in the two bonded half-planes in Figure 17, while the parameters remain the same 
as in Section 3.3. The figure illustrates a satisfying match of the three methods to the semi-
analytical solution, except at the tips. The combined method incorporated with the tip-
element approach gives the best tip accuracy. Furthermore, it does not affect the results of 
the combined method significantly when the crack length ratio remains in the practical 
range (up to 25) in different materials. 
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combined method.

6.2. Numerical Examples
6.2.1. Two Bonded Half-Planes

The discretization of the combined method is referred to in Ref. [80]. We firstly
compare the percentage errors of the DDM, the CSM, and the combined method for the
crack problem in the two bonded half-planes in Figure 17, while the parameters remain the
same as in Section 3.3. The figure illustrates a satisfying match of the three methods to the
semi-analytical solution, except at the tips. The combined method incorporated with the
tip-element approach gives the best tip accuracy. Furthermore, it does not affect the results
of the combined method significantly when the crack length ratio remains in the practical
range (up to 25) in different materials.
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Figure 17. Percentage errors of the DDM, the CSM, and the combined method with b1/b2 = (a) 1/25;
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In addition, the durations of the three methods are listed in Table 3, which indicates
that the combined method improves the efficiency compared to the CSM, although the
DDM that does not require elements on interfaces, if any, is still the most efficient.
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Table 3. Durations of the three methods for the case of two bonded half-planes.

Method
Duration (s)

b1/b2 = 1/25 b1/b2 = 1/1 b1/b2 = 2/1

DDM 0.052 0.010 0.015
Combined method 0.723 0.023 0.073

CSM 6.050 0.042 0.311

6.2.2. General Multilayered Media

The second example is calculation of crack opening in general multilayered media, in
which the number of layers is more than three. We chose five-layered media, in which a
crack intersects the parallel interfaces perpendicularly (Figure 18).
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We set the crack segment as l1 = 12l2. The Poisson ratios of the softer and stiffer layers
are 0.25 and 0.3, respectively. The pressure p0 remains a known constant. The percentage
difference of the crack opening displacement obtained using the combined method and that
obtained using the CSM with a different Young’s modulus contrast and different numbers
of the crack element on the thin layers are displayed from Figures 19–21, in which only half
of the results are shown due to the symmetry.
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Figure 21. The difference of the combined method and the CSM with 50-fold E contrast: (a) 1 crack
element on the thin layer and (b) 5 crack elements on the thin layer.

All of the three figures clearly illustrate a “peak” difference on the thin-and-softer
layers neighbored by thick-and-stiffer ones. Fortunately, we can alleviate the “peak”
difference by refining the discretization. In addition, higher E contrast results in a higher
“peak” difference and requires more refined elements to mitigate it consequently. When the
discretization is refined sufficiently, the results obtained with the two methods are quite
close to each other.

6.2.3. Approximation of Thin-Layer Scaling

In practical hydraulic-fracturing treatments, a fluid-driven crack sometimes passes
through a few thin layers sandwiched by thicker ones. Such thin layers usually require
awfully refined discretization for accurate simulation, slowing down the computation
significantly. It is well accepted that efficiency and accuracy are both critical factors for
practical industrial applications. A satisfying numerical simulation in industry should keep
a balance between the two factors, instead of sacrificing one to satisfy the other. Thus, the
thin layers might be scaled as a single relatively thick layer with average effective material
properties as in Equation (31) for better efficiency with the combined method:

E =

n
∑

j=1
Ejlj

n
∑

j=1
lj

, v =

n
∑

j=1
vjlj

n
∑

j=1
lj

(31)

where j is the index of the n thin layers, and lj is the thickness of the j-th layer. Thus, the
original crack problem in Figure 18 is approximated with that in Figure 22.
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where w is the crack opening displacement and G1 is the shear modulus of the first layer. 
The three figures validate the approximation of the thin-layer scaling for more  

efficient computation when the contrast in Young’s modulus remains up to 10-fold, since 
the approximated crack opening obtained using the combined method differs from the 
original crack opening obtained using the CSM with refined mesh by less than 20% (Figure 
23). 

Figure 22. Schematic view of the crack problem in the approximated three-layered media.

The combined method placed only one crack element on the crack surface in the
scaled layer characterized by Ē and v for even faster computation. The calculated crack
opening displacement is then compared to that obtained using the combined method with
coarse mesh (one element on the thin layer) in the original five-layered media and that
obtained using the CSM with refined mesh (five elements on the thin layer) in the original
five-layered media. As indicated previously, the results obtained using the CSM with
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refined mesh can be used as convincing benchmarks. The comparisons with different
contrasts in Young’s modulus are shown from Figures 23–25. In the three figures, the crack
opening displacement w0 is normalized using

w0 =
wG1

p0l
(32)

where w is the crack opening displacement and G1 is the shear modulus of the first layer.
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The three figures validate the approximation of the thin-layer scaling for more efficient
computation when the contrast in Young’s modulus remains up to 10-fold, since the
approximated crack opening obtained using the combined method differs from the original
crack opening obtained using the CSM with refined mesh by less than 20% (Figure 23).

When the contrast in Young’s modulus gets higher, the original crack opening obtained
using the CSM with refined mesh on the thin-and-soft layers neighbored by a thick-and-
hard one reaches about twice of the approximated opening calculated using the combined
method (Figures 24b and 25b). On the other hand, it is interesting to find the approximation
to be valid for a contrast in Young’s modulus up to 50-fold when a thin-and-stiff layer is
neighbored by thick-and-soft ones (Figures 24a and 25a).

6.3. Summary

The section has reviewed the combined method that constructs the stiffness matrix of
each layer with the DDM and characterizes the effects of the interfaces with the DM. As
a result, the method shares both the efficiency of the DDM and broad applicability of the
DM after the division, as demonstrated in the numerical examples. In addition, the final
system of equations only contains unknown crack opening displacements, leading to even
faster computation. The combined method has also adopted the tip-element approach,
ensuring a well-acceptable accuracy including at the tips, while the tip accuracy cannot
be improved with refined discretization only. The numerical examples also validated an
approximation of thin-layer scaling with the combined method under practical conditions
for a more-efficient industrial simulation, for example, hydraulic-fracturing simulation.
The crack intersects interface(s), if any, perpendicularly in the numerical examples, since
some analytical or semi-analytical solutions are available in such conditions. In fact, the
combined method can deal with more-complicated crack patterns, such as crack inclining
to interfaces. Examples of using the method to simulate propagation of practical hydraulic
fractures can be found in Refs. [12,51,78].

7. Summary and Outlook

The BEM is widely chosen for an accurate and efficient analysis of crack problems in
multilayered media. The two branches of the BEM, the DDM, and the DM have demon-
strated their strengths in efficiency and applicability, respectively. Although several at-
tempts have been made to extend the DDM for general multilayered media and various
approaches have been developed to accelerate computation conducted with the DM, the
numerical examples have still revealed the weaknesses of the DDM and the DM in applica-
bility and efficiency, respectively. Therefore, the review highlighted the combined method
that constructs the stiffness matrix of each layer with the DDM and characterizes the effects
of the interfaces with the DM so that it shares both the satisfying efficiency of the DDM and
the broad applicability of the DM after the artificial division. In addition, the final system
of equations of the combined method only contains unknown crack opening displacements,
resulting in even faster computation. The tip-element approach was incorporated into
the combined method, ensuring satisfactory accuracy including at the tips, while the tip
accuracy can hardly be improved with refined discretization only. The numerical examples
also validated an approximation of thin-layer scaling with the combined method to further
improve the efficiency for practical industrial applications.

The BEM, however, is still limited currently, given challenges to solve crack problems
accurately and efficiently in multilayered elastic media associated with more complicated
conditions. As a result, pressing needs still exist for future study to explore the area more
comprehensively.

1. The DDM is an ideal method for crack problems due to its high efficiency. The limited
applicability, however, restricts its application severely. The attempts to extend it for
general multilayered media by exploiting the method of images with a superposition
scheme turn out to be first-order approximates. As a result, new approaches are
encouraged for a full solution to extend the DDM.
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2. Initiation and propagation of a fatigue crack make notable contribution to failure in
industry. Computation of such phenomena in multilayered material continues posing
challenges for modeling and simulation. In addition, it gets even more complicated
when material becomes brittle or quasi-brittle. As a result, it may be interesting to
address such issues with the BEM.

3. It is getting popular to implement the PFM with the FEM for the analysis of com-
plicated crack patterns in the latest decade. The former derives partial differential
governing equations, which are then solved with the latter numerically. On the other
hand, few studies have been conducted to incorporate the PFM into the BEM. Thus, it
will be quite encouraging to combine the PFM with the BEM for a more efficient and
more accurate analysis of more complex crack problems in multilayered media.
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Appendix A

The local coordinate in our study follows the convention that the normal direction
points outwards from the surface of the domain of interest and that the shear direction
obeys the right-hand rule with respect to the normal one (Figure A1a).

Figure A1a shows displacements and tractions on a pair of interface Elements (1) and (2).
We set |u1| = |u2|= u0 and|p1| = |p2|= p0, where u0 and p0 are the magnitudes of the
displacement and traction, respectively. According to the interface continuity, we have
u1 = u2 = u0 and p1 = −p2 = −p0 under the global coordinate (x, y). The local coordinates
of Elements (1) and (2), denoted by (x1, y1) and (x2, y2), respectively, are constructed as
illustrated in Figure A1a based on the convention explained above. As a result, u1 = −u0
and p1 = p0 for Element (1), and u2 = u0 and p2 = p0 for Element (2). Therefore, the interface
continuity under the local coordinate is

u1 = −u2, p1 = p2 (A1)
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Figure A1b illustrates displacements of a pair of crack surface elements, denoted by
u+ and u− for the upper element and lower element, respectively, due to the loading p.
The local coordinates of the two elements are constructed based on the convention. Thus,
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u+ = −|u + |, and u− = −|u−|. The opening displacement D is defined as the relative
displacement of the lower element with respect to the upper one [41]. Thus,

D = −|u−| − |u+| = u− + u+ (A2)

Equations (A1) and (A2) correspond to Equations (4) and (23), respectively.
The appendix only presents the essence of the local coordinate, the details of which

can be found in Ref. [41].
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