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Abstract: Machiavellianism refers to the propensity of taking advantage of people within a society.
Machiavellians have reputations for being cunning and competitive. They are also skilled long-term
strategists and planners. Other than their “victories,” there are no other successful conclusions for them.
The belief component of Machiavellianism includes cynical views of human nature (e.g., manipulated
and manipulating individuals), interpersonal exploitation as a technique (e.g., strategic thinking),
and a lack of traditional morality that would forbid their behaviors (e.g., immoral behaviors). This
paper focuses on a game that involves manipulation. The game was conceptualized using the best
and worst Nash equilibrium points as part of our contribution. We constrained the problem to
homogeneous, finite, ergodic, and controllable Bayesian–Markov games. Machiavellian players
pretended to be in one state when they were actually in another. Moreover, they pretended to perform
one action while actually playing another. All Machiavellian individuals engaged in some form
of interpersonal manipulation. Manipulating players exhibited a higher preference compared to
manipulated participants. The Pareto frontier is defined as the line where manipulating players
play the best Nash equilibrium and manipulated players play the worst Nash equilibrium. It is
also considered a sequential Bayesian–Markov manipulation game involving multiple manipulating
players and manipulated players. Finally, a tractable characterization of the manipulation equilibrium
results is provided. To guarantee that the game’s solution converged into a singular solution, we used
Tikhonov’s penalty regularization method. A numerical example describes the results of our model.

Keywords: Machiavellianism; manipulation; Markov chain; game theory

MSC: 91A10; 91A40; 91A80; 91E30; 62C10

1. Introduction
1.1. Brief Review

The advantages and disadvantages of adding more believable behavioral assump-
tions to a traditional economic model have been extensively discussed in the literature.
The focus on manipulation is one of the most obvious issues. Game-theoretic studies
have discovered considerable individual variances in situations where the game allows
for unstable behavior, such as manipulation. In this paper, we concentrate on the litera-
ture on decision-making and personality linked to Machiavellianism, a personality trait
connected to manipulativeness, callousness, and indifference to morality in the study of
personality psychology [1].

Christie and Geis [2] employed modified and abridged remarks derived from Niccolo
Machiavelli’s works to explore variances in human behavior. Niccolo Machiavelli, in his
conception of the world, classifies individuals as manipulated and manipulating. Machi-
avellian individuals often exploit others, hold pessimistic views on human nature, and lack
the moral conscience that would make them accountable for their deeds. Machiavellianism
captures the lack of coordination in games where individuals are selfish and may have
conflicted interests.
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The Mach IV exam that Christie and Geis created is now the accepted self-evaluation
instrument and scale used for the Machiavellianism concept [3,4]. High-Mach individuals
are more likely to exhibit dishonest behavior and possess a cynical, unfeeling disposition
compared to low-Mach individuals. Christie established that a Machiavellian individual
would have the following qualities: (a) Their worldview is determined by manipulators
and manipulated individuals (i.e., views component), where manipulators do not feel
sympathy for their prey, and manipulated individuals also manipulate to some degree.
(b) Machiavellians have a lack of regard for conventional morality (e.g., morality component)
and do not care about actions, such as lying and cheating. (c) Machiavellians frequently
place more emphasis on pragmatic problem-solving than on ideological commitments and
they are more likely to employ power strategies (e.g., tactical component) to further their
personal goals rather than ideological ones.

The Nash equilibrium is the most classical method used to characterize the solution of a
non-cooperative game involving two or more players in game theory [5]. Each player in
a Nash equilibrium is aware of the equilibrium tactics of the other players, and changing
one’s own strategy would not benefit anyone. The concept of the Nash equilibrium dates
back to Cournot, who used it to explain how rival enterprises determined their output levels
in 1838 [6]. The current strategy set represents an action plan based on the events that have
transpired thus far in the game, and no player can improve their personal expected payoff
by altering their strategy while the other players keep theirs unchanged. In optimization
problems (with one player), the scenario is the same: if the cost function is strongly convex
and we are at the minimal point, then any movement away from this point will result
in the greatest number of payout values. From this viewpoint, the Nash equilibrium
generalizes the conventional optimal approach for situations involving a single participant.
We roughly conceptualize Machiavellianism as a welfare system of the worst-case Nash
Equilibrium (manipulated individuals) and the non-cooperative optimal welfare system
(manipulating individuals).

1.2. Related Work

Allen and Gorton [7] addressed the idea of a manipulation equilibrium while consider-
ing stock price trends and welfare concerns. Stock price manipulation decreases the pre-bid
stock price, as demonstrated by Bagnoli and Lipman [8]. They showed that manipulation
drives takeover offers and blocks certain effective takeovers when there is limited takeover
activity. Clempner [9] provided a game theory method for simulating manipulation that
makes use of a reinforcement learning method to incorporate the idea of immorality. Cum-
ming et al. [10] found evidence of the harmful consequences of market manipulation on
innovation by using a sample of suspected stock price manipulation incidents based on
intra-day data for equities from nine nations over eight years. They demonstrated that
these detrimental consequences are more detrimental to innovation in economies with
weak intellectual property protections and strong shareholder protections. Clempner and
Trejo [11] presented a method based on Nash’s bargaining model for modeling manip-
ulation games. Clempner [12] applied the previous approach for repeated Stackelberg
security games. Clempner [13] suggested a manipulation game based on a class of ergodic
Bayesian–Markov models.

One sender and one receiver are used to illustrate the traditional Bayesian persuasion
framework. The sender, who has access to certain private information, creates a signaling
strategy in an attempt to influence the receiver, to make a good decision. For models with
many senders, see the works by Milgrom [14] and Krishna [15]. Private signal-based per-
suasion has been examined in a variety of contexts, including two-agent, two-action games
[16], and unanimity elections [17]. For a single sender and receiver model, Kamenica and
Gentzkow [18] introduced a Bayesian persuasion framework. They demonstrated the nec-
essary and sufficient criteria for the existence of a signal that helps the sender and described
the optimum signals. According to Bergemann and Morris [19], the designer of a fixed
mechanism in Bayesian persuasion chooses an information structure for the participants in
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order to advance their objectives. Gentzkow and Kamenica [20] extended their earlier work
[18] by incorporating multiple senders in scenarios where the set of potential signals was
extensive, taking into account a lattice structure that enabled intuitive signal comparison
and combining. In order to influence a decision-maker’s choice, Brocas et al. [21] proposed
a framework where two adversaries invest resources in gathering information from the
general public regarding an unknown condition of the world. They described the oppo-
nents’ sampling tactics in the game’s equilibrium and demonstrated that they change when
one adversary’s cost of information acquisition rises. Gul and Pesendorfer [22] presented a
model that describes political campaigns involving asymmetric information and signaling
about a binary state of the world. The model includes two senders with conflicting objec-
tives. Several authors, such as [23–26], cited frameworks in which the information revealed
by the sender was only viewed by the recipients.

1.3. Main Contribution

This paper describes a manipulation game. Our contribution consists of concep-
tualizing the game by employing the best and the worst Nash equilibrium points. We
constrained the problem to an assortment of homogeneous, finite, ergodic, and controllable
Bayesian–Markov games, where:

i. Machiavellian players pretended to be in one state when they were actually in another.
ii. Machiavellian players pretended to perform one action while actually playing another.
iii. All Machiavellian individuals engaged in some form of interpersonal manipulation.
iv. Manipulating players exhibited a higher preference compared to manipulated participants.
v. The Pareto frontier is characterized as the boundary where the manipulating players play

the best Nash equilibrium and the manipulated players play the worst Nash equilibrium.
vi. It is considered a sequential Bayesian–Markov manipulation game involving multiple

manipulating players and manipulated players.
vii. A tractable characterization of the manipulation equilibrium results is provided.
viii. To guarantee that the game’s solution converged into a singular solution, we used

Tikhonov’s penalty regularization method.

1.4. Organization of the Paper

The structure of the paper is as follows. Section 2 describes the manipulation game
while Section 3 considers the manipulation equilibrium. In Section 4, considering the
Tanaka function, the manipulation equilibrium is computed. Section 5 considers a Bayesian–
Markov approach of the model, where the moral hazard is developed. A numerical example
is presented in Section 6. Section 7 concludes with some remarks.

2. Manipulation Game

Let G be a non-cooperative game denoted as G = (I ,S , ul , u f ). I = {1, . . . , n + m} is the
set of total Machiavellian players, where L = {1, . . . , n} is the set of manipulating players
indexed by l = 1, n and F = {1, . . . , m} is the set of manipulated players indexed by f = 1, m.
S = S l × S f is a strategy set, such that S l is the strategy set for the manipulating players
(l ∈ L) and S f is a strategy set for the manipulated players ( f ∈ F). Element sl ∈ S l is a
strategy for player l ∈ L, and element s f ∈ S f is a strategy for player f ∈ F. Let us consider
that, in general, the index set is I , and s−i = (sj)j∈I/i denotes the joint strategy profile of all
players, except player i , i.e., (s1, . . . , si−1, si+1, . . . , sn+m).

A strategy profile s = (s1, . . . , sn, sn+1, . . . , sn+m) is a vector of strategies, one for each
player, and the set of all possible strategy profiles is denoted by S = S1× · · · × Sn× . . . Sm,
i.e., S = ×n+m

k=1 S
k. For any admissible strategy set sl ∈ S l

adm for the manipulating players:

S l
adm :=

{
sl : ∑

l∈L
gl(sl) = 0, ∑

l∈L
hl(sl) ≤ 0

}
,
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and any admissible strategy space s f ∈ S f
adm for the manipulating players:

S f
adm :=

{
s f : ∑

f∈F
g f (s f ) = 0, ∑

f∈F
h f (s f ) ≤ 0

}
,

such that Sadm = S l
adm × S

f
adm. The reward of a manipulating player l ∈ L for a strategy

s = (s1, . . . , sn, sn+1, . . . , sn+m) is determined by a utility function ul : Sadm → R, and
the reward of a manipulated player f ∈ F for a strategy s = (s1, . . . , sn, sn+1, . . . , sn+m) is
determined by a utility function u f : Sadm → R, with the admissible strategy space of the
manipulating players being S l

adm and the admissible strategy space of the manipulating

players being S f
adm.

The designations of the manipulating players and the manipulated players indicate the
sequential order of play between two types of Machiavellian individuals, meaning that the
manipulating players play first and the manipulated players play next. The manipulating
and manipulated players are involved in a non-cooperative game. which we will refer to
as a manipulation or Machiavellian game.

3. Manipulation Equilibrium

Each Machiavellian player must solve an optimization problem, where the admissible
set is constrained by convex constraints based on the variables of the other Machiavellian
players, as well as integrity constraints with the objective function. The objective function
of the optimization problem depends on the variables of the other players.

We assume that the manipulating players obtain a reward ul , and the manipulated
players earn a reward u f ; moreover, we assume that these rewards are continuous and
convex in all their arguments. The manipulating players attempt to find a solution to the
optimization problem

max
sl∈Sl

{
ul(sl , s f )|s f ∈ arg max

s′ f∈S f
u f (s′ f , sl)

}
,

where the manipulated players attempt to find a solution to the optimization problem

max
s f∈S f

u f (s f , sl).

The Machiavellian players obey myopic strategies that move in the direction of im-
provement with regard to the two optimization problems mentioned above: the former for
the manipulating players and the latter for the manipulated players.

Let us first describe the equilibrium concept investigated for simultaneous play games
and contrast it with that investigated in the sequential counterpart. A strategy for the
Machiavellian players s∗(λ) ∈ Sadm, satisfying the following inequality, is known as the
Nash equilibrium for the Machiavellian players

F(s, λ) := ∑
i∈I

λi[ui(si, s−i)− ui(s∗(λ))
]
≤ 0,

λ ∈ Λ =

{
λ ∈ Rn : λi ≥ 0, ∑

i∈I
λi = 1

}
.

 (1)

If each Machiavellian player has chosen a strategy s, and no player can benefit from
changing strategies while others keep their strategies the same, the present set of strategical
choices and payoffs is known as the Nash equilibrium. In other words, for a joint strategy,
s∗ ∈ Sadm, satisfying for any admissible si ∈ S i

adm, we have ui(si, s−i∗) ≤ ui(si∗, s−i∗) as a
Nash equilibrium point. It is important to note that considering the uniform distribution
λi = n−1, we obtain the original definition of the Nash equilibrium [5]. We assume that the
functions ui(s) (i ∈ I) are meant to be multilinear in all of their arguments [27,28].
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The condition in Equation (1) implies the Nash property:

λi[ui(si, s−i)− ui(s∗(λ))
]
≤ 0

for any s ∈ Sadm and i ∈ I.

Any equilibrium point s∗(λ) ∈ Sadm belongs to the Pareto set [29,30]

P :=

{
ui(s∗(λ)) : s∗(λ) ∈ Arg max

s∈Sadm

∑
i∈I

λiui(s)

}
. (2)

Following Tanaka [31,32], a Nash equilibrium s∗(λ) that satisfies the conditions in
Equation (1) is

s∗(λ) ∈ Arg min
s∈Sadm

F(s, λ) = Arg min
s∈Sadm

∑
i∈I

λi[ui(s∗(λ))− ui(s)
]
=

Arg min
s∈Sadm

∑
i∈I

λi[−ui(s)
]
= Arg max

s∈Sadm

∑
i∈I

λiui(s),

which determines the Pareto set given in Equation (2).

Remark 1. It is important to note that by choosing different λi ∈ Λ, we obtain all feasible Nash
equilibria in the proposed game.

Let us introduce the individual reward for the manipulating players ϕl(sl , s f , λl) =
λ̂lul(ŝl , ŝ−l , s f ) for any admissible sl = (ŝl , ŝ−l) ∈ Sl

adm, such that

ϕ(sl , s f , λl) = ∑
l∈L

ϕl(sl , s f , λl) = ∑
l∈L

λ̂lul(ŝl , ŝ−l , s f )→ max
sl∈S l

adm

and the individual reward for the manipulated players ψ f (s f , sl , λ f ) = λ̂ f u f (ŝ f , ŝ− f , sl) for
any admissible s f = (ŝ f , ŝ− f ) ∈ S f

adm where

ψ(s f , sl , λ f ) = ∑
f∈F

ψ f (s f , sl , λ f ) = ∑
f∈F

λ̂ f u f (ŝ f , ŝ− f , sl)→ max
s f∈S f

adm

.

The welfare of a strategy profile s for the manipulated players is defined as the mini-
mum reward of a Machiavellian player min

λ f∈Λ
ψ(s f , sl , λ f ), or the worst-case among all the

Nash equilibria. On the other hand, the optimal welfare for the manipulating players is the
maximum reward of a Machiavellian player max

λl∈Λ
ϕ(sl , s f , λl), or the best-case among all

the Nash equilibria.
In a manipulation game, one strategy sl∗ ∈ S l

adm of the manipulating players is called
a manipulation (Machiavellian) equilibrium, if

max
λl∈Λ

sup
s f∈N (sl)

ϕ(sl , s f , λl) ≤ max
λl∈Λ

sup
s f∈N (sl∗)

ϕ(sl∗, s f , λl),

where
N (sl) =

{
s f ∈ S f

adm : ψ(s
′ f , sl , λ f ) ≤ ψ(s f , sl , λ f ), s

′ f ∈ S f
adm

}
,

represents the set of Nash equilibriaN (sl), given that the manipulating players are playing
strategy sl and the manipulated players’ best reply is the set of Nash equilibria (with
sl fixed).
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4. Computing the Manipulation Equilibrium
4.1. The Tanaka Function

We suggest the following representation for the manipulation game

max
λl∈Λ

sup
s f∈N (sl)

ϕ(sl , s f , λl)

s.t.
gl(sl) = 0, hl(sl) ≤ 0

min
λ f∈Λ

sup
sl∈N (s f )

ψ(s f , sl , λ f )

s.t.
g f (s f ) = 0, h f (s f ) ≤ 0

The complement variables are fixed, for instance, for computing max
λl∈Λ

sup
s f∈N (sl)

ϕ(sl , s f , λl),

variable s f is fixed.
Let us define the regularized welfare function as follows:

ϕδ(sl , s f , λl) = ϕ(sl , s f , λl)− δ

2

∥∥∥sl
∥∥∥2

+
δ

2

∥∥∥λl
∥∥∥2

, δ > 0, (3)

and
ψδ(s f , sl , λl) = ψ(s f , sl , λl)− δ

2

∥∥∥s f
∥∥∥2
− δ

2

∥∥∥λ f
∥∥∥2

, δ > 0. (4)

In order to prevent changing the form of the original function, the regularization
method additionally focuses on determining the parameter δ for making the original
objective functions, ϕ(sl , s f , λ) and ψ(s f , sl , λ f ), and the term, δ

2 , maximal, which has a
unique solution, given that functions (3) and (4) are strongly convex if δ > 0.

Applying the penalty approach [27,28] in Equations (3) and (4), we have

Φk,δ

(
sl , s f , λl

)
:= ϕδ(sl , s f , λl) + k

[
− 1

2

∥∥∥gl(sl)
∥∥∥2
− 1

2

∥∥∥hl(sl)
∥∥∥2
− δ

2

(∥∥∥sl
∥∥∥2
−
∥∥∥λl
∥∥∥2
)]

. (5)

Let α = k−1, then we have

Φα,δ

(
sl , s f , λl

)
:= αϕδ(sl , s f , λl)− 1

2

∥∥∥gl(sl)
∥∥∥2
− 1

2

∥∥∥hl(sl)
∥∥∥2
− δ

2

(∥∥∥sl
∥∥∥2
−
∥∥∥λl
∥∥∥2
)

, (6)

where
sl∗∗

Φα,δ
= arg max

λl∈Λ
max

sl∈S l
adm

Φα,δ

(
sl , s f , λl

)
,

and

Ψk,δ

(
s f , sl , λ f

)
:= ψδ(s f , sl , λ f ) + k

[
− 1

2

∥∥∥g f (s f )
∥∥∥2
− 1

2

∥∥∥h f (s f )
∥∥∥2
− δ

2

(∥∥∥s f
∥∥∥2

+
∥∥∥λ f

∥∥∥2
)]

. (7)

Let α = k−1, then we have

Ψα,δ

(
s f , sl , λ f

)
:= αψδ(s f , sl , λ f )− 1

2

∥∥∥g f (s f )
∥∥∥2
− 1

2

∥∥∥h f (s f )
∥∥∥2
− δ

2

(∥∥∥s f
∥∥∥2

+
∥∥∥λ f

∥∥∥2
)

, (8)

where
s f ∗∗

Ψα,δ
= arg min

λ f∈Λ
max

s f∈Sadm

Ψα,δ

(
s f , sl , λ f

)
,

such that s∗∗ = (sl∗∗
Φα,δ

, s f ∗∗
Ψα,δ

).
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The players are attempting to reach one of the ε-Nash equilibria [31,32], which involves
finding a joint strategy s ∈ Sadm, satisfying for any admissible sl ∈ S l

adm and s f ∈ S f
adm the

system of inequalities (the ε-Nash equilibrium condition)

Gα,δ

(
sl , s̃l , s f , λl

)
≤ ε for any sl ∈ S l

adm and l = 1, n, ε ≥ 0,

Gα,δ

(
sl , s̃l , s f , λl

)
:= ∑

l∈L

[
Φl

α,δ

(
ŝl , ŝ−l , s f , λ̂l

)
−Φl

α,δ

(
s̊l , ŝ−l , s f , λ̂l

)]
≤ ε,

(9)

where s̃l ∈ S l
adm is the complement of sl and s f is fixed and

s̊l := arg max
ŝl∈Sl

adm

Φl
α,δ

(
ŝl , ŝ−l , s f , λl

)
.

Having

Fα,δ

(
s f , s̃ f , sl , λ f

)
≤ ε for any s f ∈ S f

adm and f = 1, m, ε ≥ 0,

Fα,δ

(
s f , s̃ f , sl , λ f

)
:= ∑

f∈F

[
Ψ f

α,δ

(
ŝ f , ŝ− f , sl , λ̂ f

)
−Ψ f

α,δ

(
s̊ f , ŝ− f , sl , λ̂ f

)]
≤ ε

(10)

where s̃ f ∈ S f
adm is the complement of s f and sl is fixed and

s̊ f := arg max
ŝ f∈S f

adm

Ψα,δ

(
ŝ f , ŝ− f , sl , λ f

)
.

Note that the condition Gα,δ

(
sl , s̃l , s f , λl

)
≤ ε and Fα,δ

(
s f , s̃ f , sl , λ f

)
≤ ε are

equivalent to
max
λl∈Λ

max
sl∈S l

adm

Gα,δ

(
sl , s̃l , s f , λl

)
, (11)

and
min
λ f∈Λ

max
s f∈Sadm

Fα,δ

(
s f , s̃ f , sl , λ f

)
. (12)

Then
sl∗∗

Gα,δ
∈ Argmax

λl∈Λ
max

sl∈S l
adm

Gα,δ

(
sl , s̃l , s f , λl

)
,

and
s f ∗∗

Fα,δ
∈ Arg min

λ f∈Λ
max

s f∈Sadm

Fα,δ

(
s f , s̃ f , sl , λ f

)
.

Definition 1. A strategy sl∗∗
Gα,δ

of the manipulating player, together with the strategy s f ∗∗
Fα,δ

, is said
to be a manipulating equilibrium (for ε = 0) if they fulfill(

sl∗∗
Gα,δ

, s f ∗∗
Fα,δ

)
∈ arg max

λl∈Λ
min
λ f∈Λ

max
sl∈S l

adm

max
s f∈S f

adm{
Φα,δ

(
sl , s f , λl

)∣∣∣Gα,δ

(
sl , s̃l , s f , λl

)
≤ 0, Fα,δ

(
s f , s̃ f , sl , λ f

)
≤ 0

}
.

. (13)

Let us introduce the penalty approach to represent (13) as follows:

P(sl , s̃l , s f , s̃ f , λl , λ f )→max
λl∈Λ

min
λ f∈Λ

max
sl∈S l

adm

max
s f∈S f

adm
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where

Pα,δ(sl , s̃l , s f , s̃ f , λl , λ f ) =Φα,δ

(
sl , s f , λl

)
− 1

2

∥∥∥Gα,δ

(
sl , s̃l , s f , λl

)∥∥∥2
− 1

2

∥∥∥Fα,δ

(
s f , s̃ f , sl , λ f

)∥∥∥2
. (14)

4.2. Proximal Format

The problem (14) can be represented in the following proximal format

λl∗
δ = arg max

λl∈Λ

{
− 1

2

∥∥∥λl − λl∗
δ

∥∥∥2
+ γPα,δ(sl∗

δ , s̃l∗
δ , s f ∗

δ , s̃ f ∗
δ , λl , λ

f ∗
δ )

}
sl∗

δ = arg max
sl∈S l

adm

{
− 1

2

∥∥∥sl − sl∗
δ

∥∥∥2
+ γPα,δ(sl , s̃l∗

δ , s f ∗
δ , s̃ f ∗

δ , λl∗
δ , λ

f ∗
δ )

}

s̃l∗
δ = arg max

s̃l∈S l
adm

{
− 1

2

∥∥∥s̃l − s̃l∗
δ

∥∥∥2
+ γPα,δ(sl∗

δ , s̃l , s f ∗
δ , s̃ f ∗

δ , λl∗
δ , λ

f ∗
δ )

}

λ
f ∗
δ = arg min

λ f∈Λ

{
1
2

∥∥∥λ f − λ
f ∗
δ

∥∥∥2
+ γPα,δ(sl∗

δ , s̃l∗
δ , s f ∗

δ , s̃ f ∗
δ , λl∗

δ , λ f )

}
s f ∗

δ = arg max
s f∈S f

adm

{
− 1

2

∥∥∥s f − s f ∗
δ

∥∥∥2
+ γPα,δ(sl∗

δ , s̃l∗
δ , s f , s̃ f ∗

δ , λl∗
δ , λ

f ∗
δ )

}

s̃ f ∗
δ = arg max

s̃ f∈S f
adm

{
− 1

2

∥∥∥s̃ f − s̃ f ∗
δ

∥∥∥2
+ γPα,δ(sl∗

δ , s̃l∗
δ , s f ∗

δ , s̃ f , λl∗
δ , λ

f ∗
δ )

}
where the solutions depend of small parameters γ > 0, α > 0 and δ > 0.

The proximal method for calculating the manipulation equilibrium for initial variables
λl

0, sl
0, s̃l

0, λ
f
0 , s f

0 , s̃ f
0 is given by

λl
n+1 = arg max

λl∈Λ

{
− 1

2

∥∥∥λl − λl
n

∥∥∥2
+ γPα,δ(sl

n, s̃l
n, s f

n, s̃ f
n, λl , λ

f
n)

}
sl

n+1 = arg max
sl∈S l

adm

{
− 1

2

∥∥∥sl − sl
n

∥∥∥2
+ γPα,δ(sl , s̃l

n, s f
n, s̃ f

n, λl
n, λ

f
n)

}
s̃l

n+1 = arg max
s̃l∈S l

adm

{
− 1

2

∥∥∥s̃l − s̃l
n

∥∥∥2
+ γPα,δ(sl

n, s̃l , s f
n, s̃ f

n, λl
n, λ

f
n)

}
λ

f
n+1 = arg min

λ f∈Λ

{
1
2

∥∥∥λ f − λ
f
n

∥∥∥2
+ γPα,δ(sl

n, s̃l
n, s f

n, s̃ f
n, λl

n, λ f )

}
s f

n+1 = arg max
s f∈S f

adm

{
− 1

2

∥∥∥s f − s f
n

∥∥∥2
+ γPα,δ(sl

n, s̃l
n, s f , s̃ f

n, λl
n, λ

f
n)

}
s̃ f

n+1 = arg max
s̃ f∈S f

adm

{
− 1

2

∥∥∥s̃ f − s̃ f
n

∥∥∥2
+ γPα,δ(sl

n, s̃l
n, s f

n, s̃ f , λl
n, λ

f
n)

}



(15)

To guarantee the convergence of the suggested procedure, let us select the parameters
of the algorithm as follows:

δn =

{
δ0 if n ≤ n0

δ0
[1+ln(n−n0)]

(1+n−n0)
δ if n > n0

, µn =

{
µ0 if n < n0
µ0

(1+n−n0)
α if n ≥ n0

γn =

{
γ0 if n < n0
γ0

(1+n−n0)
γ if n ≥ n0

, δ, µ, γ > 0, δ0, µ0, γ0 > 0,

(16)

which satisfies
µn

δn
→

n→∞
0 and

δ ≤ µ, γ ≥ δ, γ + δ ≤ 1.
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5. Markov Games and Moral Hazard
5.1. Markov Model

We consider a discrete-time Markov game played by a set L = {1, . . . , n} of manipulat-
ing players indexed by l = 1, n and a set F = {1, . . . , m} of manipulated players indexed
by f = 1, m, where I = {1, . . . , n + m} is the total set of Machiavellian players indexed by
i = 1, n + m.

The main results of the paper are as follows:

1. The time is discrete, taking values from T = {0, 1, . . . } and the horizon is finite. The
Machiavellian players i ∈ I are in a sequential game.

2. At each time t ≥ 0, t ∈ T, the type θl
t of the manipulating players l is selected from the

finite set θl
t ∈ Θl and revealed to the manipulating players l. In the same manner, the

manipulated players f are privately informed about their type θ
f
t ∈ Θ f .

3. For each Machiavellian player i ∈ I , we use Θ = ×i∈IΘi to denote the set of type
profiles and Θ−i = ×j\i∈IΘj to denote the set of type tuples of all players, except i.

4. Manipulating players to take an action al
t (make a decision) from a finite set al

t ∈ Al ,
Al = ×l∈L Al , and A−i = ×h\l∈L Ah, and manipulated players also take an action

a f
t ∈ A f , A f = × f∈F A f , and A− f = ×h\ f∈F Ah.

5. We use ∆(Al)(∆(A f )) for the set of all probability distributions over Al (A f ) for
all l ( f ).

6. For each Machiavellian player i ∈ I , the game begins with a belief of an invariant
measure Pi(θi

0) ∈ ∆(Θi), such that Pi(θi
t) ∈ ∆(Θi), where ∆(Θi) denotes the set of

all probability distributions over Θi. The beliefs may differ across types, and we
do not assume that the Machiavellian players’ beliefs are derived from a common
prior. However, we assume that all types of players agree on which types have
positive or zero probabilities. From now on, we assume that each belief system
satisfies Pi(θi

t) > 0 . We say that type θi
t has Pi(θi

t)-positive probability if θi
t ∈ Θi and

Pi(θi
t)-zero probability otherwise.

7. The transition functions are denoted by

pl(θl
t+1|θl

t, al
t, θl

t−1, al
t−1, . . . , θl

0, al
0) = pl(θl

t+1|θl
t, al

t),

and
p f (θ

f
t+1|θ

f
t , a f

t , θ
f
t−1, a f

t−1, . . . , θ
f
0 , a f

0) = p f (θ
f
t+1|θ

f
t , a f

t ),

for the manipulating and manipulated players, respectively.
8. Each chain (Pl , pl(θl

t+1|θl
t, al

t)) and (P f , p f (θ
f
t+1|θ

f
t , a f

t )) follows controllable, time ho-
mogeneous, irreducible, and aperiodic Markov chains. These chains take values in
(Θl , Al) and (Θ f , A f ), respectively.

9. Manipulating players have a known utility function ul : Al×Θl → R+, which depends
on the action al

t ∈ Al and the privately known type θl
t ∈ Θl . In the same manner, we

define the utility function u f : A f ×Θ f → R+ for the manipulated players.

Let us relate the message ml
t for each manipulating player l ∈ L with its type

ml
t ∈ Ml ⊆ Θl , and the message m f

t for each manipulated player f ∈ F with its type
m f

t ∈ M f ⊆ Θ f . Here, Mi ⊆ Θi is the set of messages, such that at time t, a Machiavellian
player i sends a message mi

t to all players that respond with at = (a1
t , a2

t , . . . , an+m
t ). We

assume that Mi = Θi.
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5.2. Strategies and Moral Hazards

The relationship zl(αl
t|al

t) for the manipulating players is given by zl : Al → ∆(Al)

and for the manipulated players z f (α
f
t |a

f
t ) is z f : A f → ∆(A f ). The set of admissible

actions is defined as follows:

Zl
adm =

zl(αl
t|al

t)| ∑
αl

t∈Al

zl(αl
t|al

t) = 1, al
t ∈ Al

,

and

Z f
adm =

z f (α
f
t |a

f
t )| ∑

α
f
t ∈A f

z f (α
f
t |a

f
t ) = 1, a f

t ∈ A f

.

The relationship zi(αi
t|ai

t) represents the likelihood in which a Machiavellian player i
believes that αi

t is an action ai
t.

A strategy σl(ml
t|θl

t) (behavioral strategy) for manipulating players is σl : Θl → ∆(Ml),
which represents the likelihood in which a manipulating player l believes that a message
ml

t is of type θl
t. For the manipulated players, a strategy σ f (m f

t |θ
f
t ) is represented by

σ f : Θ f → ∆(M f ). The admissible strategy set is given by

Sl
adm =

σl(ml
t|θl

t)| ∑
ml

t∈Ml

σl(ml
t|θl

t) = 1, θl
t ∈ Θl

,

and

S
f
adm =

σ f (m f
t |θ

f
t )| ∑

m f
t ∈M f

σ f (m f
t |θ

f
t ) = 1, θ

f
t ∈ Θ f

.

A policy for the manipulating players is defined as a sequence
{

πl(αl
t|ml

t)
}

, such that,

for each time, t, πl(αl
t|ml

t) is a stochastic kernel, and for the manipulated players, we have
π f (α

f
t |m

f
t ). The set of all admissible policies is denoted as follows:

Πl
adm =

πl(αl
t|ml

t)| ∑
αl

t∈Al

πl(αl
t|ml

t) = 1

,

and

Π f
adm =

π f (α
f
t |m

f
t )| ∑

α
f
t ∈A f

π f (α
f
t |m

f
t ) = 1

.

We are interested in the average criterion, where the realized average reward function
for the Manipulating players is given by

Ul(π, σ, z) = ∑
θl

t∈Θl
∑

ml
t∈Ml

∑
al

t∈Al
∑

αl
t∈Al

 ∑
θl

t+1∈Θl
ul(al

t, θl
t)pl(θl

t+1|θl
t, al

t)

·
∏
l∈L

πl(αl
t|ml

t)σ
l(ml

t|θl
t)z

l(αl
t|al

t)Pl(θl
t) ∏

f∈F
π f (α

f
t |m

f
t )σ

f (m f
t |θ

f
t )z

f (α
f
t |a

f
t )P f (θ

f
t ) =

∑
θl

t∈Θl
∑

ml
t∈Ml

∑
al

t∈Al
∑

αl
t∈Al

 ∑
θl

t+1∈Θl
ul(al

t, θl
t)pl(θl

t+1|θl
t, al

t)

 ∏
i∈I

πi(αi
t|mi

t)σ
i(mi

t|θi
t)z

i(αi
t|ai

t)Pi(θi
t),

(17)
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and for the manipulated players

U f (π, σ, z) = ∑
θ

f
t ∈Θ f

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

 ∑
θ

f
t+1∈Θ f

u f (a f
t , θ

f
t )p f (θ

f
t+1|θ

f
t , a f

t )

·
∏
i∈I

πi(αi
t|mi

t)σ
i(mi

t|θi
t)z

i(αi
t|ai

t)Pi(θi
t).

(18)

Definition 2. The interaction between the Machiavellian players induces a manipulation game,
given by

G = (I, Θi, Ai, Pi, Ui)i∈I .

5.3. Auxiliary Variable

Let us define for the manipulating players:

cl(θl
t, ml

t, al
t, αl

t) = πl(αl
t|ml

t)σ
l(ml

t|θl
t)z

l(αl
t|al

t)Pl(θl
t)

and for the manipulated players:

c f (θ
f
t , m f

t , a f
t , α

f
t ) = π f (α

f
t |m

f
t )σ

f (m f
t |θ

f
t )z

f (α
f
t |a

f
t )P f (θ

f
t ),

with

Cl
adm :=

 cl(θl
t, ml

t, al
t, αl

t)
∣∣∣ ∑

θl
t∈Θl

∑
ml

t∈Ml
∑

al
t∈Al

∑
αl

t∈Al
cl(θl

t, ml
t, al

t, αl
t) = 1

∑
ml

t∈Ml
∑

al
t∈Al

∑
αl

t∈Al
cl(θl

t, ml
t, al

t, αl
t) = Pl(θl

t) > 0,

∑
θl

t∈Θl
∑

ml
t∈Ml

∑
al

t∈Al
∑

αl
t∈Al

∑
θl

t+1∈Θl

[
δθl

tθ
l
t+1
− pl(θl

t+1|θl
t, al

t)
]
cl(θl

t, ml
t, al

t, αl
t) = 0

,

where δθl
tθ

l
t+1

is the Kronecker symbol, such that

∆l :=

 cl(θl
t, ml

t, al
t, αl

t)
∣∣∣ ∑

θl
t∈Θl

∑
ml

t∈Ml
∑

al
t∈Al

∑
αl

t∈Al
cl(θl

t, ml
t, al

t, αl
t) = 1

∑
ml

t∈Ml
∑

al
t∈Al

∑
αl

t∈Al
cl(θl

t, ml
t, al

t, αl
t) = Pl(θl

t) > 0

,

and

C f
adm :=

 c f (θ
f
t , m f

t , a f
t , α

f
t )
∣∣∣ ∑

θ
f
t ∈Θ f

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

c f (θ
f
t , m f

t , a f
t , α

f
t ) = 1

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

c f (θ
f
t , m f

t , a f
t , α

f
t ) = P f (θ

f
t ) > 0,

∑
θ

f
t ∈Θ f

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

∑
θ

f
t+1∈Θ f

[
δ

θ
f
t θ

f
t+1
− p f (θ

f
t+1|θ

f
t , a f

t )

]
c f (θ

f
t , m f

t , a f
t , α

f
t ) = 0

,



Mathematics 2023, 11, 4143 12 of 19

where δ
θ

f
t θ

f
t+1

is the Kronecker symbol, such that

∆ f :=

 c f (θ
f
t , m f

t , a f
t , α

f
t )
∣∣∣ ∑

θ
f
t ∈Θ f

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

c f (θ
f
t , m f

t , a f
t , α

f
t ) = 1

∑
m f

t ∈M f
∑

a f
t ∈A f

∑
α

f
t ∈A f

c f (θ
f
t , m f

t , a f
t , α

f
t ) = P f (θ

f
t ) > 0

.

The individual aim in the c-variables can be expressed as follows:

Ul(π, σ, z) = ∑
l∈L

Ũl(c)→ max
cl∈Cl

adm

(19)

where

Ũl(c) = ∑
θl

t∈Θl
∑

ml
t∈Ml

∑
al

t∈Al
∑

αl
t∈Al

W(θl
t, al

t)∏
l∈L

cl(θl
t, ml

t, al
t, αl

t)∏
f∈F

c f (θ
f
t , m f

t , a f
t , α

f
t )︸ ︷︷ ︸

f ixed

W(θl
t, al

t) = ∑
θl

t+1∈Θl

ul(al
t, θl

t)pl(θl
t+1|θl

t, al
t),

and
U f (π, σ, z) = ∑

f∈F
Ũ f (c)→ max

cl∈Cl
adm

(20)

where

Ũ f (c) = ∑
θ

f
t ∈Θ f

∑
m f

t ∈M f

∑
a f

t ∈A f

∑
α

f
t ∈A f

W(θ
f
t , a f

t )∏
l∈L

cl(θl
t, ml

t, al
t, αl

t)︸ ︷︷ ︸
f ixed

∏
f∈F

c f (θ
f
t , m f

t , a f
t , α

f
t ),

W(θ
f
t , a f

t ) = ∑
θ

f
t+1∈Θ f

u f (a f
t , θ

f
t )p f (θ

f
t+1|θ

f
t , a f

t ).

Definition 3. We note that Ũi(c) is considered individual rational for the Machiavellian player i
if it is the case that

IR =
{

Ũi(c)|λiŨi(c) ≥ Ũi(c), λ ∈ Λ, i ∈ I
}

.

Remark 2. The foundation of rational decision theory, an economic theory that asserts that Machi-
avellian players always choose options that maximize their own benefit, is rational conduct. Given
the available options, these choices offer the Machiavellian players the greatest benefit or satisfaction.

5.4. Machiavellian Equilibrium

The policies π∗, strategies σ∗, and action kernel z∗ that solve the nonlinear program-
ming problem are given by

(π∗, σ∗, z∗) = arg max
π∗∈Πi

adm

∑
i∈I

Ui(π, σ∗, z∗),

where π∗, σ∗ and z∗ fulfill the Machiavellian equilibrium, satisfying

Ui(π∗, σ∗, z∗) ≥ Ui(πi, π−i∗, σi, σ−i∗, zi, z−i∗),

such that π−i∗ = (π1∗, . . . , πi−1∗, πi+1∗, . . . , πn+m∗), σ−i∗ = (σ1∗, . . . , σi−1∗, σi+1∗, . . . ,
σn+m∗), and z−i∗ = (z1∗, . . . , zi−1∗, zi+1∗, . . . , zn+m∗).
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A strategy profile is a Machiavellian equilibrium in the manipulation game
G = (I, Θi, Ai, Pi, Ui)i∈I if the tuple (π∗, σ∗, z∗) represents the best reply to
(πi, π−i∗, σi, σ−i∗, zi, z−i∗). Any reward in a Machiavellian equilibrium must belong to
the set IR.

A strategy profile is a sequential Machiavellian equilibrium in the game
G = (I, Θi, Ai, Pi, Ui)i∈I if there exists a tuple (π∗, σ∗, z∗) and history hi

t, such that, for
each player i, the tuple (π∗, σ∗, z∗) is the best reply to (πi, π−i∗, σi, σ−i∗, zi, z−i∗).

Remark 3. The manipulation game G = (I, Θi, Ai, Pi, Ui)i∈I is a sequential game, where the
manipulating players play first and the manipulated players play second.

5.5. Variable Association

Associating these variables with the notations above, let us introduce the follow-
ing vector:

s = s(c) := (c1(θ1
t , m1

t , a1
t , α1

t ), . . . , cn+m(θn+m
t , mn+m

t , an+m
t , αn+m

t ))ᵀ ∈ Sadm, ci(θi
t, mi

t, ai
t, αi

t) ∈ Ci
adm

and the functions
ui(s(c)) = Ũi(c), i ∈ I.

Then we have

s∗(λ) ∈ Arg min
s∈Sadm

∑
i∈I

λiui(s)⇔ c∗(λ) ∈ Arg min
c∈Ci

adm

∑
i∈I

λiŨi(c)

s∗(λ) = s(c∗(λ)).


Hence,

max
λl∈Λ

max
sl∈S l

adm

ϕ(sl , s f , λl) = max
λl∈Λ

max
sl∈Cl

adm

φ(cl , c f , λl),

min
λ f∈Λ

max
s f∈S f

adm

ψ(s f , sl , λ f ) = min
λ f∈Λ

max
c f∈C f

adm

$(c f , cl , λ f ),

where

φ(cl , c f , λl) = ∑
l∈L

λlŨl(c)− δ
2

(∥∥∥cl
∥∥∥2

+
∥∥∥λl
∥∥∥2
)

, δ > 0,

$(c f , cl , λ f ) = ∑
f∈F

λ f Ũ f (c)− δ
2

(∥∥∥c f
∥∥∥2
−
∥∥∥λ f

∥∥∥2
)

, δ > 0.

5.6. Recover the Relationship

Lemma 1. Let us assume that Equations (19) and (20) are solved, then the variables πi∗(αi
t|mi

t),
i ∈ I, can be recovered from ci∗(θi

tm
i
ta

i
tα

i
t) as follows:

πi∗(αi
t|mi

t) =
1
|Θi| ∑

θi
t∈Θi

1
|Ai|

ci(θi
tm

i
ta

i
tα

i
t)

∑
ζ i

t∈Ai
ci(θi

tm
i
ta

i
tζ

i
t)

. (21)

Proof. Let

πi∗(αi
t|θi

tm
i
t) =



1
|Ai|

ci(θi
tm

i
ta

i
tα

i
t)

∑
ζ i

t∈Ai
ci(θi

tm
i
ta

i
tζ

i
t)

i f ∑
αi

t∈Ai
ci(θi

tm
i
ta

i
tα

i
t) > 0,

0 ∑
αi

t∈Ai
ci(θi

tm
i
ta

i
tα

i
t) = 0.
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It then follows from

πi∗(αi
t|mi

t) =
1
|Θi| ∑

θi
t∈Θi

1
|Ai|

ci(θi
tm

i
ta

i
tα

i
t)

∑
ζ i

t∈Ai
ci(θi

tm
i
ta

i
tζ

i
t)

.

that ∑
αi

t∈Ai
πi∗(αi

t|mi
t) = 1.

To recover σi∗(mi
t|θi

t), the formula is given by

σi∗(mi
t|θi

t) =

∑
ai

t∈Ai
∑

αi
t∈Ai

ci(θi
tm

i
ta

i
tα

i
t)

∑
ωi

t∈Mi
∑

ai
t∈Ai

∑
αi

t∈Ai
ci(θi

tω
i
ta

i
tα

i
t)

. (22)

The formula to recover the distribution Pi∗(θi
t) is

Pi∗(θi
t) = ∑

mi
t∈Mi

∑
ai

t∈Ai
∑

αi
t∈Ai

ci(θi
tm

i
ta

i
tα

i
t) > 0. (23)

Finally,

zi∗(αi
t|ai

t) =

∑
θi

t∈Θi
∑

mi
t∈Mi

ci∗(θi
tm

i
ta

i
tα

i
t)

∑
θi

t∈Θi
∑

ml
t∈Mi

∑
ζ i

t∈Ai
t

ci∗(θi
tm

i
ta

i
tζ

i
t)

. (24)

6. Numerical Example

We use the notion of manipulation to study non-cooperative games with uncertain
information. The forward and futures markets provide a clear illustration of several key
problems associated with the economics of uncertainty and information asymmetry. These
markets play a significant role in facilitating trade among firms to efficiently distribute risks,
taking into account each agent’s risk preferences. This topic has long been a subject of study
in the literature due to its practical significance. For example, the examination of squeezes
or corners, as referred to in institutional terms, brings up the issue of market manipulation.
In both scenarios, it is implicitly assumed that certain corporations have access to strategic
information and employ this advantage to influence the market in their favor, thereby
impacting pricing. In this section, we present an example of how oligopolistic firms
behave using manipulation. The game consists of four firms, and the main characteristic
of this market is mutual interdependence, i.e., one firm’s action influences the profits of
its rivals. In the dynamics of the game, firm 1 and firm 2 play first, followed by firms
3 and firm 4. They are tempted to collude to fix a price (produce identical products) or
production level (produce different products) in a market in order to maximize their profits.
Colluding allows them to act as a monopoly. However, firms pursue their own self-interests,
producing greater quantities than the other firms, leading to lower prices (i.e., petroleum).
As collusive agreements are illegal, there is a threat that firms may defect by cheating on
their associates and manipulating the market. Oligopolists reason that if they are the only
ones cheating, it can increase their profits. Then each firm has an incentive to cheat.

Let G be a non-cooperative game determined G = (I ,S , ul , u f ). I = {1, . . . , 4} is the set
of total Machiavellian players where L = {1, 2} is the set of manipulating players indexed by
l = 1, 2, and F = {3, 4} is the set of manipulated players indexed by f = 3, 4. In the dynamics
of the game, the players take alternate turns. Manipulators commit first to a strategy and
then the manipulated players’ strategy is played. Let the number of states for each player
be θ = 4 and let a = 2 be the number of actions for each player.



Mathematics 2023, 11, 4143 15 of 19

We intend to reflect the ideas that firms are committed to their manipulation actions
for a finite length of time, and that they react to the current manipulation actions of other
firms. A firm’s instantaneous price competition is given by Equations (17) and (18). The
proximal method presented in Equation (15) was applied to calculate the manipulation
equilibrium for the initial variables, δ0 = 5.0× 10−4, µ0 = ×10−6 and γ0 = 4.85× 10−1.
The resulting values of interest are as follows:

π1∗(a|m) =


0.5293 0.4707
0.4979 0.5021
0.4798 0.5202
0.5353 0.4647

, z1∗(α|a)=
[

0.5038 0.4962
0.5634 0.4366

]
,

σ1∗(m|θ)=


0.3005 0.2316 0.2345 0.2334
0.2504 0.2458 0.2718 0.2320
0.2636 0.2637 0.2775 0.1951
0.2267 0.2242 0.2433 0.3058

, P1∗(θ)=


0.2860
0.2070
0.2740
0.2331

.

π2∗(a|m) =


0.5276 0.4724
0.4974 0.5026
0.4820 0.5180
0.6041 0.3959

. z2∗(α|a)=
[

0.5097 0.5388
0.4903 0.4612

]
,

σ2∗(m|θ)=


0.3238 0.2240 0.2281 0.2241
0.2447 0.2451 0.2691 0.2411
0.2596 0.2668 0.2786 0.1950
0.2497 0.2491 0.2613 0.2399

, P2∗(θ)=


0.2260
0.1840
0.3122
0.2778

.

λl∗=
[

0.1802
0.8198

]
.

π3∗(a|m) =


0.4375 0.5625
0.5000 0.5000
0.5003 0.4997
0.3487 0.6513

, z3∗(α|a)=
[

0.0124 0.9876
0.2182 0.7818

]
,

σ3∗(m|θ)=


0.9953 0.0016 0.0016 0.0016
0.1897 0.1891 0.1879 0.4333
0.0018 0.0018 0.0018 0.9946
0.0090 0.0090 0.0089 0.9731

, P3∗(θ)=


0.2534
0.3275
0.2239
0.1953

.

π4∗(a|m) =


0.4375 0.5625
0.5000 0.5000
0.5004 0.4996
0.3285 0.6715

, z4∗(α|a)=
[

0.0251 0.9749
0.1939 0.8061

]
,

σ4∗(m|θ)=


0.9960 0.0013 0.0013 0.0013
0.1495 0.1479 0.1472 0.5554
0.0013 0.0013 0.0013 0.9961
0.0022 0.0022 0.0022 0.9934

, P4∗(θ)=


0.2981
0.2092
0.3112
0.1815

.

λ f ∗=
[

0.6100
0.3900

]
.

Depending on the interpretation of the oligopoly, action a can represent the choice of a
price, quantity, location, etc. It can also represent a vector of choices. Firms act in discrete
time, and the horizon is finite. The convergence of strategies for the manipulating players
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is illustrated in Figures 1 and 2; the convergence of strategies for the manipulated players
is shown in Figures 3 and 4.
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Figure 1. Convergence of strategies c for firm 1.
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Figure 4. Convergence of strategies c for firm 4.

Based on the understanding of the strategies, the example consists of two key compo-
nents. According to the manipulation model, firms 1 and 2 accumulate a significant number
of positions without causing an increase in the price of these contracts. The manipulated
firms 3 and 4 are compelled to maintain prices. A deeper examination of firms 1 and
2 reveals that they possess the necessary market sway to keep futures prices from rising
while compelling firms 3 and 4 to maintain lower pricing and significantly strengthen their
own positions.
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7. Conclusions

This paper proposes a manipulative game. As part of our contribution, the game
was modeled using the worst and best Nash equilibrium points. To address the issue, we
constrained the problem to homogeneous, finite, ergodic, and controlled Bayesian–Markov
games. Players who adhered to Machiavellian principles claimed to be in one state while
they were truly in another and pretended to act one way while genuinely acting another.
Each participant in the Machiavellian group engaged in some sort of social manipulation.
Players who engaged in manipulation had a stronger preference than manipulated par-
ticipants. The Pareto frontier is defined as the line where manipulating players play the
best Nash equilibrium and manipulated players play the worst Nash equilibrium. In the
case of multiple manipulators and manipulated players, it is also considered a sequential
Bayesian–Markov manipulation game. Lastly, we provided a tractable characterization of
the manipulation equilibrium findings. We employed Tikhonov’s penalty regularization
approach to ensure the convergence of the game’s solution to a unique outcome. The out-
comes of our concept are illustrated through a numerical example. Without a doubt, there
are other issues that should be taken into account in future studies. We are thinking about
expanding our method to handle Bayesian–Markov games and a hierarchical Stackelberg
model. The paradigm might be expanded to support leaders and followers in a three-level
model. Finding a practical economic use for the concept is an intriguing challenge for
manipulation games.
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23. Eső, P.; Szentes, B. Optimal Information Disclosure in Auctionsand the Handicap Auction. Rev. Econ. Stud. 2007, 74, 705–731.

[CrossRef]
24. Bergemann, D.; Pesendorfer, M. Information structuresin optimal auctions. J. Econ. Theory 2007, 137, 580–609. [CrossRef]
25. Rayo, L.; Segal, I. Optimal information disclosure. J. Political Econ. 2010, 118, 949–987. [CrossRef]
26. Li, H.; Shi, X. Discriminatory Information Disclosure. Discrim. Inf. Discl. 2017, 107, 3363–3385. [CrossRef]
27. Clempner, J.B.; Poznyak, A.S. A Tikhonov regularized penalty function approach for solving polylinear programming problems.

J. Comput. Appl. Math. 2018, 328, 267–286. [CrossRef]
28. Clempner, J.B.; Poznyak, A.S. A Tikhonov regularization parameter approach for solving Lagrange constrained optimization

problems. Eng. Optim. 2018, 50, 1996–2012. [CrossRef]
29. Clempner, J.B.; Poznyak, A.S. Multiobjective Markov chains optimization problem with strong Pareto frontier: Principles of

decision making. Expert Syst. Appl. 2017, 68, 123–135. [CrossRef]
30. Clempner, J.B.; Poznyak, A.S. Constructing the Pareto front for multi-objective Markov chains handling a strong Pareto policy

approach. Comput. Appl. Math. 2018, 3, 567–591. [CrossRef]
31. Tanaka, K. The Closest Solution To The Shadow Minimum of a Cooperative Dynamic Game. Comput. Math. Appl. 1989,

18, 181–188. [CrossRef]
32. Tanaka, K.; Yokoyama, K. On ε-equilibrium point in a noncooperative n-person game. J. Math. Anal. Appl. 1991, 160, 413–423.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1257/aer.p20161046
http://dx.doi.org/10.1016/j.geb.2017.05.004
http://dx.doi.org/10.1007/s00199-011-0615-9
http://dx.doi.org/10.1093/restud/rds017
http://dx.doi.org/10.1111/j.1467-937X.2007.00442.x
http://dx.doi.org/10.1016/j.jet.2007.02.001
http://dx.doi.org/10.1086/657922
http://dx.doi.org/10.1257/aer.20151743
http://dx.doi.org/10.1016/j.cam.2017.07.032
http://dx.doi.org/10.1080/0305215X.2017.1418866
http://dx.doi.org/10.1016/j.eswa.2016.10.027
http://dx.doi.org/10.1007/s40314-016-0360-6
http://dx.doi.org/10.1016/0898-1221(89)90135-1
http://dx.doi.org/10.1016/0022-247X(91)90314-P

	Introduction
	Brief Review
	Related Work
	Main Contribution
	Organization of the Paper

	Manipulation Game
	Manipulation Equilibrium
	Computing the Manipulation Equilibrium
	The Tanaka Function
	Proximal Format

	Markov Games and Moral Hazard
	Markov Model
	Strategies and Moral Hazards
	Auxiliary Variable
	Machiavellian Equilibrium
	Variable Association
	Recover the Relationship

	Numerical Example
	Conclusions
	References

