
Citation: Sun, Z.; Hu, S.; Song, H.;

Liang, P. Learning Wasserstein

Contrastive Color Histogram

Representation for Low-Light Image

Enhancement. Mathematics 2023, 11,

4194. https://doi.org/10.3390/

math11194194

Academic Editor: Konstantin Kozlov

Received: 21 August 2023

Revised: 25 September 2023

Accepted: 3 October 2023

Published: 8 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Learning Wasserstein Contrastive Color Histogram
Representation for Low-Light Image Enhancement
Zixuan Sun 1, Shenglong Hu 1, Huihui Song 1 and Peng Liang 2,*

1 B-DAT and CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China;
szx15371022401@163.com (Z.S.); hslnuist@163.com (S.H.); songhuihui@nuist.edu.cn (H.S.)

2 College of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510000, China
* Correspondence: liangpeng@gpnu.edu.cn

Abstract: The goal of low-light image enhancement (LLIE) is to enhance perception to restore normal-
light images. The primary emphasis of earlier LLIE methods was on enhancing the illumination
while paying less attention to the color distortions and noise in the dark. In comparison to the
ground truth, the restored images frequently exhibit inconsistent color and residual noise. To this
end, this paper introduces a Wasserstein contrastive regularization method (WCR) for LLIE. The
WCR regularizes the color histogram (CH) representation of the restored image to keep its color
consistency while removing noise. Specifically, the WCR contains two novel designs including a
differentiable CH module (DCHM) and a WCR loss. The DCHM serves as a modular component that
can be easily integrated into the network to enable end-to-end learning of the image CH. Afterwards,
to ensure color consistency, we utilize the Wasserstein distance (WD) to quantify the resemblance of
the learnable CHs between the restored image and the normal-light image. Then, the regularized WD
is used to construct the WCR loss, which is a triplet loss and takes the normal-light images as positive
samples, the low-light images as negative samples, and the restored images as anchor samples.
The WCR loss pulls the anchor samples closer to the positive samples and simultaneously pushes
them away from the negative samples so as to help the anchors remove the noise in the dark.
Notably, the proposed WCR method was only used for training, and was shown to achieve high
performance and high speed inference using lightweight networks. Therefore, it is valuable for real-
time applications such as night automatic driving and night reversing image enhancement. Extensive
evaluations on benchmark datasets such as LOL, FiveK, and UIEB showed that the proposed WCR
method achieves superior performance, outperforming existing state-of-the-art methods.

Keywords: low-light image enhancement; Wasserstein contrastive regularization; differentiable color
histogram module

MSC: 68U10

1. Introduction

Low-light images captured in natural scenes under insufficient illumination conditions
often suffer from unpleasing visual perceptions, including low contrast and visibility,
unpleasing color distortions, and noise. Besides these issues, the degradations are adverse
to a variety of high-level computer vision tasks, including, but not limited to, video
surveillance [1], depth estimation [2], and face detection [3,4].

In recent decades, there has been a growing interest in low-light image enhancement
(LLIE) [5–9], which focuses on enhancing the illumination to restore normal-light images.
Most of the traditional LLIE methods are based on histogram equalization (HE) [10] and
Retinex theory [11,12]. The traditional methods have achieved good performance on
specific images and have also inspired recent work [13,14]. However, these methods
focus on modifying the intensity values of pixels, but cannot automatically learn the
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effective image feature representations that can fully describe the natural image intrinsic
characteristics, resulting in unnatural enhancement such as lost details and distorted colors.

To further advance LLIE, deep learning [15] has been introduced into LLIE, which can
automatically learn effective feature representations from a large amount of images in an
end-to-end manner.

In spite of proven achievements, most deep learning-based LLIE methods [5–7,15–19]
suffer from the issue of color inconsistency or residual noise. First, to guide the training
of the model, they adopt pixel-wise loss, such as L1/L2-based image reconstruction loss,
which cannot capture global color statistics (e.g., mean and variance) differences, leading
to color inconsistency between the restored images and the normal-light images (see
Figure 1c–e).

Figure 1. Comparison of our method with the most advanced methods currently available. We evalu-
ate peak signal-to-noise ratio (PSNR), Wasserstein distance (WD) [20], which measures distribution
similarity and Params on the LOL [13] dataset: (a,b,g) correspond to the input low-light image and
the reference normal-light image, respectively. (c–f) represent the restored images generated by the
KinD++ [5], DCCNet [7], LLFlow [6], and the proposed approach, respectively.

For instance, if we take a color image and shift it by one pixel, the resulting shifted
image will exhibit nearly identical color statistics to the original image, but their pixel-wise
loss may indicate significant differences between them. Second, such approaches, including
state-of-the-art KinD++ [5] and DCCNet [7], only regard well-exposed normal-light images
as supervisory signals, neglecting to model the noise present in the low-light images.
As depicted in Figure 1c,d, this may cause the restored image to suffer from severe residual
noise, leading to unpleasing visual effects.

In this research, we present a naval Wasserstein contrastive regularization method
(WCR) for LLIE to address the aforementioned problems, which can effectively regularize
the CH representation of the restored image to maintain its color consistency while remov-
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ing noise. Specifically, the proposed WCR comprises two components: a differentiable CH
module (DCHM) and a WCR loss. To learn the CH representation, the DCHM combines
low-light images, their matching restored images, and the normal-light images into a color
space. Subsequently, we lift the DCH to Wasserstein space, where the distance stands in
for the expense of the most efficient transfer of a complete color distribution between two
locations. Inspired by contrastive learning (CL) [21,22], we further formulate the WCR loss
as a triplet loss, which pulls the restored images closer to the normal-light images while
pushing the restored images farther away from the low-light images in Wasserstein space.
The proposed WCR method was evaluated through comprehensive experiments on three
widely used benchmark datasets, namely, LOL [13], FiveK [23], and UIEB [24]. The re-
sults clearly indicate the proficiency of WCR on keeping color consistency and removing
residual noise.

In conclusion, this work offers the following main contributions:

• A novel WCR framework is proposed for LLIE, which regularizes the CH represen-
tation of the restored image in Wasserstein space to keep its color consistency while
removing residual noise;

• A DCHM was designed that can be readily injected into the network to learn the
image CH representation in an end-to-end mode;

• We constructed a WCR loss that introduces low-light images as negative samples for
CL, which effectively reduces the residual noise.

The rest of the paper is organized as follows. Section 2 presents an overview of the
related works. Section 3 delves into the specifics of our proposed WCR method. Section 4
contains the experimental results and analyses conducted on three datasets: LOL [13], MIT
FiveK [23], and UIEB [24]. Then, the discussion is presented in Section 5. Finally, we outline
the conclusions in Section 6.

2. Related Work
2.1. Low-Light Image Enhancement

LLIE is a long-standing research topic and various approaches have been proposed.
These can be categorized into two classes: traditional LLIE [10–12] and deep learning-based
LLIE [5–7,19,25,26].

Traditional LLIE. HE-based approaches [10] and Retinex theory-based methods [11,12]
are two main categories that can be used to categorize early LLIE methods. The HE can
improve the visibility of dark images by increasing the dynamic range. However, the HE is
primarily designed to enhance contrast rather than adjust illumination, and as a result, it
tends to be sensitive to noise in low-light images. Similarly, the Retinex theory hypothesis
presupposes that an image is made up of both illumination and reflection, yet it can provide
exaggerated enhancements like lost features and color distortions. In addition, the Retinex
model typically does not account for noise, leading to a large amount of noise during the
enhancement process.

Deep learning-based LLIE. Deep learning has become increasingly popular in the
field of LLIE due to its capabilities in end-to-end learning. LLNet [19], a pioneering
work in this field, tackles the LLIE problem using stacked sparse denoising autoencoders.
MBLLEN [25] is a pioneering research that introduces LLIE algorithms to video processing,
while KinD [27] and KinD++ [5] are data-driven approaches that leverage Retinex theory
to alleviate issues related to illumination adjustment and the removal of artifacts in the
LLIE. Additionally, Zero-DCE [28] and Zero-DCE++ [29] use curve estimation to achieve
zero-reference image illumination enhancement. In a different approach, SCI [30] develops
a new self-calibrating illumination learning framework for achieving fast image bright-
ening in low-light conditions in the real world. Another work by Wu et al. [14] expands
an optimization problem into a learnable network to decompose low-light images into
reflectance and illumination layers, achieving noise suppression and detail preservation
in the final decomposition results. DCCNet [7] learns the color distribution and grayscale
content separately from the input, and then fuses them through a pyramid color embedding
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module to obtain the restored image. Normalization flow is employed by Zhang et al. [16]
to improve stability in the context of low-light video enhancement. Similarly, LLFlow [6]
utilizes normalizing flow techniques to handle illumination adjustment and noise sup-
pression in low-light scenarios. Despite the demonstrated promising results, the above
methods tend to suffer from the issue of color inconsistency or residual noise. For example,
KinD++ [5] performs multiscale reconstruction of illumination and reflection based on
Retinex, ignoring the learning of color and noise representations. DCCNet [7] directly
predicts the color representation of normal-light images with low light-images, resulting
in a significant amount of residual noise. LLFlow [6], conditioned on low-light images,
learns a reversible network that transforms the distribution of normal-light images into a
Gaussian distribution. While it effectively eliminates noise, the oversmoothing effect can
lead to color distortions.

2.2. Contrastive Learning

CL [21,22] has gained significant popularity as a representation learning paradigm
in the realm of computer vision. By contrasting positive pairs with negative pairs, the CL
approach allows for representation learning, which is frequently used in various high-
level computer vision tasks, including image classification [22], object detection [31,32],
and image segmentation [33].

Over the last few years, there have been some attempts to investigate the utilization of
CL in lower-level tasks [34–37]. Wu et al. [34] even demonstrate that CL can be very effective
in improving image dehazing. Semi-UIR [35] uses a mean teacher-based semisupervised
underwater image restoration framework, which incorporates contrastive regularization
to mitigate the overfitting caused by incorrect labels. SCL-LLE [36] leverages CL for
LLIE that allows the LLIE model to use both positive and negative samples, and uses the
scene semantics to regularize the image enhancement network. Fu et al. [37] introduce
the regularizer-free Retinex decomposition and synthesis network, which incorporates
CL to impose constraints on Retinex decomposition. Typically, these methods result in
color deviations because they neglect the global color statistics of the image, which can be
effectively captured by the CH representation learned through the proposed DCHM.

3. Methodology

We first provide a summary of the proposed WCR framework for LLIE in Section 3.1.
Then, we provide details of the WCR method, which contains two key designs including a
DCHM (Section 3.2) and a WCR loss (Section 3.3).

3.1. Overall Pipeline

Figure 2 illustrates the overall framework of our WCR. Given a low-light image
Ilow ∈ RH×W×3, which has a height of H and a width of W, we first employ a lightweight
network backbone composed of three parallel residual convolution layers followed by
a residual layer to extract the low-level features F ∈ RH×W×C with channel number C.
Subsequently, F passes through three sets of residual convolution layers to decouple and
refine the prediction for each RGB channel, yielding Ii ∈ RH×W×1 for channel i = r, g, b.
Next, Ir, Ig and Ib are merged along the channel axis to yield the restored image Ires ∈
RH×W×3. Following this, the DCHM projects Ilow, Ires, and the normal-light image Inorm

into the color space, resulting in the corresponding DCH representations~hlow,~hres, and
~hnorm ∈ R3d, where each CH representation~h = [~hr,~hg ,~hb], which concatenates the d-
dimensional CH~hi ∈ Rd, i = r, g, b of each channel i. Then, we utilize the WD to measure
the similarity between~hres and~hnorm, which constructs the WD loss that preserves the
color consistency between the restored image and the normal-light image. Afterwards,
~hres,~hlow, and~hnorm are taken as the anchor, negative, and positive sample representations,
respectively, and we use the WD to measure the similarity among the positive/negative
and the anchor samples, which constructs the CL loss that pulls the anchors closer to
the positive samples while pushing the anchors farther away from the negative samples.
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The WD loss and the CL loss are then combined to construct the WCR loss. Finally, we
jointly optimize the network by combining the structure similarity index measure (SSIM)
loss [38] and the WCR loss.

Figure 2. The overall framework of the proposed WCR. Our WCR comprises a simple backbone
with three parallel residual convolution layers followed by a residual layer for feature extraction
and a decoupling prediction head for refined RGB channel recovery. Next, we design the DCHM to
map the low-light images, their corresponding restored images, and the normal-light images into
a color space to learn their CH representations. Afterwards, we lift the DCH to Wasserstein space.
Finally, with the DCHs as feature presentations, the WCR loss pulls the restored images closer to the
normal-light images while pushing the restored images farther away from the low-light images in
Wasserstein space.

In the subsequent sections, we will present the key designs including DCHM and
WCR loss in detail.

3.2. DCHM

The computation of CH is nondifferential, which means it cannot be learned in an
end-to-end manner. To address this issue, we designed the DCHM to use the kernel density
estimation (KDE) [39] to approximate the CH.

Specifically, taking the channel of the red color as an example, we normalize the
intensity of image pixel i to Ir(i) ∈ [0, 1]. Then, the KDE estimates the density Dr in the red
color channel as follows:

Dr(x) =
1

SW ∑
i∈∆

K
(

Ir(i)− x
W

)
, (1)

where x ∈ [0, 1], S = |∆| is the count of pixels in channel r, W is the bandwidth, and
K(x) = σ(x)(1− σ(x)) is the kernel function chose as the derivative of the Sigmoid function
σ(x) = 1/(1 + exp(−x)). Then, we divide interval [0, 1] into N subintervals, and each
interval is denoted as Bn = [ n−1

N , n
N ], where n ∈ [1, N]. Furthermore, the likelihood of a

pixel in channel r being assigned to the n-th bin in the histogram can be expressed as

Pr(n) =
∫

In
Dr(x) dx =

1
S ∑

i∈∆

[
σ

(
Ir(i)− n−1

N
W

)− σ(
Ir(i)− n

N
W

)]
, (2)

where σ(·) is a Sigmoid function that approximates the unit step function. As illustrated by
Figure 3, each pixel is represented as an N-dimensional smoothed one-hot vector and the
function Pr(n) provides the value of the n-th bin in a DCH. In addition, to obtain the n-th
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bin of the histogram, we accumulate the values of all pixels in the n-th channel. Finally,
the DH is defined as

~hr = {µn,Pr(n)}N
n=1, (3)

where µn denotes the center of Bn.

Figure 3. Illustration of how to construct the DCHM. The kernel density of each pixel is estimated as a
N-dimensional probability density. The estimated distribution of the CH is obtained by accumulating
the same dimension of all pixels.

The DCHs~hg and~hb can be calculated in the same way as~hr (3). Note that the DCHM
can produce a smoothing histogram that can minimize undesired gradient effects. This is
helpful to keep the color consistency, which is essential to LLIE.

3.3. WCR Loss

The WCR loss is defined as follows:

LWCR = LWD(~hres,~hnorm) + LCL(~hres,~hlow,~hnorm), (4)

where the WD loss LWD is to preserve the color consistency between the restored image and
the reference image in normal lighting conditions, while the CL loss LCL aims to minimize
the residual noise in the restored image using guidance from the low-light image.

WD loss. The WD [40] computes the minimum average distance that needs to be
covered when transporting data from two distributions. Given two probability distributions
p ∼ P and q ∼ Q, the WD between P and Q is defined as [40]

D(P ,Q) = inf
γ∼Γ(P ,Q)

∫
M×M

c(p, q)dγ(p, q), (5)

where Γ(P ,Q) represents all possible couplings of P(p) and Q(q); c(·) denotes a point-
wise cost function that quantifies the dissimilarity between p and q;M represents the space
of p and q; and γ(p, q) represents a joint distribution that satisfies

∫
M γ(p, q)dq = P(p)

and
∫
M γ(p, q)dp = Q(q).
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The discrete WD of (5) can be formulated as [40]

D(P ,Q) = min
π

N

∑
i=1

N

∑
j=1

πijc(pi, qj) = min
π
〈π, C〉,

s.t.
N

∑
i=1

πij = dj,
N

∑
j=1

πij = si, (6)

N

∑
i=1

si =
N

∑
j=1

dj,

πij ≥ 0, i = 1, 2, . . . , N, j = 1, 2, . . . , N,

where π represents the discrete joint probability for p and q, which can be thought of as
the transportation plan. The cost matrix, denoted as C, is defined by Cij = c(pi, qj) = p>i qj,
where pi and qj are elements of p and q, respectively. The inner product 〈π, C〉 = Tr

(
πTC

)
is computed using the trace operator Tr(), and si denotes the inventory or quantity of
goods available with the i-th supplier, while dj represents the demand or quantity of goods
required by the j-th consumer in the context of optimal transportation theory [40]. To find
the global optimum for (6), linear programming is typically used. However, due to its
nondifferentiability, this approach is not compatible with current deep learning frameworks.
To address this issue, we employ the Sinkhorn distance [41], which introduces a convex
regularization term into (6). This regularization term can be expressed as

D(P ,Q) = min
π

N

∑
i=1

N

∑
j=1

πijc(pi, qj) + αH(π), (7)

whereH(π) = ∑i,j πijlogπij, and α is a hyperparameter that controls the relative impor-
tance of the entropy loss on π. The Sinkhorn distance is a differential module that can be
readily embedded into the network for end-to-end training.

We measure the WD between~hres and~hnorm via optimizing the problem (7) to learn
CH representation between the restored image and the normal-light image, yielding the
WD loss as

LWD = D(~hres,~hnorm). (8)

By capturing the global color statistics of the normal-light image, LWD can enhance
the realism and richness of color in the restored image, while maintaining color consistency,
as shown in Figure 4.

Figure 4. Comparison of state-of-the-art techniques with our WCR method through visual analysis in term
of WD metric. The upper row showcases the restored RGB images alongside the ground-truth reference
image, while the bottom row showcases the corresponding CHs. (a–d) represent the results of KinD++,
DCCNet, LLFlow and our proposed method, respectively. (e) denotes the reference and the standard CH
distribution. The restored image of our WCR successfully recovers the original color representations with
the best WD value, while the other methods generate color-distorted restoration results.
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CL loss. When optimizing a network only using normal-light images, negative repre-
sentations present in the low-light images are neglected. This leads to the restored image
undergoing severe residual noise. To address this issue, inspired by CL [21,22], we propose
a CL loss that is a triplet loss [42], which takes the normal-light images as positive samples,
the low-light images as negative samples, and the restored images as anchor samples. As
shown in Figure 5, the CL loss aims to learn a DCH representation of the restored image
that is closer to the normal-light image than the low-light image, which can formulated as

D(~hres,~hnorm) + ρ < D(~hres,~hlow), (9)

where ρ represents the margin, which ensures that the features of the samples do not
collapse into a very small Wasserstein space subjected to the metric D (5).

Figure 5. The CL aims to minimize the WD between an anchor and a positive sample, while
simultaneously maximizing the WD between the anchor and a negative sample.

Then, we define (~hres
i
,~hnorm

j
) as the positive sample pairs and (~hres

i
,~hlow

j
) as neg-

ative sample pairs, where i and j denote the sample number within a batch. It should
be noted that i may or may not be equal to j. That is, to ensure the generalization of the
network, the normal-light and low-light images can be unpaired with the restored images.
Following this, according to (9), the CL loss can be written as

LCL =
bs

∑
i

bs

∑
j
[D(~hres

i
,~hnorm

j
)−D(~hres

i
,~hlow

j
) + ρ]+, (10)

where bs denotes the batch size.

3.4. Total Loss

Apart from the proposed WCR loss, we incorporate the SSIM loss [38] as an additional
constraint to enhance the restoration of structural details, which is defined as

LSSIM = 1− SSIM(Ires, Inorm), (11)

where the structural similarity function denoted as SSIM(·), which is described in [38], is
expressed as follows:

SSIM(I1, I2) =
2µ1µ2 + c1

µ2
1 + µ2

2 + c1
· 2σ1 + c2

σ2
1 + σ2

2 + c1
, (12)

Finally, the total loss of our proposed WCR is defined as

Ltotal = λ1LSSIM + λ2LWCR, (13)

where λ1 and λ2 are two trade-off parameters. Among the total loss Ltotal, LSSIM (11) is
utilized to reconstruct the image in structure level and LWCR (4) is used as a regularization
term to learn the DCH representations to keep color consistency and remove the residual noise;
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where I1, I2 ∈ RH×W×3 are two images, µ1, µ2 ∈ R are their mean values, σ1, σ2 ∈ R are their
variances, and c1 and c2 are constant parameters to avoid division by zero.

4. Experiments
4.1. Implementation Details

The WCR method was designed to be trainable end-to-end, eliminating the need for
progressive training or extensive pretraining. All experiments were conducted using the
Python environment and the PyTorch framework, with an NVIDIA GeForce RTX 3090.
The network was trained on 100× 100 randomly cropped patches, and the original image
size was used for testing. No data augmentation method was employed in our approach.
The AdamW optimizer [43] was utilized with a batch size of 16 and an initial learning rate
of 8× 10−4, which were steadily decreased to 8× 10−8. For the trade-off parameters λ1
and λ2 in Ltotal (13), we set them to 1 and 0.1, respectively. For the LOL dataset [13], we
trained the model for 100 epochs and the number of patches per image was 30. For the
MIT-Adobe FiveK dataset [23], we trained the model for 20 epochs and the number of
patches per image was 38. For the UIEB dataset [24], we trained the model for 100 epochs
and the number of patches per image was 35.

4.2. Evaluation Datasets and Metrics

Evaluation datasets. For the LLIE task, we used the LOL real dataset [13]. LOL
contains 500 pairs of extremely dark images of 400× 600 resolution. It was divided into
485 training image pairs and 15 image pairs for testing. In order to comprehensively
assess the efficacy of the proposed WCR method, we also conducted experiments on the
widely used image retouching dataset MIT-Adobe FiveK [23] and the underwater image
enhancement dataset UIEB [24]. The MIT-Adobe FiveK dataset comprises 5000 images
with diverse lighting intensities and varying resolutions. We followed the method [44]
that splits the dataset by using the first 4500 images for training and the remaining 500
images for testing. The UIEB dataset is a commonly used benchmark for underwater image
enhancement, which mainly focuses on color adjustment and noise removal. The UIEB
dataset consists of a total of 950 underwater images captured in real-world scenarios,
with 890 of them having corresponding reference images. The division of the UIEB dataset
into training and testing sets aligns with the partitioning utilized in PUIE [45].

Evaluation metrics. For the LOL dataset, we report the PSNR, the SSIM, and the
learned perceptual image patch similarity LPIPS [46] scores for quantitative evaluation.
We also report the WD score, which measures the Wasserstein distance between the his-
togram of the restored image and the histogram of its corresponding normal-light image.
To ensure fairness and consistency in evaluation, we utilized pretrained models provided
by other comparative methods and assessed the performance under the same test metric
settings, considering that different platforms can lead to varying test results. Additionally,
we measured the model parameter size and computational complexity using Params and
FLOPs. For the MIT-Adobe FiveK dataset and the UIEB dataset, we conducted the analysis
using PSNR and SSIM metrics. To conduct a more comprehensive accuracy comparison
between the two sets of predictions, we employed the two-sample Kolmogorov–Smirnov
(K-S) test [47]. This statistical test examines whether the color histogram distributions of
the output and the reference exhibit consistency.

4.3. Quantitative Enhancement Results

The quantitative comparison results of our novel WCR method against state-of-the-art
LLIE methods on the LOL dataset are presented in Table 1. The results demonstrate outstand-
ing performance in comparison to other state-of-the-art methods, ranking within the top
two for all metrics. In particular, our proposed method achieved the best PSNR = 26.87 dB
and WD = 141.8. The PSNR metric focuses on evaluating the quality of image denois-
ing, while the WD metric emphasizes color consistency in image restoration. It is worth
noting that, unlike previous methods that have to strike a balance between these two
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metrics, our WCR method can achieve both excellent denoising performance and color
consistency. In addition, the proposed WCR method was only utilized for training with-
out increasing the model’s parameter count and computational requirements. Therefore,
the WCR method also achieved optimal performance in terms of Params = 0.24 M and
FLOPs = 55.3 G. Table 2 lists the qualitative results compared to the state-of-the-art methods
for the tasks of image retouching and underwater image enhancement on the MIT-Adobe
FiveK dataset and the UIEB dataset, respectively. As indicated in Table 2, our proposed
WCR method outperformed the existing LLIE methods and established new state-of-the-
art results across all evaluation metrics. Our method achieves a PSNR = 26.66 dB and
SSIM = 0.96 on the MIT-Adobe FiveK dataset, with a gain of 0.51 dB and 1% over the
competing counterpart MAXIM [44]. Moreover, for the UIEB dataset, our WCR method
achieved a PSNR = 22.32 dB and SSIM = 0.91, with a gain of 0.46 dB and 3% over the
competing counterpart PUIE [45]. Table 3 presents the consistency outcomes achieved
through the two-sample K-S test conducted on the LOL test set. The test assumes that the
distribution of the output aligns with that of the reference graph. It is important to note that
the results displayed are the average values across all test images. As shown in Table 3, our
proposed method demonstrated critical values in the RGB three channels that surpassed
the test statistics, leading us to fail to reject the null hypothesis. Conversely, both LLFlow
and DCCNet, the current state-of-the-art methods, exhibited inconsistent distribution in
their color channels. This substantiates our method’s capability to recover a more precise
color representation.

Table 1. Quantitative comparison on the LOL dataset [13] based on various metrics such as PSNR,
SSIM, LPIPS, WD, Params, and FLOPs. A higher value is preferred for metrics denoted by ↑
(e.g., PSNR and SSIM), while a smaller value is preferred for metrics denoted by ↓ (e.g., WD, LPIPS,
Params, and FLOPs). Red text denotes the best result, while blue text indicates the second best.

Method PSNR↑ SSIM↑ LPIPS↓ WD↓ Params (M)↓ FLOPs (G)↓

Retinex(BMVC’18) [13] 18.04 0.67 0.389 250.07 0.84 587.47
KinD(ACMMM’19) [27] 18.15 0.82 0.131 261.55 8.16 356.72

KinD++(IJCV’21) [5] 18.21 0.83 0.148 264.91 8.28 2532
MIRNet(ECCV’20) [48] 23.91 0.88 0.093 152.42 31.79 2882.24
URetinex(CVPR’22) [14] 21.33 0.88 0.096 201.64 15.10 -
MAXIM(CVPR’22) [44] 25.73 0.89 0.075 158.42 14.14 216

LLFormer(AAAI’23) [26] 23.65 0.87 0.107 160.37 24.52 -
DCC(CVPR’22) [7] 25.48 0.89 0.091 148.25 13.19 270.47

LLFLow(AAAI’22) [6] 26.32 0.91 0.092 195.62 17.42 1050

Ours 26.87 0.90 0.083 141.80 0.24 55.3

Table 2. Quantitative comparison on the MIT-Adobe FiveK dataset [23] and the UIEB dataset [24]
in terms of PSNR and SSIM. ↑(↓) denotes that larger(smaller) values lead to better quality. The red
denotes the best performance and the blue denotes the second best.

Methods
FiveK

Methods
UIEB

PSNR↑ SSIM↑ PSNR↑ SSIM ↑

MBLLEN(BMVC’18) [25] 19.78 0.83 ReUIE(ICIP’14) [49] 17.53 0.77
KinD(ACMMM’19) [27] 14.54 0.74 IBLA(TIP’17) [50] 18.51 0.76

DSLR(TMM’20) [51] 16.63 0.78 WaterNet(TIP’19) [24] 19.81 0.86
DPE(CVPR’18) [52] 24.08 0.92 Haze-line(TPAMI’20) [53] 14.97 0.67
IRN(ICCV’21) [54] 24.27 0.90 LC-Net(TMM’21) [55] 18.54 0.84

CLUT(ACMMM’22) [56] 25.55 0.93 Ucolor(TIP’21) [57] 21.65 0.84
MAXIM(CVPR’22) [44] 26.15 0.95 PUIE(ECCV’22) [45] 21.86 0.87

Ours 26.66 0.96 Ours 22.32 0.90
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Table 3. Comparison of results from the two-sample K-S test on the LOL test set. S denotes the
test statistic, C represents the critical value, and RGB represents the red, green, and blue channels,
respectively. Critical values displayed in blue font indicate that they are smaller than the test statistic,
leading to the rejection of the null hypothesis. Critical values displayed in red font indicate that they
are greater than the test statistic, hence the null hypothesis cannot be rejected.

Method S (R) C (R) S (G) C (G) S (B) C (B)

LLFlow 0.1250 0.0365 0.0781 0.4160 0.1289 0.0283
DCCNet 0.1133 0.0748 0.0625 0.7004 0.1523 0.0052

Our 0.0781 0.4160 0.0703 0.5524 0.0977 0.1741

4.4. Visual Image Analysis and Evaluations

In terms of visual performance, we further compared our method with state-of-the-art
approaches on the LOL dataset, the results of which are presented in Figures 6 and 7. As shown
in Figure 6, KinD++ enhanced the image with an inferior visual quality. DCCNet achieved
a suboptimal WD, but it did not model the noise distribution hidden in low-light images,
resulting in a lower PSNR. In contrast, LLFlow takes low-light images as a condition and
applies normalization flow for denoising, but it neglects to capture global color statistics
differences between the restored images and the normal-light images, leading to color de-
viation with a larger WD. Our model achieved visual higher quality with crisper details,
more real colors, and less noise. In Figure 7, a selection of images from the LOL dataset
is showcased, accompanied by the enhancement outcomes achieved through various tech-
niques, including the enlarged details. While KinD++ was effective in improving brightness,
it introduced distorted colors and noise. LLFlow performed well in noise reduction, but ex-
cessive smoothing led to unrealistic results with overexposure in local regions. Our proposed
model clearly outperformed it, demonstrating the superiority of our proposed WCR method.
Figure 8 shows some qualitative results from the FiveK dataset and the UIEB dataset. It is evi-
dent that the WCR method attained excellent restoration of visual effects in the image retouching
and underwater image enhancement, including more realistic color and reduced noise.

Figure 6. Visual comparison with other deep LLIE methods in terms of PSNR↑/WD↓. The CH in the
lower row is in one-to-one correspondence with the image in the upper row.
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Figure 7. Comparison of our proposed method and the other LLIE methods on the LOL dataset [13].
All images are cropped to make their details more visible.

Figure 8. Visual effects of our proposed WCR method for image retouching and underwater image
enhancement. The first and third rows represent the original images, while the second and fourth
rows depict the corresponding restored images.

4.5. Ablation Study

Ablation experiments were conducted to evaluate the efficacy of our proposed LWD
and LCL in comparison to the commonly used L1 and LSSIM. Moreover, we performed
additional ablation experiments on our proposed WCR using the convolution-based
Unet [58] and the latest transformer-based LLFormer [26] model. The results are reported
in Tables 4 and 5, which clearly show that all the key designs contribute to the best perfor-
mance of the full model.

Without LWD, our method achieved a PSNR = 22.73 dB, SSIM = 0.83, LPIPS = 0.157,
and WD = 207.34, which are lower than the proposed model with LWD by 1.64 dB, 3%,
0.053, and 56.17, respectively. We then further plugged LCL, achieving a gain of 1.61 dB, 1%,
0.021, and 7.05 in terms of PSNR, SSIM, LPIPS, and WD, respectively, as compared to the
complementary technique. The ablation experiment using LSSIM as the baseline showed
similar performance changes, but using LSSIM and our proposed WCR method resulted in
a higher PSNR = 26.87 dB, SSIM = 0.90, LPIPS = 0.083, and WD = 141.80 than using L1 and
the proposed WCR method.
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Table 4. Ablation study on the LOL dataset [13] for different loss. Bold represents the best result.

Module Variants PSNR↑ SSIM↑ LPIPS↓ WD↓L1 LSSIM LW D LCL

X 22.73 0.83 0.157 207.34
X X 24.37 0.86 0.104 151.17
X X X 25.98 0.87 0.083 144.12

X 23.34 0.85 0.138 199.96
X X 25.46 0.88 0.090 146.76
X X X 26.87 0.90 0.083 141.80

Table 5. Ablation study results of different models with convolutional neural network architecture
and transformer architecture on the LOL dataset [13]. Bold indicates the amount of change in the
corresponding metrics.

Model PSNR↑ SSIM↑ LPIPS↓ WD↓

Unet [58] w/o WCR 17.74 0.83 0.164 254.36
Unet w WCR 19.52 (+1.78) 0.85 0.137 200.94 (−53.42)

LLFormer [26] w/o WCR 23.65 0.87 0.107 160.37
LLFormer w WCR 25.17 (+1.52) 0.88 0.094 133.58 (−26.79)

In order to assess the efficacy and applicability of the WCR method, we replaced the
network with two different architectures: Unet [58] and LLFormer [26], while keeping the
training settings consistent with our previous experiments. Table 4 shows that without the
WCR method, both models achieved a lower performance, particularly in terms of PSNR
and WD. The higher PSNR and lower WD values obtained with our proposed WCR method
demonstrate its ability to maintain color consistency while removing noise. Figure 9 shows
that the color distribution statistics of the restored images obtained using our proposed
WCR method are more similar to those of normal-light images, particularly for challenging
samples located off-center. Moreover, Figure 10 shows that the model trained without the
WCR method produced more obvious color deviation and noise. The superiority of our
proposed WCR method in modeling the image representations was confirmed by both the
quantitative and qualitative results.

Figure 9. Statistics of LOL [13] test set images in color space. The horizontal axis indicates the
variance of the color histogram, while the vertical axis represents the average gray value weighted by
the number of pixels it corresponds to. Both metrics are normalized by the total number of pixels.
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Figure 10. The results of using different training strategies on the same network. All images are
cropped to make their details more visible.

5. Discussion

We provide an efficient and effective WCR method to perform LLIE. The proposed
WCR method efficiently models color distributions for effective noise removal and color
consistency preservation. In comparison to existing SOTA methods, our model achieves
more realistic image restoration with a lower parameter count and computational over-
heads, as demonstrated in Table 1 and Figure 6. Furthermore, the WCR method exhibits
strong generalization, delivering optimal performance on image enhancement tasks using
both the MIT FiveK dataset and the UIEB dataset, as shown in Table 2. This is attributed to
our DCHM, which serves as a plug-and-play module, without adding to the model size or
inference cost. Additionally, our proposed WCR method regularizes the CH representation
of the restored images in Wasserstein space, ensuring color consistency while eliminating
residual noise.

6. Conclusions

In this paper, we address the issue of keeping color consistency while removing
noise in LLIE. To solve this problem, we propose a novel WCR method for LLIE, which
regularizes the CH representation of the restored image. Specifically, we designed the
DCHM to learn the image CH representation in an end-to-end manner in Wasserstein space.
Then, the WCR loss takes the normal-light images as positive samples, the low-light images
as negative samples, and the restored images as anchor samples for contrastive learning
to recover the real color representation and reduces the residual noise. The favorable
performance of our proposed WCR method was showcased in our experiments conducted
on the LOL dataset, MIT-Adobe FiveK dataset, and UIEB dataset, outperforming several
state-of-the-art methods.
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