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Abstract: In medical clinical studies, various tests usually relate to the sample size. This paper
proposes several methods to calculate sample sizes for a common test of relative risk ratios in
stratified bilateral data. Under the prespecified significant level and power, we derive some explicit
formulae and an algorithm of the sample size. The sample sizes of the stratified intra-class model
are obtained from the likelihood ratio, score, and Wald-type tests. Under pooled data, we calculate
sample size based on the Wald-type test and its log-transformation form. Numerical simulations
show that the proposed sample sizes have empirical power close to the prespecified value for given
significance levels. The sample sizes from the iterative method are more stable and effective.
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1. Introduction

In medical clinical studies, we often encounter observations from patients’ paired or-
gans or parts (e.g., eyes, ears, and arms). The observations are often binary, that is, response
or no response. When each patient in the study contributes such paired measurements,
the overall outcome can be bilateral, unilateral, or no response(s). We call this type of
data bilateral data. A correlation always exists between paired parts’ responses. Several
intra-class correlation models have been proposed for analyzing such paired data under a
probability model [1–3]. Rosner [1] introduced a constant R model with the assumption
that the conditional probability of a response at one side of the paired body parts given
response at the other side was R times the unconditional probability. Donner [3] proposed
a model by assuming that the correlation coefficient was a fixed constant ρ in each group.
Based on the three models mentioned above, there have been many achievements, such
as asymptotic tests [4–8], exact tests [9–11], and confidence intervals [12,13]. However,
comparatively little work has been done on the sample size problem of bilateral data.

In practice, sample size is one of the essential factors in designing clinical trials. Up to
now, a considerable body of literature has grown up relating to binary data. For example,
Tang et al. [8] proposed a power-controlled sample size, which can guarantee a desired
power and control type I error rates (TIEs) at the fixed significance level. Qiu et al. [14]
studied sample sizes for common tests of disease prevalence. Further, Qiu et al. [15]
used an iterative algorithm to calculate the asymptotic sample sizes of common tests for
binomial proportions. Sun et al. [16] extended the iterative algorithm to the homogeneity
test in stratified unilateral and bilateral data. For more detailed results of sample sizes,
we refer to [17–19]. Through the above analysis, there are mainly two approaches: sample
size formula and algorithms. The former is practical for some explicit test statistics, while
the latter often handles complex cases. However, there is little research to evaluate these
methods’ performance.
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Under Donner’s model, Zhuang et al. [20] proposed several statistics for testing
common relative risk ratios across J strata. In this paper, we extend the hypotheses
to the general case. Thus, their results are a special case of our results. What is more
important, our work focuses on calculating the sample sizes of various test statistics, while
Zhuang et al. [20] did not take it into account. The novelty and contribution of our work are
shown by three main aspects as follows: (i) the common hypotheses mentioned above are
extended to the general case H0 : δ = δ0 versus Ha : δ 6= δ0, where δ0 ∈ (0, ∞). (ii) Under
the dependent and independent models, the approximate equations and algorithms of
sample size are derived at prespecified power and significance levels. (iii) Numerical
simulations are conducted to compare these methods.

The rest of the work is organized as follows. Section 2 reviews data structure and
establishes Donner’s model. Several test statistics are derived for a common test of relative
risk ratios. Based on these statistics, sample size calculations are proposed in Section 3. In
Section 4, simulations show the performance of eight asymptotic sample sizes in terms of
empirical power and TIEs. We also compare estimated values with actual sample sizes. A
real example is provided to illustrate the proposed methods in Section 5. Conclusions are
given in Section 6.

2. Donner’s Model and Common Test

Let M be the total number of patients for a stratified bilateral design. There are Mj

(j = 1, 2, . . . , J) patients in the jth stratum. Thus, M = ∑J
j=1 Mj. Let mlij be the number

of patients with l responses (l = 0, 1, 2) in the ith group (i = 1, 2) of the jth stratum

(j = 1, 2, . . . , J), and Nij =
2
∑

l=0
mlij be a fixed total number of patients in the ith group of the

jth stratum. Let plij (l = 0, 1, 2, i = 1, 2, j = 1, . . . , J) be the probabilities of no, unilateral,
and bilateral response(s) in the ith group of the jth stratum, where p0ij + p1ij + p2ij = 1 for
any fixed i and j. The data structure of the jth stratum is shown in Table 1.

Table 1. Data structure in the jth stratum.

Number of Responses (l)
Group (i)

Total
1 2

0 m01j (p01j) m02j (p02j) S0j
1 m11j (p11j) m12j (p12j) S1j
2 m21j (p21j) m22j (p22j) S2j

Total N1j N2j Mj

Denote mij = (m0ij, m1ij, m2ij)
T and pij = (p0ij, p1ij, p2ij)

T (i = 1, 2, j = 1, . . . , J). For
the jth stratum, mij (i = 1, 2) follows a trinomial distribution. Thus, its probability density
is expressed as follows:

f (mij | pij) =
Nij!

m0ij!m1ij!m2ij!
p

m0ij
0ij p

m1ij
1ij p

m2ij
2ij .

Let Zhijk be an indicator of the kth organ’s response (k = 1, 2) for the hth patient
(h = 1, 2, . . . , Nij) in the ith group from the jth stratum. If there is a response, Zhijk = 1,
and 0 otherwise. Under Donner’s model, Pr(Zhijk = 1) = πij (0 ≤ πij ≤ 1), and
Corr(Zhijk, Zhij(3−k)) = ρj (0 ≤ ρj ≤ 1). The correlation coefficient ρj (j = 1, 2, . . . , J)
is constant in each stratum. The organ responses are affected by other factors such as
group (e.g., treatments) and stratum (e.g., age, sex) factors. Through a simple calcu-
lation, the probabilities plij can be obtained by p0ij = ρj(1 − πij) + (1 − ρj)(1 − πij)

2,
p1ij = 2πij(1− ρj)(1− πij), p2ij = ρjπij + (1− ρj)π

2
ij for i = 1, 2, j = 1, . . . , J.

Let δj = π2j/π1j (j = 1, . . . , J) be the relative risk ratio between two groups in the jth
stratum. Denote πi = (πi1, · · · , πi J)

T for i = 1, 2, and ρ = (ρ1, · · · , ρJ)
T . Suppose that the
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relative risk ratios from all strata are equal, that is, δ1 = δ2 = · · · = δJ , δ. The effects
of strata include the correlation coefficients ρj, probabilities plij(l = 0, 1, 2), sample sizes
Mj(j = 1, 2, . . . , J), and ratios N2j/N1j between two groups. Based on the observed data
mij (i = 1, 2, j = 1, 2, . . . , J), the log-likelihood function can be written as

`(π1, δ, ρ) = log

(
J

∏
j=1

2

∏
i=1

f (mij | pij)

)
=

J

∑
j=1

lj(π1j, δ, ρj) + log C, (1)

where C = ∏J
j=1 ∏2

i=1
Nij !

m0ij !m1ij !m2ij !
and

lj(π1j, δ, ρj) = m01j log[ρj(1− π1j) + (1− ρj)(1− π1j)
2]

+m11j log[2π1j(1− ρj)(1− π1j)] + m21j log[ρjπ1j + (1− ρj)π
2
1j]

+m02j log[ρj(1− π1jδ) + (1− ρj)(1− π1jδ)
2]

+m12j log[2π1jδ(1− ρj)(1− π1jδ)] + m22j log[ρjπ1jδ + (1− ρj)(π1jδ)
2].

Under the assumption that relative risk ratios from all strata are equal, we propose the
hypotheses of the common test as

H0 : δ = δ0 versus Ha : δ 6= δ0, (2)

where δ0 ∈ (0, ∞). Under H0, that is π2j = π1jδ0 (j = 1, 2, . . . , J), the log-likelihood
function can be rewritten as

`0(π1, δ0, ρ) =
J

∑
j=1

l0j(π1j, δ0, ρj) + log C, (3)

where l0j is written in Appendix A. Next, we introduce several asymptotic statistics to test
the hypotheses (2) and solve the sample size calculations for the prespecified power and
significance level based on these statistics.

Let π̂1 = (π̂11, π̂12, · · · , π̂1J)
T , δ̂, ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂J)

T be the global maximum likeli-
hood estimations (MLEs) of π1, δ, ρ, and π̃1 = (π̃11, π̃12, · · · , π̃1J)

T , ρ̃ = (ρ̃1, ρ̃2, · · · , ρ̃J)
T

be the constrained MLEs of π1, ρ under H0. The global MLEs are the solutions of the
following equations

∂`

∂π1j
= 0,

∂`

∂δ
= 0,

∂`

∂ρj
= 0, j = 1, 2, . . . , J. (4)

The constrained MLEs are the solutions of the following equations

∂`0

∂π1j
= 0,

∂`0

∂ρj
= 0, j = 1, 2, . . . , J. (5)

However, there are no closed-form solutions of Equations (4) and (5). Following Zhuang
et al. [20], the global and constrained MLEs under δ = δ0 can be obtained through the
Fisher scoring algorithm.

2.1. Likelihood Ratio Test

Based on the log-likelihood functions (1) and (3), the likelihood ratio test is defined as

TL = 2[`(π̂1, δ̂, ρ̂)− `0(π̃1, δ0, ρ̃)] = 2
J

∑
j=1

[lj(π̂1j, δ̂, ρ̂j)− l0j(π̃1j, δ0, ρ̃j)].

2.2. Score Test

Denote a score function U = (
J

∑
j=1

∂lj
∂δ , 0, . . . , 0). A score test can be expressed by

TSC = U I−1UT∣∣
δ=δ0,ρ=ρ̃,π1=π̃1

,
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where I is a Fisher information matrix with respect to the parameters δ, ρ = (ρ1, ρ2, · · · , ρJ)
T,

π1 = (π11, π12, · · · , π1J)
T. Denote

Aj = −
π1j(2(1− ρj)(1− δπ1j) + ρj)

ρj(1− δπ1j) + (1− ρj)(1− δπ1j)2 ,

Bj =
(1− 2δπ1j)

δ(1− δπ1j)
,

Cj =
(2δπ1j(1− ρj) + ρj)

δρj + (1− ρj)δ2π1j
.

Further, it can be simplified as

TSC =

(
J

∑
j=1

ej

)2

I−1(1, 1)
∣∣
δ=δ0,ρ=ρ̃,π1=π̃1

,

where ej = m02j Aj + m12jBj + m22jCj, and I−1(1, 1) is the first diagonal element of the
inverse matrix of the Fisher information matrix I. See Appendix B for more details.

2.3. Wald-Type Test

Denote β = (δ, ρT , πT
1 )

T , and C = (1, 0, . . . , 0)1×(1+2J). Thus, H0 : δ = δ0 is equivalent
to CβT = δ0. We can construct a Wald-type test statistic as

TW = (βCT − δ0)(CI−1CT)−1(CβT − δ0)
∣∣
δ=δ̂,ρ=ρ̂,π1=π̂1

,

where π̂1 = (π̂11, π̂12, · · · , π̂1J)
T , δ̂ and ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂J)

T are global MLEs under Ha.
Through calculation, it can be simplified as

TW = (δ̂− δ0)
2 I−1(1, 1)

∣∣
δ=δ̂,ρ=ρ̂,π1=π̂1

.

2.4. Pooled MLE-Based Wald-Type Test

Suppose that relative risk ratios from all strata are equal regardless of the stratification
effects. Thus, we can pool the data from J strata together (Zhuang et al. [20]) and summarize
all observations into a 3 × 2 table. The pooled data structure is shown in Table 2. Let Mli
(l = 0, 1, 2; i = 1, 2) be the total number of subjects with l response(s) in the ith group,
and Ml+ = ∑2

i=1 Mli be the number of subjects with l responses, where l = 0, 1, 2. M+i
(i = 1, 2) is the total sample size in the ith group.

Table 2. Pooled data structure.

Number of Responses (l) Group (i) Total
1 2

0 M01 = ∑J
j=1 m01j M02 = ∑J

j=1 m02j M0+

1 M11 = ∑J
j=1 m11j M12 = ∑J

j=1 m12j M1+

2 M21 = ∑J
j=1 m21j M22 = ∑J

j=1 m22j M2+

Total M+1 M+2 M

For the pooled data, let πi (i = 1, 2) be the response rate of the ith group. Denote
the relative risk ratio δ = π2/π1. If we ignore the relevance between the paired bilateral
responses, the MLEs of πi for i = 1, 2 and δ can be derived as

π̄i =
M1i + 2M2i

2M+i
, δ̄ =

π̄2

π̄1
=

(M12 + 2M22)M+1

(M11 + 2M21)M+2
.
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Based on the assumption that the observations from the paired organs are independent, the
estimate of Var(π̄i) is given in Tang et al. [9] as

Vi =
4M0i M2i + M1i(M0i + M2i)

4M3
+i

,

for i = 1, 2. By the delta method, we have E(δ̄) ≈ δ and Var(δ̄) ≈ [δ2Var(π̄1)+Var(π̄2)]/π2
1.

The estimate of Var(δ̄) is directly obtained by σ̄2 = [δ̄2V1 + V2]/π̄2
1. A Wald-type test can be

given by

TLS =
(δ̄− δ0)

2

σ̄2 =
(δ̄− δ0)

2

(δ̄2V1 + V2)/π̄2
1

.

2.5. Pooled MLE-Based Log-Transformation Test

According to the delta method, log(δ̄) has the mean log(δ) and the variance Var[log(δ̄)] ≈
Var(δ̄)/δ2. In this case, an estimate of Var[log(δ̄)] is σ̃2 = σ̄2/δ̄2 = (V1 + V2/δ̄2)/π̄2

1. The
χ2 test statistic based on pooled MLE-based log-transformation is given by

Tlog =
(log(δ̄)− log(δ0))

2

σ̃2 =
(log(δ̄)− log(δ0))

2

(V1 + V2/δ̄2)/π̄2
1

.

Under H0, the test statistics Ti (i = L, SC, W, LS, log) are asymptotically distributed as
a chi-square distribution with one degree of freedom. Thus, H0 should be rejected if the
value of the test statistic is larger than χ2

1,1−α at the significant level α, where χ2
1,1−α is the

100(1− α) percentile of the chi-square distribution with one degree of freedom.

3. Sample Size Determination

Determining an appropriate sample size for a statistical test is essential in any clinical
trial design. This section proposes the approximate formulae and iterative algorithm to
determine sample sizes based on the above test statistics. However, the approximate
formula method is not entirely applicable to all statistics, but only some of them. For
convenience, denote k j = N1j/M+1, and tj = N2j/N1j (j = 1, 2, . . . , J).

3.1. Asymptotic Sample Size

Based on the statistics above TSC, TLS, and Tlog, we derive the asymptotic sample size
under the desired power level. Under the alternative hypothesis, Ti(i = SC, LS, log) asymp-
totically follows a non-central chi-square distribution with one degree of freedom. The non-
central parameter, denoted by τi, can be obtained by solving the equation: χ2

1,1−β(τi) = χ2
1,α,

where χ2
1,1−β(τi) is the 100(1− β) percentile of the non-central χ2 distribution. When the

observed frequencies are replaced by their expected frequencies (i.e., replace mlij with
M+i plij for l = 0, 1, 2, i = 1, 2 and j = 1, 2, . . . , J), denote the solutions from the Equation (5)
for π1j, ρj as π̃∗1j, ρ̃∗j , respectively. The Fisher scoring algorithm can be used to solve π̃∗1j, ρ̃∗j
for j = 1, 2, . . . , J.

Theorem 1. Given the prespecified power 1− β and significance level α, the asymptotic sample
size for the score test TSC is expressed by

Ma
SC ≈

J

∑
j=1

(τSC + 1)/W(δ0, ρ̃∗j , π̃∗j )−∑J
j=1 k jtjPj

(∑J
j=1 k jtjEj)2

× (k j + k jtj),

where W(δ, ρj, πj) = I−1(1, 1)M+1, and

Pj = A2
j p02j(1− p02j)) + B2

j p12j(1− p12j) + C2
j p22j(1− p22j)

−2AjBj p02j p12j − 2AjCj p02j p22j − 2BjCj p12j p22j
∣∣
δ=δ0,π1j=π̃∗1j ,ρj=ρ̃∗j

,



Mathematics 2023, 11, 4198 6 of 17

Ej = p02j Aj + p12jBj + p22jCj
∣∣
δ=δ0,π1j=π̃∗1j ,ρj=ρ̃∗j

.

Proof. Given a significance level α, the power of the test TSC can be expressed as

Pr(TSC ≥ χ2
1,α | Ha) = Pr(χ2

1(τSC) ≥ χ2
1,α).

Thus, it follows that

τSC + 1 = E
(
TSC | Ha

)
. (6)

We first substitute M1j and M2j with k j M+1 and k jtj M+1 into the Fisher information matrix
I and obtain the symmetrical matrix I = M+1 Isym. Letting W(δ, ρj, πj) be the first main-
diagonal element of the inverse of the matrix Isym, we have I−1(1, 1) = W(δ, ρj, πj)/M+1.
The conditional expectation can be written as

E
(
TSC | Ha

)
= E

(
(

J

∑
j=1

ej)
2 I−1(1, 1) | Ha

)
≈W(δ0, ρ̃∗j , π̃∗j )/M+1E

(
(

J

∑
j=1

ej)
2 | Ha

)
,

where

E

(
(

J

∑
j=1

ej)
2 | Ha

)
= Var(

J

∑
j=1

ej | Ha) +

(
E(

J

∑
j=1

ej | Ha)

)2

.

Since ej = m02j Aj + m12jBj + m22jCj, the variance of ∑J
j=1 ej is derived through the proper-

ties of the trinomial distribution of ml2j(l = 0, 1, 2, j = 1, 2, . . . , J). Thus,

Var(
J

∑
j=1

ej) = Var(
J

∑
j=1

m02j Aj + m12jBj + m22jCj) =
J

∑
j=1

Var(m02j Aj + m12jBj + m22jCj)

=
J

∑
j=1

{
A2

j Var(m02j) + B2
j Var(m12j) + C2

j Var(m22j) + 2AjBjCov(m02j, m12j)

+2AjCjCov(m02j, m22j) + 2BjCjCov(m12j, m22j)},

where Var(m02j) = N2j p02j(1− p02j), Var(m12j) = N2j p12j(1− p12j), Var(m22j) = N2j p22j
(1 − p22j), Cov(m02j, m12j) = −N2j p02j p12j, Cov(m02j, m22j) = −N2j p02j p22j and
Cov(m12j, m22j) = −N2j p12j p22j. Substitute the MLEs π̃1j, ρ̃j with π̃∗1j, ρ̃∗j for j = 1, 2, . . . , J.
The approximate conditional expectation of ej under Ha can be given as E(ej | Ha) ≈
M+1k jtjEj. The approximate conditional variance of ej under Ha is Var(ej | Ha) ≈ M+1k jtjPj.
According to the Equation (6), we have

τSC + 1 ≈W(δ0, ρ̃∗j , π̃∗j )(
J

∑
j=1

k jtjPj + M+1(
J

∑
j=1

k jtjEj)
2).

The total sample size of the first group can be solved as

M+1 ≈
(τSC + 1)/W(δ0, ρ̃∗j , π̃∗j )−∑J

j=1 k jtjPj

(∑J
j=1 k jtjEj)2

.

Thus, the asymptotic sample size of score statistic can be obtained as

Ma
SC ≈

J

∑
j=1

(τSC + 1)/W(δ0, ρ̃∗j , π̃∗j )−∑J
j=1 k jtjPj

(∑J
j=1 k jtjEj)2

× (k j + k jtj).

The proof is complete.
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For the Wald-type statistic under the pooled model, the sample size formula can be
given according to the non-central chi-square distribution under Ha. Denote t = M+2/M+1
for the pooled data.

Theorem 2. Given the prespecified power 1− β and significance level α, the asymptotic sample
size for the test TLS is expressed by

Ma
LS ≈ (1 + t)

(τSL + 1) δ̄2W1+W2/t
(π̄1)2 − δ̄2W1+W2/t

π̄2
1

(δ− δ0)2 ,

where Wi = p0i p2i + p1i(p0i + p2i)/4 for i = 1, 2.

Proof. The test statistic TLS is asymptotically distributed as a non-central χ2 distribu-
tion with one degree of freedom and non-central parameter τLS under the alternative
hypothesis Ha. The non-central parameter τLS can be obtained by solving the equation:
χ2

1,1−β(τLS) = χ2
1,α. Thus, it follows that τLS + 1 = E

(
TLS | Ha

)
. Substitute Ml1 and Ml2

with M+1 pl1 and kM+1 pl2 (l=0,1,2) for σ̄2 = [δ̄2V1 + V2]/π̄2
1. Hence,

E
(
TLS | Ha

)
= E

( (δ̄− δ0)
2

(δ̄2V1 + V2)/π̄2
1
| Ha

)
≈ E((δ̄− δ0)

2 | Ha)
π̄2

1
δ̄2W1/M+1 + W2/(tM+1)

.

Based on the conditional expectation E((δ̄− δ0)
2 | Ha) ≈ Var(δ̄ | Ha) +

(
E(δ̄− δ0 | Ha)

)2,
and the conditional variance Var(δ̄ | Ha) ≈ [δ̄2W1/M+1 + W2/(tM+1)]/π̄2

1, we have

τSL + 1 ≈
(

δ̄2W1 + W2/t
π̄2

1
+ (δ− δ0)

2M+1

)
(π̄1)

2

δ̄2W1 + W2/t
.

We can obtain the sample size of the first group by

M+1 ≈
(τSL + 1) δ̄2W1+W2/t

(π̄1)2 − δ̄2W1+W2/t
π̄2

1

(δ− δ0)2 .

Then, the sample size for the statistic TLS is given as

Ma
LS ≈ (1 + t)

(τLS + 1) δ̄2W1+W2/t
(π̄1)2 − δ̄2W1+W2/t

π̄2
1

(δ− δ0)2 .

The proof is complete.

Next, we present the corresponding sample size formula of the statistic Tlog for the
prespecified power at a fixed significance level.

Theorem 3. Given the prespecified power 1− β and significance level α, the asymptotic sample
size for the test Tlog is expressed by

Ma
log ≈ (1 + t)

(τlog + 1)W1+W2/(δ̄2t)
(π̄1)2 − W1+W2/(δ̄2t)

π̄2
1

(log δ− log δ0)2 ,

where Wi = p0i p2i + p1i(p0i + p2i)/4 for i = 1, 2.

Proof. The test statistic Tlog is asymptotically distributed as a non-central χ2 distribution
with one degree of freedom and non-central parameter τlog under the alternative hypothesis
Ha. Thus, it follows that
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τlog + 1 = E
(
Tlog | Ha

)
.

Substitute Ml1 and Ml2 with M+1 pl1 and kM+1 pl2 (l = 0, 1, 2) in σ̃2 = (V1 + V2/δ̄2)/π̄2
1.

The conditional expectation of Tlog can be obtained

E
(
Tlog | Ha

)
= E

( (log(δ̄)− log(δ0))
2

(V1 + V2/δ̄2)/π̄2
1
| Ha

)
= E((log δ̄− log δ0)

2 | Ha)
π̄2

1
W1/M+1 + W2/(tM+1δ̄2)

,

where E((log δ̄− log δ0)
2 | Ha) ≈ Var(log δ̄ | Ha) + E((logδ̄− log δ0)

2 | Ha). The value of

Var(log δ̄ | Ha) can be approximated by W1/M+1+W2/(tM+1 δ̄2)

π̄2
1

. Then, we have

τlog + 1 ≈
{
(logδ− log δ0)

2 +
W1/M+1 + W2/(tM+1δ̄2)

π̄2
1

}
π̄2

1
W1/M+1 + W2/(tM+1δ̄2)

=

{
(logδ− log δ0)

2M+1 +
W1 + W2/(tδ̄2)

π̄2
1

}
π̄2

1
W1 + W2/(tδ̄2)

.

We can obtain the sample size of the first group by

M+1 ≈
(τlog + 1)W1+W2/(δ̄2t)

(π̄1)2 − W1+W2/(δ̄2t)
π̄2

1

(log δ− log δ0)2 .

The sample size of Tlog statistic is

Ma
log ≈

(τlog + 1)W1+W2/(δ̄2t)
(π̄1)2 − W1+W2/(δ̄2t)

π̄2
1

(log δ− log δ0)2 × (1 + t).

The result follows.

Theorems 1–3 provide the sample size formulae according to the asymptotic distribu-
tion of the statistics TSC, TLS, and Tlog under the hypothesis Ha : δ 6= δ0. However, it is not
easy to obtain explicit expressions in practical applications. The iterative method can be
considered to solve the problem.

3.2. The Iterative Method

The power 1− β of a common test is the probability that the null hypothesis is rejected
when the alternative hypothesis is true. Under the alternative hypothesis Ha, the asymptotic
power of statistic Ti (i = L, SC, W, LS or log) is given by

Pr(Ti ≥ χ2
1,1−α | Ha) = 1− β, (7)

where significance level α is fixed. We can usually derive sample size by solving Equation (2)
at a given significance level α and power of 1− β. However, we cannot know the exact
distribution under Ha of some test statistics based on MLEs from the iterative algorithm
(e.g., TL and TW). In this case, we propose an iterative algorithm for calculating the
asymptotic sample size for stratified correlated data. The method can compare empirical
power with the given power of 1− β for searching sample size. The detailed process of the
algorithm is shown as follows:

(i) Given k j, tj, δ, π1j and ρj, j = 1, 2, . . . , J. The initial values of sample size M̃(0) = 0, the
step size d = 1000 and flag f = 1.

(ii) The (t + 1)th update of M̃ is M̃(t+1) = M̃(t) + d × f . The 10,000 replicates
mij = (m0ij, m1ij, m2ij)

T are randomly generated under Ha, where mij (i = 1 or 2)
follows a trinomial distribution
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f (mij | pij) =
Nij!

m0ij!m1ij!m2ij!
p

m0ij
0ij p

m1ij
1ij p

m2ij
2ij .

(iii) Calculate empirical power based on random samples generated in step (ii) at a given
significance level α. The empirical power can be computed by dividing the number of
times rejecting H0 by 10,000. The empirical power is denoted as p∗(M̃(t+1)).

(iv) Compare p∗(M̃(t+1)) with given power 1− β. If f × p∗(M̃(t+1)) < f × (1− β), return
to step (ii). Otherwise, d = 0.1× d, f = − f and return to step (ii).

(v) Repeat the steps (ii)–(iv) until p∗(M̃(t+1)) closes to 1− β before d becomes a decimal.

From the test statistics Ti, the sample sizes from power approximation method are
denoted as Mb

i , where i is L, SC, W, LS, or log. The MATLAB code of the iterative algorithm
is available in the Supplementary Materials.

4. Simulation for Asymptotic Power and Sample Size

In this section, numerical simulations are conducted to evaluate the performance of
asymptotic sample sizes from our proposed methods.

4.1. Asymptotic Sample Size, Power and TIE

Take J = 3. Under the null hypothesis H0 : δ = 1, we calculate the sample size
Ma

SC, Ma
LS, Ma

log, Mb
L, Mb

SC, Mb
W , Mb

LS, and Mb
log for given power 1− β = 0.9. Considering

that the total numbers of strata may be the same or different, we let k = (1/3, 1/3, 1/3) and
(0.5, 0.3, 0.2). The correlation coefficient ρj = 0.3 (low), or 0.5 (moderate), and the response
rates π1j = 0.4 (less than 50%), or 0.6 (bigger than 50%). The scenarios of parameter settings
in the simulations are listed in Table 3.

Table 3. The scenarios of parameter settings in the simulations.

Scenario π1j ρj k

i 0.4 0.5 (1/3, 1/3, 1/3)
ii 0.4 0.5 (0.5, 0.3, 0.2)
iii 0.4 0.3 (1/3, 1/3, 1/3)
iv 0.4 0.3 (0.5, 0.3, 0.2)
v 0.6 0.5 (1/3, 1/3, 1/3)
vi 0.6 0.5 (0.5, 0.3, 0.2)
vii 0.6 0.3 (1/3, 1/3, 1/3)
viii 0.6 0.3 (0.5, 0.3, 0.2)

Scenarios i–viii represent various parameter combinations of π1j, ρj and k.

Figures 1–3 show the estimated sample sizes, empirical powers and TIEs of Ma
SC,Ma

LS,
Ma

log, Mb
L, Mb

SC, Mb
W , Mb

LS and Mb
log for the given parameters listed in Table 3. We observe

that there are obvious differences among Ma
SC, Ma

LS, and Ma
log even though they are all

solved by fitting asymptotic χ2 distributions. Asymptotic sample sizes based on the
statistics TL, TSC, and TLS are close under the iterative method. For the five sample sizes
from the iterative algorithm, the values of Mb

W are always lower, and those of Mb
log tend

to be bigger. The sample sizes of δa = 0.7 are smaller than that of δa = 0.8. When other
parameters are fixed, we can observe two phenomena: (i) the sample sizes become bigger
for ρj = 0.5 than ρj = 0.3; (ii) the sample sizes tend to decrease when π1j increases from
0.4 to 0.6. The sample sizes increase as δa is closer to 1. That is to say, more samples are
required when δ = δa is closer to that under H0 : δ = δ0.
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Figure 1. Asymptotic sample size for 1− β = 0.9.

We can calculate the empirical powers and TIEs based on the estimated sample sizes.
For every sample size, 10,000 replicates mij = (m0ij, m1ij, m2ij)

T are randomly generated
under Ha. Further, the empirical power can be computed by dividing the number of
times rejecting H0 by 10,000 when the significance level is 0.05. Empirical TIE is calculated
through 10,000 replicates randomly generated under δ = δ0. The results are listed in
Figures 2 and 3. The empirical powers are mostly close to the desired powers of 0.9.
Compared with the sample size formula, the iterative algorithm often produces the sample
size with empirical power closer to 0.9. In terms of empirical power, there are no significant
trend changes for various parameter settings of δa, k j, tj, π1j and ρj (j = 1, 2, . . . , J).
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Figure 2. Empirical power (%) based on estimated sample sizes for 1− β = 0.9.
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Figure 3. Empirical TIEs (%) based on estimated sample sizes for 1− β = 0.9.

According to Tang et al. [8], a test is robust if its empirical TIE is between 0.04 and
0.06 when the significance level is 0.05, liberal if it is greater than 0.06, and conservative
if it is less than 0.04. As shown in Figure 3, the sample size Ma

SC has better performance
in empirical TIEs. For the sample size Ma

SC, the empirical TIEs are located on [0.04, 0.06]
under all considered settings. For some cases, the empirical TIEs based on statistics TLS
and Tlog are lower than 0.04, which means that TLS and Tlog have conservative TIEs based
on sample sizes from the approximate formula or the iterative algorithm. Sample sizes
Mb

L, Mb
SC, and Mb

W sometimes have liberal TIEs bigger than 0.06.

4.2. Accuracy

This section evaluates the effectiveness of sample size determinations. Let J = 3,
δ0 = 1, and the sample size M+1 = 100, 200, 300. Other parameters ki, πij, ρj are randomly
generated under Ha : δ = δa( 6= δ0), satisfying 0 < ki < 1, 0 ≤ πij ≤ 1, −1 ≤ ρj ≤ 1 and
0 ≤ δa ≤ 1. Denote k = (k1, k2, k3), t1 = t2 = t3, π1 = (π11, π12, π13)

T , ρ = (ρ1, ρ2, ρ3)
T .

We choose 1000 parameter settings for every sample size. There are 10,000 random replica-
tions under every parameter setting. Empirical powers are given at a significance level of
0.05. Further, we calculate the corresponding asymptotic sample sizes for the obtained em-
pirical powers at a significance level α = 0.05. The boxplots in Figure 4 show all asymptotic
sample sizes.

We note that the estimated sample sizes (Mb
L, Mb

SC, Mb
W , Mb

LS, and Mb
log) are close

to the true sample size for M+1 = 100, 200, 300, which performs better than the sample
size formula method (Ma

SC, Ma
LS and Ma

log). In terms of the sample size formula, the
sample size from the score statistic is more accurate than the statistics TLS and Tlog. The
estimated sample sizes Ma

LS and Ma
log are always bigger than the true values. Thus, the

stratified correlated model performs better for effectively estimating sample size through
formula derivation.

Above all, all power-controlled methods can provide optimal estimates because the
empirical powers are usually close to the prespecified one. The sample sizes from the itera-
tive algorithm have more satisfactory power. Thus, the iterative method is recommended
in practice.
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Figure 4. Sample sizes under various methods.

4.3. The Effect of Parameters

Through the iterative algorithm, we further study the effect of parameters on sample
sizes. Given a prespecified power of 0.9 and a significance level of 0.05, the hypotheses
H0 : δ0 = 1 and H1 : δa = 0.8. To study the effect of strata, we take J = 2, 4, 6. The influence
of π1j, ρj and tj can be observed according to these cases: (i) π1j = 0.3(0.1)0.7 for ρj = 0.7
and tj = 1; (ii) ρj = 0.1(0.2)0.9 for π1j = 0.5 and tj = 1; and (iii) tj = 0.2(0.2)1 for π1j = 0.5
and ρj = 0.7. Under various parameter settings, Figure 5 shows that the asymptotic sample
sizes become smaller when π1j (j = 1, 2, . . . , J) increases. The five sample sizes increase
with bigger ρj (j = 1, 2, . . . , J). As tj(j = 1, 2, . . . , J) approaches 1, the values of asymptotic
sample sizes will be smaller. This reflects that the balanced design (i.e., N1j = N2j for
j = 1, 2, . . . , J) of two groups needs a smaller sample size for the prespecified power. When
the number of strata changes, the sample sizes have similar values for J = 2, 4, 6. Strata
number has little effect on sample sizes.
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Figure 5. The effect of the parameter settings for sample size (δ0 = 1, kj = 1/J).
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5. A Real Example

Mandel et al. [21] conducted a double-blinded clinical trial to illustrate the proposed
sample size considerations. In this trial, children with otitis media with effusion (OME)
were stratified by age and randomly assigned to the cefaclor or amoxicillin treatment
groups. There are three strata (<2, 2–5 and >5 yr) divided according to age as shown in
Table 4.

Table 4. Frequency of OME-free ears after treatment.

Number of <2 yr 2–5 yr >5 yr

TotalOME-Free
Ears Cefaclor Amoxicillin Cefaclor Amoxicillin Cefaclor Amoxicillin

0 8 11 6 3 0 1 29
1 2 2 6 1 1 0 12
2 8 2 10 5 3 6 34

Total 18 15 22 9 4 7 75

From Table 4, it is obvious that k1 = (18+ 15)/75 = 33/75, k2 = (22+ 9)/75 = 31/75,
k3 = (4 + 7)/75 = 11/75. Let tj = M+2/M+1 = (18 + 22 + 4)/(15 + 9 + 7) = 1.4
for j = 1, 2, 3. The Fisher scoring algorithm can derive the global MLEs under
Ha : δ1 = δ2 = δ3 , δ (see in Table 5). The asymptotic sample sizes are obtained based on
the global MLEs of parameters ρj, π1j and δ (j = 1, 2, 3).

Table 5. Global MLEs in the real example.

Age Stratum (j) π̂1j ρ̂j δ̂j

<2 yr 1 0.377 0.736 0.937
2–5 yr 2 0.606 0.532 0.937
>5 yr 3 0.885 0.624 0.937

Table 6 shows the asymptotic sample sizes for the prespecified power 0.8, 0.9, and 0.95
under δ0 = 0.5, 0.6. The sample sizes based on TLS have bigger values than other sample
size formulae or the iterative methods. The sample sizes from the iterative algorithm are
smaller than those from the sample size formula. For δ0 = 0.5, the sample size 75 in the
real example is close to the values of Mb

SC and Mb
L even when the power is 0.95. However,

only Mb
SC and Mb

L for power 0.8 are close to the real sample size for δ0 = 0.6. That is to say,
the sample size 75 can basically guarantee the power of 0.95 for the test statistics TL and
TSC under H0 : δ = 0.5. Moreover, when the values of δ under Ha and H0 become closer,
we need the larger sample size to keep the power at the fixed significance level. Then, we
conduct the common test under the null hypothesis H0 : δ = 0.5, 0.6. The values and p-
values of the test statistics are recorded in Table 7. For δ0 = 0.5, the p-values of five statistics
Ti(L, SC, W, LS, log) are 0.0029, 0.0084, 0.0040, 0.0384, and 0.0311, respectively. Obviously,
the p-values are lower than 0.05. Thus, we have full evidence to reject H0 : δ = 0.5 at the
significance level 0.05. Under H0 : δ = 0.6, there are some p-values smaller than 0.05 but
others bigger than 0.05. Among the estimated sample sizes, only Mb

L and Mb
SC have close

values to real sample sizes given power 0.8. Since p-values of TL and TSC are 0.0373 and
0.0490, the hypothesis H0 : δ = 0.6 is rejected at the significance level 0.05.
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Table 6. Asymptotic sample sizes for the real example.

δ0 Power Ma
SC Ma

LS Ma
log Mb

L Mb
SC Mb

W Mb
LS Mb

log

0.5 0.80 70 127 67 43 43 53 86 53
0.90 81 153 82 53 62 72 100 77
0.95 88 170 91 70 74 86 122 94

0.6 0.80 129 213 134 77 79 91 151 120
0.90 151 259 163 100 110 122 182 154
0.95 164 285 180 132 132 146 218 192

Table 7. Values and p-values of the test statistics for the real example.

δ0 Result TL TSC TW TLS Tlog

0.5 Value 8.8475 6.9551 8.2666 4.2853 4.6490
p-value 0.0029 0.0084 0.0040 0.0384 0.0311

0.6 Value 4.3363 3.8767 4.9158 1.6514 1.7826
p-value 0.0373 0.0490 0.0266 0.1988 0.1818

6. Conclusions

This paper mainly investigated the asymptotic sample size for the common test of
relative risk ratio in stratified bilateral data. Under Donner’s model, we obtained the
sample size formula and proposed the iterative method based on the likelihood ratio
statistic TL, score statistic TSC, and Wald-type statistic TW . We also applied the sample size
methods to the pooled MLE-based Wald-type statistic TLS and the log-transformation Tlog.

Numerical simulations are designed to evaluate the performance of estimated sample
sizes. According to the simulations, the main conclusions lie in five aspects. (i) The
estimated sample sizes have empirical power closer to the prespecified power level. (ii) The
sample sizes Mb

L, Mb
SC, Mb

W , Mb
LS and Mb

log, which are obtained by the iterative algorithm,
outperform other asymptotic sample sizes because of accurate values and satisfactory
power. (iii) The sample size Ma

SC has more robust TIEs than Ma
LS and Ma

log from the sample
size formula. (iv) The sample sizes are sensitive to π1j and ρj (j = 1, 2, . . . , J) when other
parameters are fixed. (v) The sample sizes under unbalanced designs of two groups are
greater than those under balanced designs for given power and significance levels.

This paper mainly focuses on the power-controlled sample size of the common test
of relative risk ratios for stratified correlated bilateral data. However, one may want
to calculate the necessary sample size such that the width of the (1 − α)% confidence
interval (CI) does not exceed a prespecified quantity. This type of sample size is called
CI-width controlled sample size determination [8]. In the future, we will study the CI-width
controlled sample size for the relative risk ratio in stratified paired data. Through numerical
simulation, we compared the performance of the proposed methods in terms of empirical
TIEs and powers. An example was used to illustrate our proposed methods. However, we
have not analyzed the theoretical results of the efficiency of these methods. These problems
will be considered in our future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11194198/s1, the MATLAB code of the iterative algorithm.
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Appendix A. Derivation for the Log-Likelihood Function under H0

Under H0, the log-likelihood function can be rewritten as

`0(π1, δ0, ρ) =
J

∑
j=1

l0j(π1j, δ0, ρj) + log C,

where

l0j(π1j, δ0, ρj) =m01j log[ρj(1− π1j) + (1− ρj)(1− π1j)
2] + m11j log[2π1j(1− ρj)(1− π1j)]

+ m21j log[ρjπ1j + (1− ρj)π
2
1j] + m02j log[ρj(1− π1jδ0) + (1− ρj)(1− π1jδ0)

2]

+ m12j log[2π1jδ0(1− ρj)(1− π1jδ0)] + m22j log[ρjπ1jδ0 + (1− ρj)(π1jδ0)
2].

Appendix B. Derivation for Score Statistic

The information matrix I for score test statistic is written as

I =

I11 I12 I13
IT
12 I22 I23

IT
13 IT

23 I33

,

where

I11 = E
(
−

J

∑
j=1

∂2lj

∂δ2

)
=

J

∑
j=1

N2jπ
2
1j

{ (1 + 2δ2π2
1j)(1− ρj)

2 − 2δπ1j(1− ρj)(2− ρj) + 1

ρj(1− δπ1j) + (1− ρj)(1− δπ1j)2

+
2(1− ρj)(2δ2π2

1j − 2δπ1j + 1)

δπ1j(1− δπ1j)
+

2δ2π2
1j(1− ρj)

2 + 2δπ1jρj(1− ρj) + ρ2
j

ρjδπ1j + (1− ρj)(δπ1j)2

}

=
J

∑
j=1

i(j)
11 ,

I12 =

[
E
(
− ∂2l1

∂δ∂ρ1

)
, E
(
− ∂2l2

∂δ∂ρ2

)
, · · · , E

(
−

∂2lJ

∂δ∂ρJ

)]
=

{
N21π11

(
− (1− δπ11)

2

ρ1(1− δπ11) + (1− ρ1)(1− δπ11)2 +
(δπ11)

2

ρ1δπ11 + (1− ρ1)(δπ11)2

)
,

N22π12

(
− (1− δπ12)

2

ρ2(1− δπ12) + (1− ρ2)(1− δπ12)2 +
(δπ12)

2

ρ2δπ12 + (1− ρ2)(δπ12)2

)
,

· · ·

N2Jπ1J

(
−

(1− δπ1J)
2

ρJ(1− δπ1J) + (1− ρJ)(1− δπ1J)2 +
(δπ1J)

2

ρJδπ1J + (1− ρJ)(δπ1J)2

)}
= [i(1)12 , i(2)12 , · · · , i(J)

12 ],

I13 =

[
E
(
− ∂2l1

∂π11∂δ

)
, E
(
− ∂2l2

∂π12∂δ

)
, · · · , E

(
−

∂2lJ

∂π1J∂δ

)]
=

[
E
(
− 1

π11

∂l1
∂δ
− δ

π11

∂2l1
∂δ2

)
, E
(
− 1

π12

∂l2
∂δ
− δ

π12

∂2l2
∂δ2

)
,

· · · , E
(
− 1

π1J

∂lJ

∂δ
− δ

π1J

∂2lJ

∂δ2

)]
=

[
δ

π11
i(1)11 ,

δ

π12
i(2)11 , · · · ,

δ

π1J
i(J)
11

]
,



Mathematics 2023, 11, 4198 16 of 17

I22 = diag
{

E
(
−

∂2lj

∂ρj

)}

= diag
{

N1j

( π2
1j(1− π1j)

2

ρj(1− π1j) + (1− ρj)(1− π1j)2 +
2π1j(1− π1j)

1− ρj
+

(1− π1j)
2π2

1j

ρjπ1j + (1− ρj)π
2
1j

)

+N2j

( δ2π2
1j(1− δπ1j)

2

ρj(1− δπ1j) + (1− ρj)(1− δπ1j)2 +
2π1j(1− π1j)

1− ρj
+

(1− δπ1j)
2(δπ1j)

2

ρjδπ1j + (1− ρj)δπ2
1j

)}
,

I23 = diag
{

E
(
−

∂2lj

∂π1j∂ρj

)}
= diag

{
N1j

(
−

(1− π1j)
2

ρj(1− π1j) + (1− ρj)(1− π1j)2

+
π2

1j

ρjπ1j + (1− ρj)π
2
1j

)
+

δ

π1j
i(j)
12

}
,

I33 = diag
{

E
(
−

∂2lj

∂π2
1j

)}
= diag

{
N1j

( (1 + 2π2
1j)(1− ρj)

2 − 2π1j(1− ρj)(2− ρj) + 1

ρj(1− π1j) + (1− ρj)(1− π1j)2

+
2(1− ρj)(2π2

1j − 2π1j + 1)

π1j(1− π1j)
+

2π2
1j(1− ρj)

2 + 2π1jρj(1− ρj) + ρ2
j

π1jρj + (1− ρj)π
2
1j

)
+

δ2

π2
1j

i(j)
11

}
.

The first diagonal element in the inverse matrix I is

I−1(1, 1) =
(

I11 −
[
I12, I13

][I22 I23
I23 I33

]−1[IT
12

IT
13

])−1

.

Thus, the test statistics TSC can be simplified as

TSC = (
J

∑
j=1

ej)
2 I−1(1, 1)

∣∣∣∣
δ=δ0,ρ=ρ̃,π1=π̃1

,

where

ej = −
m02jπ1j(2(1− ρj)(1− δπ1j) + ρj)

ρj(1− δπ1j) + (1− ρj)(1− δπ1j)2 +
m12j(1− 2δπ1j)

δ(1− δπ1j)
+

m22j(2δπ1j(1− ρj) + ρj)

δρj + (1− ρj)δ2π1j
.

References
1. Rosner, B. Statistical methods in ophthalmology: An adjustment for the correlation between eyes. Biometrics 1982, 38, 105–114.

[CrossRef]
2. Dallal, G. Paired Bernoulli trials. Biometrics 1988, 44, 253–257. [CrossRef]
3. Donner, A. Statistical methods in ophthalmology: An adjusted chi-square approach. Biometrics 1989, 45, 605–611. [CrossRef]
4. Tang, N.; Tang, M.; Qiu, S. Testing the equality of proportions for correlated otolaryngologic data. Comput. Stat. Data Anal. 2008,

52, 3719–3729. [CrossRef]
5. Pei, Y.; Tang, M.; Wong, W.; Tang, N. Testing equality of correlations of two paired binary responses from two treated groups in a

randomized trial. J. Biopharm. Stat. 2011, 21, 511–525. [CrossRef]
6. Mou, K.; Ma, C.; Li, Z. Homogeneity test of relative risk ratios for stratified bilateral data under different algorithms. J. Appl. Stat.

2023, 50, 1060–1077. [CrossRef]
7. Tang, N.; Qiu, S. Homogeneity test, sample size determination and interval construction of difference of two proportions in

stratified bilateral-sample designs. J. Stat. Plan. Inference 2012, 142, 1242–1251. [CrossRef]
8. Tang, M.; Tang, N.; Carey, V. Sample size determination for 2-step studies with dichotomous response. J. Stat. Plan. Inference 2006,

136, 1166–1180. [CrossRef]
9. Tang, M.; Tang, N.; Rosner, B. Statistical inference for correlated data in ophthalmologic studies. Stat. Med. 2006, 25, 2771–2783.

[CrossRef]
10. Liu, X.; Shan, G.; Tian, L.; Ma, C. Exact methods for testing homogeneity of proportions for multiple groups of paired binary data.

Commun. Stat.-Simul. C 2017, 46, 6074–6082. [CrossRef]
11. Shan, G. Exact approaches for testing non-inferiority or superiority of two incidence rates. Stat. Probab. Lett. 2014, 85, 129–134.

[CrossRef]
12. Tang, N.; Qiu, S.; Tang, M.; Pei, Y. Asymptotic confidence interval construction for proportion difference in medical studies with

bilateral data. Stat. Methods Med. Res. 2011, 20, 233–259. [CrossRef] [PubMed]
13. Pei, Y.; Tang, M.; Wong, W.; Gao, J. Confidence intervals for correlated proportion differences from paired data in a two-arm

randomised clinical trial. Stat. Methods Med. Res. 2012, 21, 167–187. [CrossRef] [PubMed]

http://doi.org/10.2307/2530293
http://dx.doi.org/10.2307/2531913
http://dx.doi.org/10.2307/2531501
http://dx.doi.org/10.1016/j.csda.2007.12.017
http://dx.doi.org/10.1080/10543406.2010.482682
http://dx.doi.org/10.1080/02664763.2021.2017412
http://dx.doi.org/10.1016/j.jspi.2011.12.005
http://dx.doi.org/10.1016/j.jspi.2004.07.016
http://dx.doi.org/10.1002/sim.2425
http://dx.doi.org/10.1080/03610918.2016.1193194
http://dx.doi.org/10.1016/j.spl.2013.11.010
http://dx.doi.org/10.1177/0962280209358135
http://www.ncbi.nlm.nih.gov/pubmed/20181778
http://dx.doi.org/10.1177/0962280210365018
http://www.ncbi.nlm.nih.gov/pubmed/20442192


Mathematics 2023, 11, 4198 17 of 17

14. Qiu, S.; Poon, W.; Tang, M. Sample size determination for disease prevalence studies with partially validated data. Stat. Methods
Med. Res. 2012, 25, 37–63. [CrossRef]

15. Qiu, S.; Zeng, X.; Tang, M.; Pei, Y. Test procedure and sample size determination for a proportion study using a doublesampling
scheme with two fallible classifiers. Stat. Methods Med. Res. 2019, 28, 1019–1043. [CrossRef] [PubMed]

16. Sun, S.; Li, Z.; Jiang, H. Homogeneity test and sample size of risk difference for stratified unilateral and bilateral data. Commun.
Stat.-Simul. C 2022, 1–24. [CrossRef]

17. Lloyd, C.; Ripamonti, E. comprehensive open-source library for exact required sample size in binary clinical trials. Contemp. Clin.
Trials 2021, 107, 106491. [CrossRef]

18. Tang, N.; Yu, B. Bayesian sample size determination in a three-arm non-inferiority trial with binary endpoints. J. Biopharm. Stat.
2022, 32, 768–788. [CrossRef]

19. Pilz, M. Sample size calculation for one-armed clinical trials with clustered data and binary outcome. Biom. J. 2023, 28, e2300123.
[CrossRef]

20. Zhuang, T.; Tian, G.; Ma, C. Homogeneity test of ratio of two proportions in stratified bilateral data. Stat. Biopharm. Res. 2019, 11,
200–209. [CrossRef]

21. Mandel, E.; Bluestone, C.; Rockette, H.; Blatter, M.; Reisinger, K.; Wucher, F.; Harper, J. Duration of effusion after antibiotic
treatment for acute otitis media: Comparison of Cefaclor and Amoxicillin. Pediatr. Infect. Dis. J. 1982, 1, 310–316. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0962280212439576
http://dx.doi.org/10.1177/0962280217744239
http://www.ncbi.nlm.nih.gov/pubmed/29233082
http://dx.doi.org/10.1080/03610918.2022.2142240
http://dx.doi.org/10.1016/j.cct.2021.106491
http://dx.doi.org/10.1080/10543406.2022.2030748
http://dx.doi.org/10.1002/bimj.202300123
http://dx.doi.org/10.1080/19466315.2018.1506359
http://dx.doi.org/10.1097/00006454-198209000-00006
http://www.ncbi.nlm.nih.gov/pubmed/6760146

	Introduction
	Donner's Model and Common Test
	Likelihood Ratio Test
	Score Test
	Wald-Type Test
	Pooled MLE-Based Wald-Type Test
	Pooled MLE-Based Log-Transformation Test

	Sample Size Determination
	Asymptotic Sample Size
	The Iterative Method

	Simulation for Asymptotic Power and Sample Size
	Asymptotic Sample Size, Power and TIE
	Accuracy
	The Effect of Parameters

	 A Real Example
	Conclusions
	Appendix A
	Appendix B
	References

