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Abstract: Distributions with bounded support show considerable sparsity over those with un-
bounded support, despite the fact that there are a number of real-world contexts where observations
take values from a bounded range (proportions, percentages, and fractions are typical examples).
For proportion modeling, a flexible family of two-parameter distribution functions associated with
the exponential distribution is proposed here. The mathematical and statistical properties of the
novel distribution are examined, including the quantiles, mode, moments, hazard rate function, and
its characterization. The parameter estimation procedure using the maximum likelihood method is
carried out, and applications to environmental and engineering data are also considered. To this end,
various statistical tests are used, along with some other information criterion indicators to determine
how well the model fits the data. The proposed model is found to be the most efficient plan in most
cases for the datasets considered.

Keywords: unit distribution; statistical model; hazard function; characterizations; estimation;
simulation; application

MSC: 60E05; 62E15; 62F10

1. Introduction
Proportional variables are often encountered in data science, where they are used as

stochastic models that describe, for instance, the number of successes divided by the number
of attempts, party votes, the proportion of money spent on a cause, or the attendance rate
of public events. Therefore, proportion analysis is necessary in various fields such as
healthcare, economics, and engineering. Usually, to model the behavior of such random
variables (RVs), distributions defined on a unit interval are used, which are highly valuable
in modeling proportions and percentages. It is conceivable to model and forecast such
variables, but one must look outside the traditional model because the data are limited to
the range (0, 1). For further study, readers are referred to [1–3].

In this context, the beta model was proposed by Bayes [4], which in many fields of
statistics is a convenient and helpful model widely used for modeling percentages and pro-
portions. However, there are a number of scenarios where it seems to not be a suitable one.
Therefore, alternatively, several distributions have been developed for modeling bounded
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variables like proportions, indices, and rates, such as the unit distribution studied in [5],
the unit Johnson distribution proposed in [6], the four-parameter distribution introduced
in [7], the distribution proposed in [8], the Topp–Leone distribution studied in [9], and the
unit gamma distribution introduced in [10]. More recently, many other unit interval distri-
bution functions have been introduced, such as the cumulative distribution function (CDF)
quantile distribution [11], new unit interval distribution [12], the unit-inverse Gaussian
distribution [13], the log-xgamma distribution [14], unit Gompertz, unit Lindley, and unit
Weibull distributions [15–17], the log-weighted exponential distribution [18], the unit John-
son SU distribution [19], the unit log–log distribution [20], the new unit distribution [21],
the unit–power Burr X distribution [22], and the unit Teissier distribution [23], while in [24],
the unit interval distribution via the conditional distribution approach was studied. Notice
that all of these distributions are potential candidates for describing proportions. It is worth
noting that the approaches mentioned above are mainly based on conventional strategies,
namely the following:

(i) Log transformation approaches;
(ii) The CDF and quantile methodology;
(iii) Reciprocal transformation;
(iv) Exponential transformation;
(v) The conditional distribution methodology;
(vi) The T-X family approach.

However, all of the earlier models and others seem to be casual ways of generating
unit interval distributions. In the current study, our motivational strategies begin with
recalling the epsilon function examined in [25], which is defined as

ελ,a(x) =


(

a + x
a− x

) λa
2

, −a < x < a

0, otherwise,

(1)

where λ ∈ R \{0} and a > 0. For comprehensive details about the above and its bounded
version, readers are referred to [25]. The function y = ελ,a(x) is the solution of an epsilon
differential equation of the first order:

y′ =
λ a2y

a2 − x2 ,

In addition, it satisfies the following property of the exponential limit:

lim
a→+∞

ελ,a(x) = eλx, ∀x ∈ (−a,+a).

Furthermore, it is also related to the CDF class proposed in [7], which is based on
the exponential function. However, the unit interval variants thus proposed differ from
the design of our CDF. As will be seen, the distribution proposed here is much more
flexible and exhibits both positive and negative skewness. Moreover, as will be seen below,
the hazard rate function (HRF) of the proposed model purely yields an increasing failure
rate (IFR) behavior, or all values of λ > 0 thus belong to the decreasing mean residual life
(DMRL) class.

The rest of the manuscript is organized as follows. In the next section, the basic
stochastic properties of the proposed distribution are presented. The mode, quantiles,
HRF, and characterization of the new distribution, among other properties, are examined.
Section 3 shows the procedure for estimating the parameters of the proposed distribution
using the maximum likelihood (ML) method, along with a Monte Carlo simulation study.
Applications to a number of real-world datasets are given in Section 4, while the last section
provides some concluding remarks.
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2. The Proposed Unit Exponential Distribution
Let X be a bounded RV, and without loss of generality, it is convenient that values of

X belong to the unit interval [0, 1]. Also, suppose that the CDF of the RV X is defined by
the following equality:

F(x) =

 1− exp
[

α

(
1−

(
1+x
1−x

)β
)]

, 0 ≤ x < 1;

1, x = 1;
(2)

where α, β > 0. The CDF given by Equation (2) is called the unit exponential distribution
(UED) (with the parameters α and β) and referred to as the UED (α, β). Note that the UED
is related to the epsilon function defined in Equation (1). Indeed, when taking a = 1 and
β = λ/2, Equation (2) becomes

F(x) = 1− exp
[
α
(
1− ε2β,1(x)

)]
,

when 0 ≤ x < 1. Note that in this form, the function F(x) represents the composition of
the CDF of the so-called one-shifted exponential distribution [26] and the epsilon function
mentioned above. At the same time, it is obvious that F(x) approaches 0 and 1 when x → 0
and x → 1, respectively, and thus represents a valid unit CDF. Graphical representations of
the CDFs of the UED for different parameters α and β are shown in Figure 1. It portrays
that for α → 0 and β ≥ 3, the CDF curve is concave (bent inward), while for α → 1, the
CDF curve is convex (bent outward).

Figure 1. Plots of the CDFs of the UED for varying parameters.

By differentiating the CDF given by Equation (2), the probability density function
(PDF) of the UED when 0 ≤ x < 1 can be easily obtained as follows:

f (x) =
2αβ

1− x2

(
1 + x
1− x

)β

F(x). (3)

Here, F(x) = 1− F(x) is the tail of the CDF F(x). Notice that the UED has two parameters
α, β > 0, where one is like a dispersion and the other is like a shape parameter. Also, this
PDF structure is similar to one of the simpler forms of the so-called proper dispersion
models introduced in [7], but it does not belong to that class.
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2.1. Properties of the Model
In practice, it is required that the proposed UED, whose PDF is defined by Equation (3),

presents flexibility to describe the data adequately. In this regard, it exhibits negative and
positive skewness for all values of α > 0 and β > 0. The flexibility property of the
UED can be visualized as in Figure 2, where the various cases of the appropriate PDF are
shown, depending on the parameter values α and β > 0. These plots show the different
skewness possibilities and the existence of modes of the UED that can be used to fit some
real-world datasets.

Figure 2. Plots of the PDFs of the UED for varying parameters.

2.1.1. Quantile
As a first property, the quantile function of the UED is quite manageable. By inverting

the CDF F(x), given by Equation (2), the quantile function is determined as follows:

Q(y) = F−1(y) =
(1− ln(1− y)/α)1/β − 1

(1− ln(1− y)/α)1/β + 1
, y ∈ (0, 1).

Thanks to this function, the median of the UED is given by

Me = Q(1/2) =
(1 + ln 2/α)1/β − 1

(1 + ln 2/α)1/β + 1
.

Using Q(y), we are able to define various measures of skewness and kurtosis, as well as
important actuarial measures (see, for example, [2,27]).

2.1.2. Mode
Note that Figure 2 shows that the PDF of the proposed model can have (at most) one

mode. To identify this property, we should prove the following result, which collects these
findings and their implications:
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Proposition 1. The PDF f (x), given by Equation (3), has a unique mode if and only if 0 < α < 1.
Otherwise, the UED does not have any modes.

Proof. The mode of the PDF f (x) is a solution of the equation f ′(x) = 0, which after certain
calculations and simplification becomes

x + β− αβ

(
1 + x
1− x

)β

= 0. (4)

If we denote by ψ(x) the left-hand side of Equation (4), then the following is easily obtained:

lim
x→1−

ψ(x) < 0 and lim
x→0+

ψ(x) = β(1− α).

Obviously, the inequalities 0 < α < 1 and β > 0 give β(1− α) > 0. Then, Equation (4)
has real solutions, which guarantee that f (x) has at least one mode. Next, the function
ψ(x) defined above has the derivative

ψ′(x) = 1− 2αβ2

1− x2

(
1 + x
1− x

)β

.

Note that ψ′(x) is strictly decreasing because

ψ′′(x) = −4αβ2(x + β)

(1− x2)2

(
1 + x
1− x

)β

< 0.

This fact then implies that the previously detected mode is unique.

2.1.3. Behavior of the PDF at x → 0+ and x → 1−

The behavior of the PDF f (x) at the ends of the unit interval (i.e., when x → 0+ and
x → 1−) indicates how f (x) converges or not in these limits. In terms of data modeling,
these facts would reflect the empirical limits on the extremes that the data show. At the
limit x → 0+, according to Equations (2) and (3), the following is easily obtained:

lim
x→0+

f (x) = 2αβ.

On the other hand, to analyze the limit of f (x) at x → 1−, we observe the function
ln f (x), which can be written as

ln f (x) = ln(2αβ) + (β− 1) ln(1 + x)− (β + 1) ln(1− x) + α

(
1−

(
1 + x
1− x

)β
)

=
1

(1− x)β

(
(1− x)β(ln(2αβ) + (β− 1) ln(1 + x)− (β + 1) ln(1− x) + α)

−α(1 + x)β
)

.

Hence, we obtain
lim

x→1−
(1− x)β ln f (x) = −α 2β,

which implies that in a data representation, the data would decay at exponential rates when
x → 1−.



Mathematics 2023, 11, 4207 6 of 22

2.1.4. Moments
Let X be an RV with the CDF given by Equation (2). Then, the rth moment of X, using

partial integration, can be expressed as follows:

E(Xr) =
∫ 1

0
xrdF(x) =

∫ 0

1
xrd(1− F(x)) = r

∫ 1

0
xr−1(1− F(x))dx

= r exp(α)
∫ 1

0
xr−1 exp

[
−α

(
1 + x
1− x

)β
]

dx.

This integral can be determined numerically with the use of many pieces of software, such
as R, MATHEMATICA, and MATLAB. The following result proposes a series expansion of
E(Xr) that can be used for numerical approximation:

Proposition 2. The rth moment of X can be expanded as follows:

E(Xr) =
2rα1/β exp(α)

β

r−1

∑
k=0

+∞

∑
`=0

(
r− 1

k

)(
−(r + 1)

`

)
(−1)kα(k+`+1)/βΓ

(
− k + `+ 1

β
, α

)
,

where Γ(a, x) denotes the upper incomplete gamma function (i.e., Γ(a, x) =
∫ +∞

x ta−1 exp(−t)dt).

Proof. By applying the change in the variable y = (1 + x)
/
(1− x), we have

E(Xr) = 2r exp(α)
∫ +∞

1

(y− 1)r−1

(y + 1)r+1 exp(−αyβ)dy. (5)

Then, using the “generalized version” of the binomial formula two times in a row, since
y > 1, we find

(y− 1)r−1

(y + 1)r+1 = y−2 (1− 1/y)r−1

(1 + 1/y)r+1

= y−2

[
r−1

∑
k=0

(
r− 1

k

)
(−1)ky−k

][
+∞

∑
`=0

(
−(r + 1)

`

)
y−`
]

=
r−1

∑
k=0

+∞

∑
`=0

(
r− 1

k

)(
−(r + 1)

`

)
(−1)ky−(k+`+2). (6)

Also, with the change in the variable z = αyβ, the following is obtained:

∫ +∞

1
y−(k+`+2) exp(−αyβ)dy =

α(k+`+1)/β

β

∫ +∞

α
z−(k+`+1)/β−1 exp(−z)dz

=
α(k+`+1)/β

β
Γ
(
− k + `+ 1

β
, α

)
. (7)

Therefore, by substituting Equations (6) and (7) into Equation (5), as well as by inverting
the sign of the integral and the sum, the desired result is obtained.

2.1.5. Failure (Hazard) Rate Function
The HRF of the UED is given by

h(x) =
f (x)
F(x)

=
2αβ

1− x2

(
1 + x
1− x

)β

. (8)

When x → 0+, the limit of h(x) is 2αβ > 0, and when x → 1−, the limit is +∞. Thus, this
function is strictly increasing, as can be seen in Figure 3, meaning that when x increases,
the frequency at which an engineered system or component fails also increases.
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Figure 3. Plots of the HRFs of the UED for varying parameters.

2.2. Characterizations
To interpret the HRF realistically, we shall try to characterize Equation (3) with hazard

and mean residual life functions. Characterization in general terms implies that under
certain conditions, a family of distributions is the only one possessing a designated property.
Researchers can identify the actual probability distribution with the help of characterization.
For detailed study, readers are referred to the works of Ahsanullah et al. [28,29] and
Hamedani [30]. In this regard, we characterize the proposed model with the HRF and
truncated moments, and the characterizing conditions are defined as follows:

Proposition 3. The RV X : Ω −→ (0,+∞) has a continuous PDF f (x) if and only if the HRF
h(x) satisfies the following equation:

f ′(x)
f (x)

=
h′(x)
h(x)

− h(x). (9)

Proof. According to the definition of the HRF, given by the first equality in Equation (8), it
follows that

h′(x)
h(x)

=
f ′(x)F(x) + f 2(x)

F2
(x)

· F(x)
f (x)

=
f ′(x)
f (x)

+ h(x).

Thus, the statement of proposition immediately follows.

Proposition 4. The RV X : Ω −→ (0,+∞) has a UED (α, β) if and only if the HRF h(x),
defined by Equation (8), satisfies the following equation:

h′(x)
(h(x))2 =

x + β

αβ

(
1− x
1 + x

)β

. (10)

Proof. Necessity: Assume that X ∼ UED(α, β), with the PDF f (x) defined by Equation (3).
Then, the logarithm of this PDF, in the same way as in Section 2.1.3, can be expressed as:

ln( f (x)) = ln(2αβ) + (β− 1) ln(1 + x)− (β + 1) ln(1− x) + α

(
1−

(
1 + x
1− x

)β
)

.

By differentiating both sides of this equality with respect to x, we obtain

f ′(x)
f (x)

=
β− 1
1 + x

+
β + 1
1− x

− 2αβ

(1− x)2

(
1 + x
1− x

)β−1
=

2
1− x2

(
x + β− αβ

(
1 + x
1− x

)β
)

. (11)

Thus, according to Equations (8) and (9), it follows that

h′(x)
h(x)

=
f ′(x)
f (x)

+ h(x) =
2(x + β)

1− x2 ,

which after certain simplification yields Equation (10).
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Sufficiency: Suppose that Equation (10) holds. After integration, it can be rewritten as
follows: ∫ h′(x)

(h(x))2 dx =
∫ x + β

αβ

(
1− x
1 + x

)β

dx,

That is, we have

− 1
h(x)

=
x2 − 1

2αβ

(
1− x
1 + x

)β

.

From the above equation, we obtain the HRF h(x) as shown in Equation (8). Furthermore,
by replacing this function in Equation (9), and after integration, we obtain

∫ f ′(x)
f (x)

dx = 2
∫ [ x + β

1− x2 −
αβ

1− x2

(
1 + x
1− x

)β
]

dx + C1

= (β− 1) ln(1 + x)− (β + 1) ln(1− x)− α

(
1 + x
1− x

)β

+ C1,

that is, we have

f (x) =
exp

[
C1 − α

(
x+1
1−x

)β
]

1− x2

(
1 + x
1− x

)β

.

Another integration implies that

F(x) =
∫

f (x)dx + C2 = −
exp

[
C1 − α

(
x+1
1−x

)β
]

2αβ
+ C2,

whereby from the conditions F(0) = 0 and F(1) = 1, the constants C1 = α + ln(2αβ) and
C2 = 1 are obtained. Thus, the function F(x) is indeed the CDF from UED(α, β), which
completes the proof.

The following theorem was used in [31] as well as [28,29] in order to characterize
different univariate continuous distributions:

Theorem 1. Let (Ω; F; P) be a given probability space, and let H = [a, b] be an interval for some
a < b, where a = −∞ and b = +∞ might as well be allowed. Also, let X : Ω→ H be a continuous
RV with the CDF F(x) and g(x) and t(x) be two real functions defined on H and such that

E
[
g(X)

∣∣X ≥ x
]
= ξ(x)E

[
t(X)

∣∣X ≥ x
]
, x ∈ H

is defined with some real function ξ(x). Assume that g(x), t(x) ∈ C1(H), ξ(x) ∈ C2(H), and
F(x) is a twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation t(x)ξ(x) = g(x) has no real solution in the interior of H. Then, F(x) is
uniquely determined by the functions g(x), t(x), and ξ(x) as follows:

F(x) = C
∫ x

0

∣∣∣∣ ξ ′(u)
ξ(u)t(u)− g(u)

∣∣∣∣e−s(u)du, (12)

where the function s(x) is a solution of the differential equation

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
,

and C is a constant such that
∫
H dF(x) = 1.

Now, we discuss the characterization of the UED based on Theorem 1 and some simple
relationship between two functions and the RV X ∼ UED(α, β).
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Proposition 5. Let X : Ω→ [0, 1) be a continuous RV and

t(x) = 3 exp

[
2α

(
1−

(
1 + x
1− x

)β
)]

, x ∈ [0, 1)

g(x) = 2 exp

[
α

(
1−

(
1 + x
1− x

)β
)]

, x ∈ [0, 1).

The RV X has a PDF defined by Equation (3) if and only if there exists a function ξ(x), defined as
in Theorem 1, that satisfies the differential equation

ξ ′(x)
ξ(x)t(x)− g(x)

=
2αβ

1− x2

(
1 + x
1− x

)β

exp

[
−2α

(
1−

(
1 + x
1− x

)β
)]

, 0 ≤ x < 1. (13)

Proof. Necessity: For the RV X ∼ UED(α, β), with the CDF and PDF given by
Equations (2) and (3), respectively, after a certain computation, we obtain

(1− F(x))E
[
t(X)

∣∣X ≥ x
]
= 3 eαr(x;β)

∫ 1

x

2αβ

1− u2

(
1 + u
1− u

)β

e3αr(u;β)du

= exp

[
4 α

(
1−

(
1 + x
1− x

)β
)]

,

(1− F(x))E
[
g(X)

∣∣X ≥ x
]
= 2 eαr(x;β)

∫ 1

x

2αβ

1− u2

(
1 + u
1− u

)β

e2αr(u;β)du

= exp

[
3 α

(
1−

(
1 + x
1− x

)β
)]

,

where 0 < x < 1 and r(x) := 1−
(

1+x
1−x

)β
. This implies that

ξ(x) :=
E(g(x)|X ≥ x)
E(t(x)|X ≥ x)

= exp

[
−α

(
1−

(
1 + x
1− x

)β
)]

, 0 < x < 1, (14)

that is, we have

ξ(x)t(x)− g(x) = 3 eαr(x;β) − 2 eαr(x;β) = exp

[
α

(
1−

(
1 + x
1− x

)β
)]

> 0, 0 < x < 1.

Hence, Equation (13) clearly holds.
Sufficiency: If the function ξ(x) satisfies the differential Equation (13), then it follows

that

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
=

6αβ

1− x2

(
1 + x
1− x

)β

, 0 < x < 1,

Therefore, one can take

s(x) = −3α

(
1−

(
1 + x
1− x

)β
)

.

Using Equation (12), it is easy to obtain that the RV X has a PDF given by Equation (3).

According to the previous proposition, one immediately obtains the following:

Corollary 1. Let X : Ω→ [0,+∞) be a continuous RV and functions t(x) and g(x) be given as
in Proposition 5. Then, X ∼ UED(α, β), with the PDF as shown in Equation (3) if and only if the
function ξ(x) has the form in Equation (14).
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3. Estimation and Simulation Procedures
Let us assume that x1, . . . , xn are observed values of the sample of size n taken from

the UED(α, β). We propose the maximum likelihood method for estimating the pair of
parameters (α, β). This means that the estimates of those parameters are the ones that
maximize the likelihood function

L
(
α, β|x1, . . . , xn

)
=

n

∏
i=1

f (xi).

As is known, this solution also corresponds to the one that maximizes the log-likelihood
function; in other words, it maximizes

l = l
(
α, β|x1, . . . , xn

)
=

n

∑
i=1

ln f (xi).

By differentiating the function l with respect to each parameter, the estimators of α
and β can be obtained by solving the coupled equations

∂l
∂α

=
n
α
+

n

∑
i=1

(
1−

(
1 + xi
1− xi

)β
)

= 0

∂l
∂β

=
n
β
+

n

∑
i=1

ln
(

1 + xi
1− xi

)
− α

n

∑
i=1

(
1 + xi
1− xi

)β

ln
(

1 + xi
1− xi

)
= 0.

From the first equation, we obtain

α =

[
1
n

n

∑
i=1

(
1 + xi
1− xi

)β

− 1

]−1

,

and by replacing this output in the second coupled equation, we obtain

n
β
+

n

∑
i=1

ln
(

1 + xi
1− xi

)
+

∑n
i=1

(
1+xi
1−xi

)β
ln
(

1+xi
1−xi

)
1− 1

n ∑n
i=1

(
1+xi
1−xi

)β
= 0.

Obviously, the last equation has only β as an unknown parameter. Now, by denoting
zi = (1 + xi)/(1− xi) > 1, i = 1, . . . , n, and

L(β) =
n
β
+

n

∑
i=1

ln zi +
∑n

i=1 zβ
i ln zi

1− 1
n ∑n

i=1 zβ
i

,

then by applying the L’Hopital’s rule, one obtains

lim
β→0+

L(β) =
n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
1− zβ

i + βzβ
i ln zi

)
β ∑n

i=1

(
1− zβ

i

)
=

n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
−zβ

i ln zi + ln zi

)
∑n

i=1

(
1− zβ

i − βzβ
i ln zi

)
=

n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
−zβ

i ln2 zi

)
∑n

i=1

(
−zβ

i ln zi − ln zi

)
=

n

∑
i=1

ln zi +
n
2
· ∑n

i=1 ln2 zi

∑n
i=1 ln zi

> 0.
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On the other hand, assuming that z1 > max{z2, . . . , zn}, it follows that

lim
β→+∞

L(β) =
n

∑
i=1

ln zi + lim
β→+∞

ln z1 + ∑n
i=2

(
zi
z1

)β
ln zi

z−β
1 −

1
n −

1
n ∑n

i=2

(
zi
z1

)β

=
n

∑
i=1

ln zi − n ln z1 < 0.

Hence, equation L(β) = 0 has at least one solution, and it can be solved numerically,
for instance, by using the Newton–Raphson algorithm. This task may be performed using
the function “uniroot” available in the statistical programming software “R” (version
4.3.1). Once β is estimated, this output can be used for estimating α.

For computing the interval estimators for θ = (α, β)′ and testing hypotheses with
these parameters, we find the observed matrix information:

I(θ) = −



∂2l(θ)
∂α2

∂2l(θ)
∂α∂β

∂2l(θ)
∂β∂α

∂2l(θ)
∂β2

,

where

∂2l(θ)
∂α2 = − n

α2

∂2l(θ)
∂α∂β

=
∂2l(θ)
∂β∂α

= −
n

∑
i=1

(
1 + xi
1− xi

)β

ln
(

1 + xi
1− xi

)
∂2l(θ)

∂β2 = − n
β2 − α

n

∑
i=1

(
1 + xi
1− xi

)β

ln2
(

1 + xi
1− xi

)
.

Note that I(θ̂) is a consistent estimator of the expected Fisher information matrix
E[I(θ)] (see, for example, [32]). Under some suitable conditions, the approximation to a
normal distribution θ̂ ≈ N (θ, I(θ̂)−1) holds, and more generally, we have

a′θ̂ ≈ N (a′θ, a′ I(θ̂)−1a),

for any vector a = (a1, a2)
′. By choosing a = (1, 1)′, we find the 100× (1− δ) % confidence

interval:
θi ± zδ/2

√
(I(θ̂)−1)ii,

where 0 < δ < 1 and zδ/2 is the 1− δ/2 quantile of the standard normal distribution.

Simulation Study
In this part, we shall discuss the effectiveness of the proposed MLE procedure,

which will be used in application for better predictions of a phenomenon. In this re-
gard, we considered four sets of parameters and conducted a Monte Carlo simulation with
20,000 replications in order to generate samples of various sizes (i.e., n = 25, 50, 150, 350, 500)
from the UED (α, β). The parameter combinations are listed below:

Set-I: α = 0.9856 , β = 0.2178;
Set-II: α = 1.8986 , β = 0.3218;
Set-III: α = 2.4390 , β = 2.5145;
Set-IV: α = 0.4390 , β = 1.5145.



Mathematics 2023, 11, 4207 12 of 22

For all of them, the MLE estimates were obtained by using MATHEMATICA 13.0
software. The simulation results are portrayed in Tables 1–4, where they are compiled
according to the following definitions:

Bias := E(Θ̂)−Θ;

Mean square error (MSE) := E((Θ̂−Θ)2);

Lower Confidence Limit := LCL = Θ̂− z δ
2

√
Var(Θ̂)

n
;

Upper Confidence Limit := UCL = Θ̂ + z δ
2

√
Var(Θ̂)

n
,

where Θ = (α, β). From these tables, there is evidence that both the bias and MSE of
the MLE estimates tended toward zero as the sample sizes increased, whereas the 95%
confidence limits became compact as the sample size increased.

Table 1. Mean, bias, MSE, LCL, and UCL for Set-I.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 0.9417 −0.0439 0.0111 0.9335 0.9499
β 0.2180 0.0013 0.00008 0.2172 0.2189

n = 50 α 0.9511 −0.0344 0.0068 0.9479 0.9544
β 0.2189 0.0012 0.00007 0.2186 0.2193

n = 150 α 0.9655 −0.0200 0.0032 0.9648 0.9663
β 0.2192 0.0014 0.00004 0.2192 0.2192

n = 350 α 0.9685 −0.0171 0.0022 0.9683 0.9688
β 0.2194 0.0016 0.00003 0.2194 0.2194

n = 500 α 0.9729 −0.0126 0.0015 0.9728 0.9732
β 0.2194 0.0016 0.00002 0.2194 0.2194

Moreover, Table 1 shows a downward bias for α̂ and an upward one for β̂. Similarly,
the MSE approached zero as the sample size increased.

Table 2. Mean, bias, MSE, LCL, and UCL for Set-II.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 1.8547 −0.0438 0.0472 1.8376 1.8717
β 0.3140 −0.0077 0.0004 0.3125 0.3155

n = 50 α 1.8902 −0.0084 0.0230 1.8843 1.8962
β 0.3149 −0.0068 0.0003 0.3143 0.3156

n = 150 α 1.9204 0.0217 0.0117 1.9161 1.9246
β 0.3167 −0.0050 0.0001 0.3163 0.3172

n = 350 α 1.9346 0.0359 0.0071 1.9341 1.9352
β 0.3171 −0.0046 0.0001 0.3172 0.3172

n = 500 α 1.9337 0.0351 0.0063 1.9334 1.9342
β 0.3171 −0.0047 0.00008 0.3170 0.3171

Also, Table 2 portrays a downward bias for α̂ and β̂ when the sample sizes were less
than or equal to 50, while there was an upward bias for α̂ when the sample size increased.
However, the MSE approached zero as the sample size increased.
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Table 3. Mean, bias, MSE, LCL, and UCL for Set-III.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 2.3256 −0.1133 0.0578 2.307 2.3445
β 2.4995 −0.0149 0.0126 2.4908 2.5084

n = 50 α 2.3539 −0.0850 0.0316 2.3472 2.3620
β 2.4871 −0.0274 0.0136 2.4826 2.4916

n = 150 α 2.3915 −0.0475 0.0123 2.3900 2.3929
β 2.5121 −0.0023 0.0048 2.5113 2.5132

n = 350 α 2.4044 −0.0345 0.0065 2.4040 2.40491
β 2.5155 0.0010 0.0028 2.5152 2.5158

n = 500 α 2.4051 −0.0338 0.0052 2.4048 2.4055
β 2.5180 0.0035 0.0023 2.5179 2.5183

In the case of Set-III, shown in Table 3, the bias was downward for α̂ for all sample
sizes. On the contrary, it was upward for β̂ when the sample sizes were higher, usually for
those greater than 150. Notice that all biases were negligibly small and approached zero as
the sample size increased.

Table 4. Mean, bias, MSE, LCL, and UCL for Set-IV.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 0.4173 −0.0217 0.0024 0.4134 0.4212
β 1.5168 0.0023 0.0037 1.5120 1.5215

n = 50 α 0.4251 −0.0138 0.0013 0.4237 0.4264
β 1.5166 0.0021 0.0027 1.5146 1.5186

n = 150 α 0.4285 −0.0105 0.0007 0.4281 0.4288
β 1.5205 0.0060 0.0015 1.5200 1.5210

n = 350 α 0.4314 −0.0076 0.0004 0.4313 0.4315
β 1.5236 0.0091 0.0009 1.5234 1.5238

n = 500 α 0.4332 −0.0058 0.0003 0.4332 0.4333
β 1.5203 0.0058 0.0009 1.5202 1.5203

Similarly, Table 4 shows a downward bias for α̂ and an upward bias for β̂, but all biases
were negigibly small and approached zero as the sample size increasd, and the same is
true for the MSE. In summary, the above results show that the MLE is a suitable estimation
method for realistic forecasting.

4. Model Compatibility and Its Application to Real-World Data
Here, the possibility of applying the UED model in terms of modeling empirical

distributions of some real-world processes is discussed in more detail. To that end, by using
several typical statistical indicators, the quality of fitting with the UED was also checked.
The obtained results were also compared with the results of fitting using some of the
previously known unit interval probability distributions, which additionally checked the
possibility of applying the UED.

4.1. Measures of Goodness-of-Fit
In order to test the null hypothesis H0 : Fn(x) = F0(x), where Fn(x) is the empirical

CDF and F0(x) is the CDF of some specified (theoretical) distribution, usually some well-
known statistical tests are used. In order to test the hypothesis that some real-world data are
taken from the UED (i.e., from some other stochastic distribution), the following statistical
tests are used here:
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• The Kolmogorov–Smirnov (KS) test, whose test-statistics are defined by

KS = max
1≤i≤k

{
i
k
− zi, zi −

i− 1
k

}
,

where k denotes the number of classes and zi represents the values of the theoretical
CDF.

• The Anderson–Darling (AD∗0) test, which usually attaches more mass to the distribu-
tions tails and whose test-statistics are

A∗0 =

(
2.25
k2 +

0.75
k

+ 1
){
−k− 1

k

k

∑
i=1

(2i− 1) ln(zi(1− zk−i+1))

}
.

• The Cramér–von Mises (CVM∗0)-test is a derived version of the KS test, with test-
statistics defined by

W∗0 =
K

∑
i=1

(
zi −

2i− 1
2k

)2
+

1
12k

.

Additionally, in order to check the quality of fitting certain real-world data using the
UED (i.e., some other distribution), the following indicators were used:
• The Akaike information criterion (AIC), defined as

AIC = 2m− 2`(Θ̂),

where m denotes the number of parameters.
• The corrected Akaike information criterion (AICc), expressed as

AICc = AIC +
2m(m + 1)
n−m− 1

.

• The Bayesian information criterion (BIC), which is defined as

BIC = m ln(n)− 2`(Θ̂).

• The Hannan–Quinn information criterion (HQIC), expressed as

HQIC = −2`(Θ̂) + 2m ln(ln(m)).

• The consistent Akaike information criterion (CAIC), given as

CAIC = −2`(Θ̂) + m(ln(n) + 1).

• The Vuong test was also used for model selection purposes.
For comprehensive details about these measures, readers may refer to Akaike [33],

Hussain et al. [34], Murthy et al. [35], and Vuong [36], respectively.

4.2. Comparative Models
We also compared the proposed UED model with well-known unit interval models

defined by the following PDFs:
• The beta distribution (BD) [4]:

f BD
α (x) =

1
B(α, β)

xβ−1(1− x)α−1, α, β > 0, 0 < x < 1,
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• The Johnson SB distribution (JSBD) [6]:

f JSBD
α,β (x) =

β exp
[
− 1

2 (α + β ln( x
1−x ))

2 − βx
]

√
2πx(1− x)

, α, β > 0, 0 < x < 1,

• The Kumaraswamy distribution (KwD) [8]:

f KwD
α,β (x) = α βxα−1(1− xα)β−1, α, β > 0, 0 < x < 1,

• The unit Gompertz distribution (UGoMD) [15]:

f UGoMD
α,β (x) = αβx−α−1e−β(x−α−1), α, β > 0, 0 < x < 1.

In order to compare the fitting results, we considered four different real-world datasets
classified into two sections: (1) environmental and (2) engineering. The results obtained
from the statistical analysis of these datasets are discussed below.

4.3. Environmental Datasets
Datasets I and II. The first two datasets were reported by Maiti [37], and they represent

the following measured values:
- Soil moisture (Dataset I): 0.0179, 0.0798, 0.0959, 0.0444, 0.0938, 0.0443, 0.0917, 0.0882,

0.0439, 0.049, 0.0774, 0.0171, 0.0305, 0.0757, and 0.0468;
- Permanent wilting points (PWP) (Dataset II): 0.0821, 0.0561, 0.0202, 0.051, 0.0041,

0.0226, 0.0556, 0.0829, 0.0062, 0.0695, 0.0557, 0.0243, 0.0083, 0.0532, and 0.0118.
In this regard, we compiled both the descriptive and theoretical (UED) statistics, which

are listed in Tables 5 and 6, respectively. Note that the descriptive statistics of all datasets
include the sample size (SS), mean, median, standard deviation (SD), skewness (SK), and
kurtosis (KU).

Table 5. Descriptive statistics for Datasets I and II.

Dataset SS Mean Median SD SK KU

I 15 0.0598 0.0490 0.0277 −0.1083 1.6247
II 15 0.0402 0.0510 0.0277 0.1083 1.6247

Table 6. Theoretical statistics from the UED.

Dataset SS Mean Median SD SK KU

I 15 0.0606 0.0621 0.0254 −0.2107 2.3825
II 15 0.0406 0.0384 0.0247 0.2942 2.3050

In addition, the total test time (TTT) plot, introduced in [38], is portrayed in Figure 4
for both datasets. Notice that, in particular, the TTT plot indicates the empirical HRF,
portraying an IFR. Tables 5 and 6 also reveal that the theoretical UED statistics as well as the
observed descriptive statistics showed remarkable closeness to each other, and it appears
that both sets of data can be simulated by the proposed model. Furthermore, it is evident
from Figure 5 that neither dataset contained any outliers.

Table 7 portrays that the model proposed by the UED is the best strategy for analyzing
the observed dataset (Dataset I) in relation to all other distributions of unit intervals.
Namely, although the p value of the KS statistics for the KwD was the highest, the other
nonparametric tests, CVM∗0 and AD∗0 , indicate that for the UED, the minimum tested values
were obtained. Also, based on the estimated values of the Vuong statistics, given in Table 8,
the KwD and UED had an indecisive status. Thus, the UED is the best strategy, which is
also confirmed by Figure 6. Similarly, Table 9 portrays that the proposed UED model is
also one of the best strategies for the analysis of Dataset II in all aspects.Namely, the test
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statistics, including the KS test, CVM∗0 , and AD∗0 , had the lowest values compared with all
the selected, previously known interval models. In addition, the Vuong statistic, which
compares models based on the likelihood ratio phenomenon, openly supported the UED.
Finally, Figure 6 also confirms our claim that the UED is the best strategy. Moreover,
Tables 10 and 11 yield the lowest information criterion values for the UED compared with
the competing models.
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Figure 4. TTT plots of Datasets I and II.

Figure 5. Box plots for datasets I and II.

Table 7. ML estimates and goodness-of-fit statistics for Dataset I.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 18.4218 0.0773 0.6239 0.1026 0.2079 0.5361

BD 3.8233 60.2492 0.6858 0.1041 0.2099 0.5232

KwD 719.3842 2.4408 0.6887 0.1109 0.2003 0.5844

JSBD 4.9859 1.7279 0.7751 0.1117 0.2128 0.5056

UGoMD 1.6525 0.0048 1.0587 0.1613 0.2353 0.3769

Table 8. Vuong test statistics for Datasets I and II.

Models Dataset I Suitability Dataset II Suitability

UED-BD 1.4601 UED 2.5935 UED

UED-KwD 0.9738 Indecisive 3.4585 UED

UED-JSBD 1.5427 UED 1.6793 UED

UED-UGoMD 2.2142 UED 1.5955 UED
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Table 9. MLE and goodness-of-fit statistics for Dataset II.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 11.8676 0.4607 0.6239 0.1096 0.1960 0.6118

BD 1.5370 36.8071 0.6869 0.1199 0.2481 0.3142

KwD 78.9162 1.4011 0.7074 0.1224 0.2409 0.3487

JSBD 3.5837 1.0177 0.8112 0.1364 0.2619 0.2549

UGoMD 0.9497 0.0219 0.9011 0.1499 0.2386 0.3603

Table 10. Estimates of the maximum log-likelihood and information criteria for Dataset I.

Distribution −l AIC AICC BIC HQIC CAIC

UED 33.8617 −63.7233 −62.7233 −62.3072 −63.7384 −60.3072

BD 32.8026 −61.6052 −60.6052 −60.1891 −61.6203 −58.1891

KwD 33.3796 −62.7592 −61.7592 −61.3431 −62.7743 −59.3431

JSBD 32.0631 −60.1262 −59.1262 −58.7101 −60.1413 −56.7101

UGoMD 29.6463 −55.2925 −54.2925 −53.8764 −55.3076 −51.8764

Table 11. Estimates of the maximum log-likelihood and information criteria for Dataset II.

Distribution −l AIC AICC BIC HQIC CAIC

UED 35.2604 −66.5208 −65.5208 −65.1047 −66.5359 −63.1047

BD 34.1097 −64.2194 −63.2194 −62.8033 −64.2345 −60.8033

KwD 34.3392 −64.6784 −63.6784 −63.2623 −64.6935 −61.2623

JSBD 33.0448 −62.0896 −61.0896 −60.6735 −62.1047 −58.6735

UGoMD 31.1648 −58.3296 −57.3296 −56.9135 −58.3447 −54.9135

Figure 6. Datasets I and II (given by histograms) fitted via unit interval distributions (given by lines).

4.4. Engineering Datasets
Datasets III and IV. The third and fourth datasets were first introduced and studied

in [39] for Burr measurements on iron sheets. For the third dataset of 50 observations of
the Burr measurements (in the unit of millimeters), the hole diameter was 12 mm, and the
sheet thickness was 3.15 mm. For the fourth dataset of 50 observations, the hole diameter
and sheet thickness were 9 mm and 2 mm, respectively. Hole diameter readings were
taken for jobs with respect to one hole and then selected and fixed as per a predetermined
orientation. These two datasets refer to two different machines being compared, and one
can see [39] for the technical details of measuring the datasets. Note that both datasets
were also analyzed in [19,40–42].The descriptive statistics of these datasets, as well as
the corresponding theoretical statistics for the UED, are presented in Tables 12 and 13,
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respectively. The TTT plot and box plots of the observed data are given in Figures 7 and 8,
respectively. It can be observed that Datasets III and IV were positively skewed and
platykurtic in nature, which is confirmed by Tables 12 and 13. In addition, from Figure 8,
it is evident that the empirical and theoretical aspects of these datasets, in terms of the
absence of outliers, are in close agreement and indicate that the proposed model can be used
effectively. Such findings are also consolidated within Tables 14 and 15, which show that
the UED exhibited minimal values in the almost all cases for the goodness-of-fit statistic,
which ensures that the UED is one of the best strategies.

Table 12. Descriptive statistics for Datasets III and IV.

Dataset SS Mean Median SD SK KU

III 50 0.1632 0.1600 0.0810 0.0723 2.2166

IV 50 0.1520 0.1600 0.0785 0.0061 2.3012

Table 13. Theoretical statistics from the UED.

Dataset SS Mean Median SD SK KU

III 50 0.1633 0.1641 0.0809 0.0259 2.2511

IV 50 0.1519 0.1521 0.0777 0.0262 2.2521
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Figure 7. TTT plots of Datasets III and IV.

Figure 8. Box plots for Datasets III and IV.
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Table 14. MLEs and goodness-of-fit statistics for Dataset III.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 4.7879 0.1756 0.3274 0.0419 0.1242 0.9881

BD 2.6824 13.8640 0.1538 0.9120 0.1414 0.5555

KwD 1.0746 0.0925 12.2879 2.3943 0.7222 0.0000

JSBD 2.3767 1.3175 0.2495 1.4647 0.1740 0.0968

UGoMD 0.0924 1.0747 0.5213 3.0810 0.2046 0.0304

Table 15. MLEs and goodness-of-fit statistics for Dataset IV.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 4.8518 0.1996 0.3224 0.0339 0.1239 0.9928

BD 2.4003 13.5218 0.2871 1.5649 0.1981 0.7340

KwD 1.9606 31.3769 0.2093 1.2683 0.1691 0.8825

JSBD 2.3682 1.2374 0.4145 2.2458 0.2285 0.5579

UGoMD 0.0916 1.0250 0.6091 3.4278 0.2312 0.5426

However, the likelihood aspects and information criterion values also favor the pro-
posed UED model, which can be seen in Tables 16 and 17, respectively. Furthermore,
the shape of our proposed model, as shown in Figure 9, matched the data in a better way
compared with the other competing models. Finally, the Vuong statistic, as depicted in
Table 18, also shows the capability of the proposed model.

Table 16. Estimates of the maximum log-likelihood and information criteria for Dataset III.

Distribution −l AIC AICC BIC HQIC CAIC

UED −57.0712 −110.142 −109.887 −106.318 −108.686 −104.318

BD −54.6066 −105.213 −104.958 −101.389 −103.757 −99.3892

KwD −56.0686 −108.137 −107.882 −104.313 −106.681 −102.313

JSBD − 51.3231 −98.6462 −98.3909 −94.8222 −97.19 −92.8222

UGoMD −40.672 −77.344 −77.0887 −73.52 −75.8878 −71.52

Table 17. Estimates of the maximum log-likelihood and information criteria for Dataset IV.

Distribution −l AIC AICC BIC HQIC CAIC

UED −59.3536 −114.707 −114.452 −110.883 −113.251 −108.883

BD −55.9312 −107.862 −107.607 −104.038 −106.406 −102.038

KwD −57.5214 −111.043 −110.788 −107.219 −109.587 −105.219

JSBD − 52.305 −100.61 −100.355 −96.786 −99.1538 −94.786

UGoMD −42.6099 −81.2198 −80.9645 −77.3957 −79.7636 −75.3957
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Figure 9. Datasets III and IV (given by histograms) fitted via unit interval distributions (given by
lines).

Table 18. Vuong test statistic for Datasets III and IV.

Models Dataset III Suitability Dataset IV Suitability

UED-BD 0.4137 Indecisive 3.5339 UED

UED-KwD −2.3203 KwD 3.9633 UED

UED-JSBD 2.1336 UED 3.4202 UED

UED-UGoMD 4.9679 UED 4.0306 UED

5. Concluding Remarks
We introduced a two-parameter bounded model called the unit exponential distri-

bution (UED), which is appropriate for modeling skewed and IFR data. Some of its
mathematical properties were studied, including the moments, quantiles, and other distri-
butional behavior. A characterization of the UED via the HRF was made, which provided
the identification requirements of the distribution and thus provided a reliable prediction
compared with the well-known unit domain models. The model parameters were esti-
mated with the MLE method. We also provided a guide line to choose the best model by
using various goodness-of-fit statistics. Applications of the newly defined distribution
showed that the proposed models have better modeling abilities than competitive models.
For this purpose, we used four datasets in two different disciplines, namely environmental
and engineering, and it was found that the proposed strategy was the best one in the
unit interval domain. Moreover, in a further study, the proposed model could also be
generalized over the interval [0, s) by introducing the function

F(x) = 1− exp

[
α

(
1−

(
s + x
s− x

)βs
)]

.

where, obviously, F(x) = 0 when x = 0 and F(x) = 1 when x = s.
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