
Citation: Kerimkhulle, S.;

Obrosova, N.; Shananin, A.;

Tokhmetov, A. Young Duality for

Variational Inequalities and

Nonparametric Method of Demand

Analysis in Input–Output Models

with Inputs Substitution: Application

for Kazakhstan Economy.

Mathematics 2023, 11, 4216. https://

doi.org/10.3390/math11194216

Academic Editors: Shiv Raj Singh,

Dharmendra Yadav and Himani

Dem

Received: 30 August 2023

Revised: 4 October 2023

Accepted: 6 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Young Duality for Variational Inequalities and Nonparametric
Method of Demand Analysis in Input–Output Models with
Inputs Substitution: Application for Kazakhstan Economy
Seyit Kerimkhulle 1,∗,† , Nataliia Obrosova 2,∗,† , Alexander Shananin 2,3,4,† and Akylbek Tokhmetov 1,†

1 Department of Information Systems, L.N. Gumilyov Eurasian National University, Satpayev Street 2,
Astana 010008, Kazakhstan

2 Federal Research Center «Computer Science and Control» of Russian Academy of Sciences,
Vavilov Street 44/2, 119333 Moscow, Russia; shananin.aa@phystech.edu

3 Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, GSP-1,
Leninskie Gory, 119991 Moscow, Russia

4 Department of Analysis of Systems and Solutions, Moscow Institute of Physics and Technology
(State University), Institutskiy Per. 9, 141701 Moscow, Russia

* Correspondence: kerimkul_sye@enu.kz (S.K.); nobrosova@yandex.ru (N.O.)
† These authors contributed equally to this work.

Abstract: The global macroeconomic shocks of the last decade entail the restructuring of national
production networks and induce processes of input substitution. We suggest mathematical tools of
Young duality for variational inequalities for studying these processes. Based on the tools we provide,
a new mathematical model of a production network with several final consumers is created. The
model is formulated as a pair of conjugated problems: a complementarity problem for optimal re-
source allocation with neoclassical production functions and the Young dual problem for equilibrium
price indices on network products. The solution of these problems gives an equilibrium point in the
space of network inter-industry flows and price indices on goods. Based on our previous results, we
suggest an algorithm for model identification with an official economic statistic in the case of constant
elasticity of substitution production functions. We give an explicit solution to the complementarity
problems in this case and develop the algorithm of the inter-industry flows scenario projection. Since
the algorithm needs the scenario projection of final sales structure as its input, we suggest a modified
methodology that allows the calculation of scenario shifts in final consumer spending. To do this,
we employ the generalized nonparametric method of demand analysis. As a result, we develop
new technology for scenario calculation of a national input–output table, including shifts in final
consumer spending. The technology takes into account a substitution of inputs in the network and is
based on officially published national statistics data. The application of the methodology to study tax
collection scenarios for Kazakhstan’s production network is demonstrated.

Keywords: resource allocation problem; optimization; input–output analysis; CES production; Young
duality; variational inequality; nonparametric method; competitive equilibrium; production network;
supply chain

MSC: 90C46; 90C90

1. Introduction

The current period of deglobalization and various economic shocks are leading to
structural changes in regional economies. Macroeconomic analysis of the consequences of
major government decisions in the context of shocks is relevant from the perspective of
efficiently restructuring production networks in new economic conditions. Such analysis
should take into account the interests of all major agents in the network, including the
economic interests of different groups of final consumers (households, government, etc.). In
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this article, we propose a framework that allows for the analysis of the evolution of regional
production networks taking into account the interests of final consumers. Our framework
is based on modifications we have developed in the field of input–output (IO) analysis that
consider input substitution in the network [1] coupled with an evaluation of the preferences
of final consumers in the economy, based on a nonparametric demand analysis method [2].
The synthesis of models enables macroeconomic analysis of the evolution of inter-industry
flows and the interests of different groups of final consumers in the regional production
network resulting from the implementation of government economic policy programs
or shocks.

Input–output analysis is a powerful tool for analyzing the balance of regional economies
and scenario forecasting of inter-industry linkages under shock conditions. Traditionally,
analysis is based on the Leontief model which describes the balance of the production
network under the assumption of constant coefficients of direct costs [3,4]. This approach
and its modifications are well developed and have applications in various sectors of the
economy [5–7].

The restructuring of supply chains under deglobalization leads to input substitution
in production networks. Input substitution is difficult to consider within the Leontief
model [8]. The constancy of direct cost coefficients does not assume substitution, and direct
modifications to the model with input substitution are limited in their applicability and
often difficult to identify [9,10].

A more general approach to analyzing equilibrium in open production networks is
the formulation of the optimal resource allocation problem in the form of a variational
inequality and its special case, the complementarity problem that takes into account input
substitution in the network. This approach, combined with the special case of duality, Young
duality theory, allows for the solution of more general problems of forecasting economic
equilibrium in an open production network [1]. We studied specific cases of the model
with production technologies with a constant elasticity of substitution (CES), developed
a methodology for model identification based on IO statistics tables of an economy, and
demonstrated its applications to modern production networks (for example, see [11]).

In terms of the generalized model equilibrium, inter-industry flows and equilibrium
product price indices in the production network are calculated as the solution to the
complementarity problem and its corresponding Young dual problem, depending on the
scenario-defined aggregate vector of final consumption and price indices for external
resources. At the same time, the question remains open as to the correspondence of the
competitive equilibrium found to the interests of different groups of final consumers. The
employment of variational inequality representation allows us to consider a set of final
consumers in the model. However, the projection of national production network structure
with the developed model needs the input data of final consumption vectors of each final
consumer for a projected year. These data are not usually included in official national
macroeconomic forecasts. We suggest an algorithm for demand projection that is based
on final consumer demand function calculation with the officially published time row of
final sales flows and the corresponding time row of price indexes whose elements are the
Young dual problem solutions for each year. The nonparametric method of trade statistics
analysis [12,13] was used, which is based on Pareto’s theory of consumer demand [14],
allows for the calculation of Konyus demand and price indices, and takes into account
changes in consumption structure [2]. The calculation method is based on the well-known
Floyd–Warshall algorithm [15,16] and is applicable to actual trade statistics data.

In this article, we propose a new methodology for analyzing and forecasting regional
inter-industry balance taking into account the interests of final consumers in the production
network. The methodology is based on the synthesis of a generalized inter-industry balance
model based on variational inequalities and analysis of final demand using a generalized
nonparametric method. It seems that this approach is new and has no analogues in the
scientific literature.
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We employ the complementarity problem theory and a special Young dual problem
for equilibrium inter-industry cash flows and price calculation. Since in our applications
we find an explicit solution to the problem, in this article we do not touch on general issues
related to the existence and uniqueness of solutions to the variational inequalities. These
problems may be points of further study. At the same time, the field is widely represented
in the scientific literature for various problem statements. The solution and existence of
economic equilibrium as corresponding variational inequality representation are studied
in [17–20]. The existence problem of solutions for some kind of variational inequalities
with monotone operators in nonreflexive Banach spaces are studied in [21]. Equilibrium
problems and variational inequalities under generalized monotonicity assumptions on cost
functions are discussed in [22]. The existence and uniqueness of solutions are proved for
both scalar and vector problems in [22] as well.

The existing general numerical methods for calculation of an economic equilibrium
employing the variational inequality technique, such as [23–28], rely on monotonicity. In
contrast to these results, our technique for determining the inter-industry equilibrium point
does not employ the monotonicity property. The technique is based on the calculation of
an explicit solution of the variational inequality which corresponds to the initial nonlinear
optimization problem as the solution of a special type of a dual variational inequality based
on Young transform. The dual problem for equilibrium price indexes is reduced to solving
the system of nonlinear algebraic equations. The obtained results allow us to present a
clear algorithm of regional production network equilibrium scenario projection.

Among related research, it is worth noting the cycle of works on network economics
by Nagurney [29,30], where the apparatus of game theory and variational inequalities is
used to analyze equilibrium in supply chains with different topologies, with applications
in food, labor, healthcare, etc. Note that in contrast to our results, the equilibrium is found
in that work by fixed price assumption.

Another close cycle of research related to the analysis of competitive equilibrium of
complex production networks belongs to Acemouglu, Carvalho with co-authors
(see [31–34]). In these works, the propagation of shocks is analyzed using examples
of production networks with different topologies and nonlinear production functions.

The difference and novelty of our approach is the use of Young duality theory, which
allows for the construction of the Young dual optimization problem to find equilibrium
prices in the production network. Moreover, in the case of CES class technologies, the
solution to the problem of finding competitive equilibrium in the space of supply volumes
and prices has a clear algorithm of solution, and variational inequality representation
combined with the nonparametric method allows for analysis of the individual interests of
final consumers. This result seems to be useful for government decision-making processes.

This paper is organized as follows.
Section 2.1 includes the generalization of the input–output (IO) balance optimization

model with substitution of inputs for an open production network which we provide
in [1]. We give the basic definitions and state the resource allocation problem in terms
of a complementarity problem. We pose the corresponding Young dual problem for
equilibrium prices.

Section 3 presents the key points for applications of the model in the case of constant
elasticity of substitution (CES) production: the solution of the inverse identification problem
and the scheme of the scenario input—output table evaluation. We have presented this
technology in several articles. For example, see [11].

In Section 4, we present the new framework for production network cash flow fore-
casting, including final demand flows of groups of agents. Our approach is based on the
synthesis of the IO balance model with CES technologies and the nonparametric method
of demand analysis. We provide a summary of the results of the nonparametric method
of demand analysis, which gives an algorithm of Konyus–Divisia indices (for price and
volume) evaluation [2].
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Section 5 focuses on the application of our framework. We use our previous results [11]
where we identified the IO balance model with CES technologies for an actual high ag-
gregated production network of Kazakhstan. We apply the synthesis of the obtained IO
balance model of Kazakhstan and the nonparametric method to evaluate and analyze
a Kazakhstan production network of 2022 and final consumer interests in a scenario of
changes of budget expenditures secured by tax revenues.

The Conclusion highlights the main results and advantages of the developed frame-
work for applications in government decision-making processes.

2. Variational Inequalities and Young Duality in Input–Output Models with
Substitution of Inputs: Baseline Framework

Variational inequalities theory was first developed to deal with equilibrium prob-
lems and was widely extended as a useful tool for the study of optimization problems,
operations research, and applications in many fields [30,35–38] In this section, we apply
finite-dimensional variational inequalities and the special duality theory that we call Young
duality [1,39] for the formalization of production networks with substitution of inputs.

2.1. Finite-Dimensional Variational Inequality: Basic Definitions and Facts

In this section, we give the base definitions and representations of rational behavior
problems of economic agents in terms of variational inequality.

Following [40,41], the variational inequality is a pair (A, f ), where A ⊂ Rn, f : A→ 2Rn
.

The vector x̂ ∈ A is a solution of the variational inequality (A, f ), if there exists p ∈ f (x̂)
〈p, x̂〉 ≥ 〈p, x〉 for any x ∈ A.

Here and below, 〈y, x〉 denotes the inner product of a pair of vectors y and x.
Let A be a convex subset of Rn and F : Rn → R be a concave function. Consider the

convex programming problem
max
x∈A

F(x) (1)

Proposition 1 ([1]). For x̂ ∈ A to be a solution to the convex programming problem (1), it is
necessary and sufficient that x̂ be a solution to the variational inequality (A, ∂F). Here, ∂F is a
superdifferential of F.

Variational inequality is useful for modeling the rational behavior of economic agents.
Consider a normal-form game Γ =

{
N, {Xi}i∈N , {ui(xi, x−i)}i∈N

}
,

where Xi—convex compact set, ui(xi, x−i) is concave by xi ∈ Xi for any fixed strategies
of other players x−i ∈ X−i. The set X = X1 × . . .× Xn.

Construct the multivalued mapping

G(x) = ∂x1 u1(x1, x−1)× . . .× ∂xn un(xn, x−n).

Proposition 2 ([1]). The outcome x̂ of Γ =
{

N, {Xi}i∈N , {ui(xi, x−i)}i∈N
}

is Nash equilibrium
if and only if x̂ ∈ A is a solution of variational inequality (X, G).

In the special case, when we operate with a convex cone as a feasible set, a variational
inequality turns to a complementarity problem. The basic competitive equilibrium model
for a system of agents is the Arrow–Debreu model [42]. Under the condition of equality of
demand and supply of goods (Walras’ law in the narrow sense), the question of the existence
of competitive equilibrium is reduced to the existence of a corresponding complementarity
problem solution.

Proposition 3 ([1]). Let A be a convex cone. The vector x̂ ∈ A is a solution of the variational
inequality (A, f ) if and only if there exists a linear functional p ∈ (−A∗) ∩ f (x̂) such that
〈p, x̂〉 = 0, where A∗ is the conjugate cone to the cone A.

See [1] for detailed proofs of Propositions 1–3.
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In a narrow sense, Walras’ law assumes strict equality between costs of demand
and supply. Therefore, in the Arrow–Debreu model, the vector of equilibrium prices is
determined up to multiplication by a positive factor.

The apparatus of variational inequalities can be applied to construct the vector of
equilibrium prices in the case of Walras’ law in a broad sense (the cost of demand should
not exceed the cost of supply at any non-zero prices). Let A be the set of supply vectors of
final goods and services in the economy, and let g(p) be a multivalued (in general) mapping
that determines the total demand of consumers depending on the price vector p. Let

g−1(x) = {p|x ∈ g(p)}

be the inverse demand mapping. If x̂ ∈ A is a solution to the variational inequality
(

A, g−1),
then (by definition) there exists p ∈ g−1(x̂) such that 〈p, x̂〉 ≥ 〈p, x〉 for any x ∈ A. Then,
p is the vector of equilibrium prices. The vector of equilibrium prices is analogous to
Lagrange multipliers in optimization models. The traditional economic interpretation of
Lagrange multipliers for resource balance constraints is their interpretation as prices for
resources. This interpretation is based on the construction and analysis of the dual problem.
In the next section, we construct such a problem for the resource allocation problem in an
open production network cluster.

2.2. Model of Production Cluster as an Element of Production Network Resource Allocation
Problem and Young Duality

This section summarizes propositions that we proved in the article [1].
Let us describe the total set of supply vectors for final goods and services based on

the input–output balance model. Consider an open production network cluster with the
following structure:

• m pure industries which produce goods 1, . . . , m;
• n production factors, which are inputs of industries but are not produced in the cluster;
• one aggregate final consumer with final consumption vector of cluster’s products

X0 =
(
X0

1 , . . . , X0
m
)
;

• The final consumer buys products X0 at prices p̂ = ( p̂1, . . . , p̂m) > 0;

• X j =
(

X j
1, . . . , X j

m

)
- intermediate inputs of industry j;

• l j =
(

l j
INT , l j

EXT

)
- external (for the cluster) inputs of industry j with primary resources

(inputs) of the cluster’s industries l j
INT =

(
l j
1,INT , . . . , l j

n,INT

)
and imported into

the cluster resources l j
EXT =

(
l j
1,EXT , . . . , l j

k,EXT

)
given by statistics price indexes

s = (sINT , sEXT);

sINT = (s1,INT , . . . , sn,INT), sEXT = (s1,EXT , . . . , sk,EXT),

• LINT = (L1,INT , . . . , Ln,INT) ≥ 0 is a total available volume of primary inputs for the
network, i.e.,

m

∑
j=1

l j
i,INT ≤ Li,INT , i = 1, . . . , n,

• LEXT(L1,EXT , . . . , Lk,EXT) ≥ 0 is a total available volume of external intermediate
inputs of the cluster, i.e.,

m

∑
j=1

l j
i,EXT ≤ Li,EXT , i = 1, . . . , k,

• The output of each industry j = 1, . . . , m is given by the neoclassical production func-

tion Fj

(
X j, l j

INT , l j
EXT

)
∈ Φm+n+k, where Φm+n+k is the set of concave, monotonically
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nondecreasing, continuous, and positively homogeneous degree one functions on
Rm+n+k
+ , Fj(0, 0, 0) = 0.

Note that

X0( p̂, sEXT) = Xint( p̂, sEXT) + Xexp( p̂, sEXT), Xint( p̂, sEXT) > 0, Xexp( p̂, sEXT) ≥ 0.

where Xint is a vector of internal final consumption of products and Xexp is a vector of
export of cluster’s products.

Let each technology use at least one type of primary input (labor, for ex.). The dual
description of the production technology of the j-th industry is the cost function [43]

qj( p̂, sINT , sEXT) =

in f

{
p̂X j+sINT l j

INT+sEXT l j
EXT

Fj

(
X j ,l j

INT ,l j
EXT

) ∣∣∣X j ≥ 0, l j
INT ≥ 0, l j

EXT ≥ 0, Fj

(
X j, l j

INT , l j
EXT

)
> 0

}
.

(2)

The cost function qj( p̂, sINT , sEXT) is called the Yang transform of the production

function Fj

(
X j, l j

INT , l j
EXT

)
. Let us assume that the group of industries of the cluster is

productive, i.e., the strong inequalities

Fj

(
X̂ j, l̂ j

INT , l̂ j
EXT

)
>

m

∑
i=1

X̂i
j, j = 1, . . . , m

hold for some values

X̂1 ≥ 0, . . . , X̂m ≥ 0, l̂1
INT , . . . , l̂m

INT , l̂1
EXT , . . . , l̂m

EXT ≥ 0.

Consider the following resource allocation problem

max
Xi

j

〈
p̂, X0

〉
(3)

Fj

(
X j, l j

EXT , l j
INT

)
≥

m

∑
i=0

Xi
j, j = 1, . . . , m (4)

m

∑
j=1

l j
EXT ≤ LEXT ,

m

∑
j=1

l j
INT ≤ LINT (5)

X0 ≥ 0, X1 ≥ 0, . . . , Xm ≥ 0, l1
EXT ≥ 0, . . . , lm

EXT ≥ 0, l1
INT ≥ 0, . . . , lm

INT ≥ 0. (6)

Denote the feasible set of final consumption vector X0 as Γ(LEXT , LINT). Given vectors
p̂, LEXT , LINT the optimal solution of the task (3)–(6) is a functional H( p̂, LEXT , LINT). Note
that for the fixed price vector p̂, the functional H( p̂, LEXT , LINT) is the support function
of the set Γ(LEXT , LINT). Note that H( p̂, LEXT , LINT) is convex in p̂ (as a support function)
and concave in LEXT , LINT (as aggregate production function).

In [1], we proved the following proposition.

Proposition 4 ([1]). The set of vectors X̃0 ≥ 0, X̃1 ≥ 0, . . . , X̃m ≥ 0, l̃1
EXT ≥ 0, . . . , l̃m

EXT ≥ 0,
l̃1
INT ≥ 0, . . . , l̃m

INT ≥ 0 is a solution of the problem (3)–(6) if and only if there exist vectors p ≥ p̂,
sEXT ≥ 0, sINT ≥ 0 that imply(

X̃ j, l̃ j
EXT , l̃ j

INT

)
∈ Arg max

{
pjFj

(
X j, l j

EXT , l j
INT

)
−

pX j − sEXT l j
EXT − sINT l j

INT

∣∣∣X j ≥ 0, l j
EXT ≥ 0, l j

INT ≥ 0
}

, j = 1, . . . , m,
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〈
sEXT , lEXT −

m

∑
j=1

l̃ j
EXT

〉
= 0,

〈
sINT , lINT −

m

∑
j=1

l̃ j
INT

〉
= 0,

〈
p− p̂, X̃0

〉
= 0.

Moreover,
(sEXT , sINT) ∈ ∂LEXT ,LINT H( p̂, LEXT , LINT),

and
qj(p, sEXT , sINT) ≥ pj j = 1, . . . , m.

In the case of Fj

(
X̃ j, l̃ j

EXT , l̃ j
INT

)
> 0, the following equality holds

qj(p, sEXT , sINT) = pj.

Recall that ∂LEXT ,LINT H( p̂, LEXT , LINT) denotes superdifferential of H( p̂, LEXT , LINT)
with respect to LEXT , LINT at a fixed p̂.

In a closed economic system with administrative control of external links, total ex-
ternal inputs are restricted, i.e., values LEXT and LINT are fixed in the resource allocation
problem (3)–(6).

Otherwise, in an open economic system, external inputs can be varied with given
prices sEXT , sINT such that

(sEXT , sINT) ∈ ∂LEXT ,LINT H( p̂, LEXT , LINT)

Remark 1 ([1]). H( p̂, LEXT , LINT) is a non-zero, positively homogeneous first degree, concave,
continuous, non-negative on the non-negative orthant function.

The dual description of an open cluster we give by the Young transform of the func-
tional H( p̂, LEXT , LINT) with respect to variables LEXT , LINT has the form

h( p̂, sEXT , sINT) = inf
{
〈sEXT , LEXT〉+ 〈sINT , LINT〉

H( p̂, LEXT , LINT)
|LEXT ≥ 0, LINT ≥ 0, H( p̂, LEXT , LINT) ≥ 0

}
.

Remark 2 ([1]). The function h( p̂, sEXT , sINT) is a non-zero, positively homogeneous first degree,
concave, continuous, non-negative on the non-negative orthant function.

Note that the Young transform is an involution [11], i.e.,

H( p̂, LEXT , LINT) = inf
{
〈sEXT , LEXT〉+ 〈sINT , LINT〉

h( p̂, sEXT , sINT)
| sEXT ≥ 0, sINT ≥ 0, h( p̂, sEXT , sINT) > 0

}
.

The Young transform of the linear function 〈 p̂, X0〉 is a fixed proportions function, i.e.,

min
1≤i≤m

pi
p̂i

.

Then, from [39] (Theorem 1), we obtain the following fact.

Proposition 5 ([1]). The following equality holds

h( p̂, sEXT , sINT) = max
p

{
min

1≤i≤m

pi
p̂i

∣∣qj(p, sEXT , sINT) ≥ pj ≥ 0, j = 1, . . . , m
}

.

Remark 3. If the cluster output includes the product j, then the cost of j-th production qj(p, π, s)
does not exceed the price pj of j-th product. Therefore, the cluster of a production network selects its

“production niche” in the feasible technology set I, i.e., it makes a decision regarding the subset J ⊆ I
of goods, which are produced by the cluster. By that, the remaining products I\J are imported from
other clusters of the network.
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Thus, we can define a “production niche” of a production cluster.

Definition 1 ([1]). The set {J, p} is a “production niche” of a cluster J with equilibrium prices p, if J ⊂
{1, . . . , m}, p ∈ intRJ

+ and there exist vectors of intermediates and primaries
{

X̃ j, l̃ j
EXT , l̃ j

INT | j ∈ J
}

,
which imply (

X̃ j, l̃ j
EXT , l̃ j

INT

)
∈ Arg max{

pjFj

(
X j, l j

EXT , l j
INT

)
− pX j − sEXT l j

EXT − sINT l j
INT

∣∣∣X j ≥ 0, l j
EXT ≥ 0, l j

INT ≥ 0
}

, j ∈ J,

X0
j (p, sEXT) = Fj

(
X̃ j, l̃ j

EXT , l̃ j
INT

)
−

m

∑
i=1

X̃i
j > 0, j ∈ J.

In [1], we proved the following theorem.

Theorem 1 ([1]). The set {J, p} is a “production niche” of the cluster with equilibrium prices p if
and only if

qj(p, sEXT , sINT) = pj > 0, i f j ∈ J; qj(p, sEXT , sINT) ≥ pj, i f j /∈ J.

Theorem 1 implies that if {J, p} is a “production niche” of the cluster J with equilibrium
prices p, then the following equalities hold〈

p, X0(p, sEXT)
〉
=

∑
j∈J

(
pjFj

(
X j, l j

EXT , l j
INT

)
−
〈

p, X j〉) = ∑
j∈J

(〈
sEXT , l j

EXT

〉
+
〈

sINT , l j
INT

〉)
.

Thus, the total cost of external inputs equals the total cost of final consumption of
the cluster.

By analogue, the final consumption X0(p, sEXT) is shared among the internal and
external (exporting) parts

X0(p, sEXT) = Xexp(p, sEXT) + Xint(p, sEXT),

and the trade balance of the production cluster is as follows:

〈p, Xexp(p, sEXT)〉 −∑
j∈J

〈
sEXT , l j

EXT

〉
.

The assessment of savings and current capital outflow is as follows

∑
j∈J

〈
sINT , l j

INT

〉
−
〈

p, Xint(p, sEXT)
〉

.

Note that by international trade, the trade balance is governed by national currency
exchange rates.

2.3. Young Duality in Production Network with M Clusters

Let Fα
j
(
X jα, l jα) ∈ Φ be a production function of industry j of the cluster α, with

• Intermediate inputs X jα which are produced by the whole set of clusters of
the production network;

• Primary inputs l jα, which are internal primaries for the cluster α.

By analogy with the previous section, we assume that the system of clusters
is productive.
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The cost function of the j-th industry of the cluster α depends on the price index vector
p for products as well as on primary input costs sα of the cluster α and is given by the
Young transform of Fα

j
(
X jα, l jα)

qjα(p, sα) = inf
X jα ,l jα

{〈
p, X jα〉+ 〈sα, l jα〉

Fjα
(
X jα, l jα

) ∣∣∣X jα ≥ 0, l jα ≥ 0, Fjα

(
X jα, l jα

)
> 0

}
.

Let us denote by Lα the total supply vector of available primary inputs of the cluster α.
Then, the feasible set Γ

(
L1, . . . , LM) of final demand vectors X0 is defined by the following

system of inequalities
M
∑

α=1
Fjα
(
X jα, l jα) ≥ M

∑
α=1

n
∑

i=1
Xiα

j + X0
j , j = 1, . . . , m

n
∑

j=1
l jα ≤ Lα α = 1, . . . , M,

X0 ≥ 0; Xiα
j ≥ 0; l jα ≥ 0 j, i = 1, . . . , m, α = 1, . . . , M.

Let us denote by H
(

p̂, L1, . . . , LM) the support function of the set Γ
(

L1, . . . , LM).
Then, the Young transform of H

(
p̂, L1, . . . , LM) in accordance to variables L1, . . . , LM

is as follows [1]

h
(

p̂, s1, . . . , sM
)
= max

p
min

j

{
pj

p̂j

∣∣∣∣ min
1≤α≤M

qiα(p, sα) ≥ pi > 0, i = 1, . . . , m

}

Let us denote by X0(p) =
(
X0

1(p), . . . , X0
m(p)

)
final demand functions in the produc-

tion network with a system of clusters. Now, we define the equilibrium prices for the
production network with open clusters.

Definition 2 ([1]). Consider the system of open production clusters 1, . . . , M with primary input
price index vectors {sα|α = 1, . . . , M}. The vector p > 0 is an equilibrium price vector in a
production network with a system of open clusters if there exist{(

X̃ jα, l̃ jα
)
|j = 1, .., m; α = 1, .., M

}
such that(

X̃ jα, l̃ jα
)
∈ A rg max

X jα≥0,l jα≥0

{
pjFjα

(
X jα, l jα

)
− pX jα − sαl jα

}
, j = 1, .., m; α = 1, .., M,

M

∑
α=1

Fjα

(
X̃ jα, l̃ jα

)
−

M

∑
α=1

n

∑
i=1

X̃iα
j = X0

j (p) j = 1, . . . , m.

Corollary 1 ([1]). Given primary input price index vectors {sα|α = 1, . . . , M} for production
clusters, the vector p > 0 is an equilibrium price vector in a production network with a system of
open clusters if and only if it gives the solution to the following system

min
1≤α≤M

qiα(p, sα) = pi, i = 1, . . . , m.

Thus, the output of the cluster β ∈ 1, . . . , M includes only products whose cost does
not exceed their price of final demand. Therefore, the following set is the “production
niche” of the cluster β ∈ 1, . . . , M

Jβ =

{
i
∣∣∣∣qiβ

(
p, sβ

)
= pi = min

1≤α≤M
qiα(p, sα)

}
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3. Applications of the Model: National Input–Output Table Projection

In this section, we give a summary of results for regional input–output (IO) data
evaluation with the developed model. More detailed proofs can be found in [11].

3.1. The Case of Ces Technologies: Young Transform

Consider a local economy with an open production network and final demand with
the whole set of final consumers in the economy, including export.

In the case of constant elasticity of substitution (CES) technologies, the model can be
evaluated explicitly for the given statistics data of national input–output (IO) tables.

Production functions in the case of CES technologies with intermediate inputs vector
X j and primaries (n products) input vector l j of the industry j = 1, . . . , m have the form

Fj

(
X j, l j

)
=

 m

∑
i=1

(
X j

i

wj
i

)−ρj

+
n

∑
k=1

 l j
k

wj
m+k

−ρj
−

1
ρj

, j = 1, . . . , m, (7)

where ρj ∈ (−1, 0) ∪ (0,+∞), wj
1 > 0, . . . , wj

m+n > 0, j = 0, . . . , m.
Note that the constant elasticity of substitution of industry j equals to

σj =
1

1 + ρj
, j = 1, . . . , m.

The CES cost function of industry j is evaluated by Young transform of Fj
(
X j, l j)

as follows

qj(p, s) =

(
m

∑
i=1

(
wj

i pi

) ρj
1+ρj +

n

∑
k=1

(
wj

m+ksk

) ρj
1+ρj

) 1+ρj
ρj

, j = 1, . . . , m (8)

3.2. Identification of the Model with CES Technologies: Evaluation of National IO Tables

As we showed in the previous section, the nonlinear IO balance model includes
the problem of optimal resource allocation (3)–(6) and the Young dual problem and in a
general case is posed in the form of variational inequality. Proposition 4 implies that the
solution of the dual problem gives equilibrium prices for products of the network. At the
same time, inter-industry flows in base year prices are evaluated as a solution of resource
allocation problem.

The input data set for identification of the model comprises official national accounts
statistics with IO Tables of an economy. The standard form of symmetric IO table Z of
domestic products in current prices is shown in Table 1.

The IO Table has the structure of three quadrants (I,II,III). Quadrant I includes inter-
industry cash flows Zj

i ≥ 0, i, j = 1..m for the intermediates of industries. Quadrant II
presents final consumption flows of the economy (households, government, export, etc.),
which we aggregate into a single column vector Z0 =

(
Z0

1 , .., Z0
m
)
≥ 0. Quadrant III

includes cash flows Zj
m+i ≥ 0 from industries for n primary inputs. Note that n = 2 in the

Table 1), i.e., from two rows of primaries for applications: imported intermediate inputs
Zj

m+1 and gross value added (GVA) Zj
m+2, j = 1..m, which can be considered as the measure

of labor employed.
Note that we operate with a production network with the total output of any industry

being positive, i.e., Yj > 0, j = 1, . . . , m.
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Table 1. Symmetric Input–Output Table of domestic product flows.

Intermediate con-
sumption

Final consumption Total out-
put

Symmetric Input-
Output Table of
domestic products
flows

Domestic Prod-
ucts

Housholds, Government,
Gross capital formation
(+change in inventories),
Export

Z0
1 Y1

Zj
i Z0

2 Y2
...

Domestic products i, j = 1...m Z0
m Ym

I Quadrant II Quadrant

Pr
im

ar
y

in
pu

ts Imported

intermediates

III Quadrant

Zj
m+1

Gross
Value
Added

Zj
m+2 j = 1...m

Total Output Y1 Y2 ... Ym

Remark 4. The symmetry of the IO Table Z implies

Yj =
m+n

∑
i=1

Zj
i =

m

∑
i=1

Zi
j + Z0

j > 0, j = 1..m, (9)

m

∑
j=1

n

∑
i=1

Zj
m+i =

m

∑
i=1

Z0
i . (10)

Let us denote

aij =
Zj

i

∑m+n
k=1 Zj

k

, bkj =
Zj

m+k

∑m+n
k=1 Zj

k

, i, j = 1..m, k = 1..n, (11)

with the following obvious properties
m

∑
i=1

aij +
n

∑
k=1

bkj = 1,
n

∑
k=1

bkj > 0, i, j = 1..m, k = 1..n.

Let us denote (m×m) matrix A with entry aij ≥ 0 and (n×m) matrix B with entry
bkj ≥ 0. Note that A is a Leontief matrix with correctly Leontief inverse (here, E is (m×m)-
identity matrix)

(E− A)−1 ≥ 0, (12)

Let us fix the base year with known statistics IO Table Z in the form of Table 1. In
accordance with (11), we evaluate matrices A, B and parameters of CES technologies (7)
as follows

wj
i =

(
aij
) 1+ρj

ρj , wj
m+k =

(
bkj

) 1+ρj
ρj , , i, j = 1, .., m, k = 1, . . . , n, (13)

In [11], we proved that the solution of the resource allocation problem with CES
technologies (7) precisely repeats quadrants I and II of the statistics IO Table of the base
year (see [11], Proposition 3) for any fixed values of ρj. This result coupled with solving
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the Young dual problem (see [11], Proposition 4) and IO table elements representation
(see [11], p. 11) provides the following result.

Proposition 6. Given vectors of primary inputs price indexes s = (s1, . . . , sn) > 0 and total final
consumption Z0 = (Z0

1 , . . . , Z0
m)

T ≥ 0 (in current prices) for a target year, the corresponding
equilibrium state of the production network is evaluated as follows:

• Equilibrium price indexes p1, . . . , pm are the solution of the system(
m

∑
i=1

aij(pi)

ρj
1+ρj +

n

∑
k=1

bkj(sk)

ρj
1+ρj

) 1+ρj
ρj

= pj, j = 1, . . . , m; (14)

• Quadrants I and III for a target IO table Z (see Table 1) take the form

Zj
i =

(
pi
pj

) ρj
1+ρj aj

iYj = λijYj, i, j = 1, . . . , m,

Zj
m+k =

(
sk
pj

) ρj
1+ρj bj

kYj, k = 1, . . . , n, j = 1, . . . , m;
(15)

• Total Output Y = (Y1, . . . , Ym) is evaluated from the balance linear system

Y = (E−Λ)−1Z0, Λ =
∥∥λij

∥∥, λij = aij

(
pi
pj

) ρj
1+ρj

, i, j = 1, . . . , m. (16)

In Proposition 6, elasticity parameters ρj are generally indefinite at this stage. However,
given official statistics IO Tables for a range of years, we can calibrate the model by
Proposition 6 and evaluate ρj, j = 1, . . . , m with some criteria, which give the best model
evaluations of macroeconomic values of the network (see [11]). If the elasticity parameters
are evaluated ρj, then on the basis of Proposition 6 we obtain a useful tool for IO Table
scenario projection.

In [11,43], we applied the developed model for evaluation of a number of regional
production networks.

4. Nonparametric Method in Demand Analysis: An Approach to Analysis of Interests
of Individual Consumer Groups by Io Model with Ces Technologies

The developed model-based approach to the IO Table scenario projection allows us
to project equilibrium inter-industry flows and equilibrium prices in the network by the
given scenario conditions of total final consumption of industry products and price indexes
on primary inputs. However, there exist a number of groups of final consumers which
have generally different interests. The developed IO model by itself cannot explain to what
extent the interests of final consumer groups will be satisfied at the new equilibrium prices.
In this section, we suggest a new approach to the solution of this problem that is based on
the synthesis of our model and the nonparametric method of demand analysis. As a result,
we obtain the tool for scenario IO Table projection with the detailed quadrant III scenario
evaluation (see Table 1).

We present the application of this tool in Section 5 for analysis of Kazakhstan’s pro-
duction network.

4.1. Nonparametric Method of Demand Analysis

The approach to evaluation of demand and price indices, which takes into account the
change of consumer preferences, is based on Pareto’s theory of demand [44]. According to
this theory, a representative economic agent chooses a consumption basket by maximizing
the utility function with budget constraint. If we know the demand function, then the
problem of recovering the corresponding utility function is related to the integrability
problem of demand functions. This question is studied by revealed preference theory [45].
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The results of revealed preference theory allow us to test whether given trade statistics
(i.e., observations of prices and consumption for a group of goods in a finite time period) is
consistent with Pareto demand theory. Let us denote by Φ0 the class of non-negative on Rm

+,
positive on intRm

+, continuous, concave, and positively homogeneous of degree one utility
functions. Then, the criterion for trade statistics to be consistent with Pareto theory with an
utility function F0 ∈ Φ0, which is a homothetic axiom of revealed preference [13,46].

We say that the trade statistics is rationalizable by a utility function F0 if the trade
statistics is consistent with Pareto demand theory. In this case, we can construct so-called
Konyus–Divisia consumption and price indexes [2], which take into account the change of
consumer’s basket structure and give generalization to well-known Laspeyres and Paasche
indices with a fixed structure of the basket. Moreover, Konyus–Divisia consumption and
price indices are related through Young transform [2].

Let P(X) = (P1(X), . . . , Pm(X)) be an inverse demand function which describes
behavior of the consumer’s group. The function P(X) reflects the relationship between
consumption of products X = (X1, . . . , Xm) and corresponding prices. We suggest that
functions P1(X), . . . , Pm(X) are continuous on Rm

+. The initial data for Konyus–Divisia
indices evaluation are trade statistics {Pt, Xt}T

t=0 which give the values of inverse demand
function in a finite number of points {Xt}T

t=0 for a considered group of products. Testing
the hypothesis of rationalizability of trade statistics and the algorithm for calculating
Konyus–Divizia indices are based on the following theorem.

Theorem 2 ([13,46]). Given trade statistics {Pt, Xt}T
t=0 the following statements are equivalent:

1. Trade statistics is rationalizable in class Φ0, i.e., there exists the utility function F0(X) ∈ Φ0
with property

Xt ∈ Arg max{F0(X) | 〈Pt, X〉 ≤ 〈Pt, Xt〉, X ≥ 0}, t = 0, . . . , T; (17)

2. Trade statistics satisfies Homothetic Axiom of Revealed Preference (HARP), which means that
for all ordered time sub-series {t1, . . . , tk} ∈ {0, 1, . . . , T}, the following inequality holds

〈Pt1 , Xt2〉 · 〈Pt2 , Xt3〉 · . . . · 〈Ptk−1 , Xtk 〉 · 〈Ptk , Xt1〉 ≥ 〈Pt1 , Xt1〉 · . . . · 〈Ptk , Xtk 〉;

3. The system of linear inequalities

λt〈Pt, Xt〉 ≤ λτ〈Pτ , Xt〉, t, τ = 0, . . . , T (18)

has a positive solution λ0 > 0, λ1 > 0, . . . , λT > 0;
4. The function

F0(X) = min
t=0,...,T

λt〈Pt, X〉, (19)

where λt > 0, t = 0, . . . , T satisfy (18) rationalizes the trade statistics.

Positive solution of the system (18) could be evaluated by Floyd–Warshall
algorithm [2,15,16].

Then, time series of Konyus–Divisia consumption indices are evaluated as [2]

F0(Xt) = λt〈Pt, Xt〉, t = 0, . . . , T, (20)

and time series of Konyus–Divisia price indices are evaluated as [2]

Q(Pt) =
1
λt

, t = 0, . . . , T (21)

This approach to the evaluation of consumption and price indices is called the non-
parametric approach (see [2,47]).

In general, the conditions of rationalizability of trade statistics may be violated. The
reason for this may be, for example, errors that arise by the formation of statistics time
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series. The issue of an indicator that measures the degree of rationalization of trade statistics
was considered in [2,12,47].

As a result, the generalized nonparametric method was developed [2], which is based
on the inclusion of an additional parameter w > 1 in the system (18), which measures the
level of rationalization of trade statistics. In this case, the system (18) takes the form

λt〈Pt, Xt〉 ≤ wλτ〈Pτ , Xt〉, t, τ = 0, . . . , T (22)

The minimal value of wmin > 1, which implies the consistency of the system of
inequalities (22), is called irrationality index. Positive solution of the system (22) implies
the time series of generalized Konyus–Divisia demand index (20) and generalized Konyus–
Divisia price index (21).

4.2. Framework Concept for Analysis of Interests of Final Consumers in Network Economy

National account systems share the following main groups as part of final consump-
tion (see quadrant II in the Table 1): households, government, export, and gross capital
formation. Note that IO statistics include the full quadrant II, i.e., it contains consumption
vectors in current prices of each final consumer.

Given the initial national IO statistics for a range of years, the synthesis of the IO
model with CES technologies and the generalized nonparametric approach allows us to
suggest a framework for scenario analysis of the interests of groups of final consumers.

For projection of consumption vectors of different final consumers with the framework,
we need to set the scenario conditions, which include the following projection data:

• Price indices of primary inputs: currency exchange rate s1 for imported intermediates
and consumer price index (CPI) s2 for gross value added;

• Total final consumption values Aπ =
m
∑

i=1
Z0,π

i + Z0,π
imp for each final consumer π, where

Z0,π
imp denotes the total final demand on imported products of agent π.

We denote this set of scenario conditions for a projected period by SData.
As a result of the framework scenario evaluation, we calculate equilibrium prices of prod-

ucts and IO Table Z for a projected year with detailed quadrant II and additional row of final
consumption of imported products, i.e., we evaluate vectors Z0,π =

(
Z0,π

1 , . . . , Z0,π
m , Z0,π

imp

)
and for each final consumer π. Then, the vector of total domestic final consumption for a
projected year Z0 = (Z0

1 , . . . , Z0
m) is the sum of vectors

(
Z0,π

1 , . . . , Z0,π
m

)
by π.

In applications, we aggregate the initial IO structure to several large production
complexes (up to 10). The aggregation principles are based on the analysis of economy
features and depend on the objectives of the study. High-level aggregation guarantees
more stable model calibration results in case of statistics errors and is useful for many tasks
of macroeconomic analysis. However, the methodology can be generalized to the case of a
detailed input–output balance.

The framework algorithm includes two stages.
Stage I. Identification.
Step 1. Based on studying the structure of the national production network, aggre-

gate the initial statistics IO Tables for a given range of years T = {0, . . . , T} to m large
industrial complexes.

Step 2. Form the initial data base IData for model identification: aggregated annual
IO Tables Z(t), t ∈ T, average annual price indices of primary inputs: currency exchange
rate s1(t) for imported products and consumer price index (CPI) s2(t) for gross value added,
t ∈ T.

Step 3. Given IData fix the base year t0 ∈ T with a given IO Table Z(t0) and identify
the IO balance model with CES technologies (7) (see Section 3.2), i.e.,
• Calculate matrices A, B by (11) with IO Table Z(t0),
• Calibrate the model by evaluating ρj, j = 1, . . . , m (7) with IData.
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As a result, the IO model with CES technologies is ready for scenario IO Table pro-
jection given primary price indices s1, s2 and a vector of total final consumption Z0 for a
projected year (Proposition 6).

Step 4. Given statistics of price indices of primaries s1, s2 for the period T (Ibase) we
evaluate equilibrium price indices p(t) = (p1(t), . . . , pm(t)), t ∈ T for domestic products
1, . . . , m of the network by the solution of (14).

Step 5. For each final consumer π from the quadrant II of IO Table Z(t) (households,
government, etc.), we form the annual final consumption vector

X0
π(t) =

Z0,π
1 (t)
p1(t)

, . . . ,
Z0,π

m (t)
pm(t)

,
Z0,π

imp(t)

s1(t)

, t ∈ T

as data IData.
Step 6. Denote P(t) = (p(t), s1(t)). Given trade statistics

{
P(t), X0

π(t)
}

for each final
consumer π, we apply the generalized non parametric method, i.e., we evaluate

(1) Irrationality index wmin > 1 and {λt}t∈T by solving the system (22),
(2) Demand function F0

π(X) by (19),
(3) Konyus–Divisia consumption and price indices time series by (20) and (21) corre-

spondingly.

Stage II. Scenario evaluation
Step 1. Set scenario conditions SData for a projected year.
Step 2. Evaluate equilibrium price indices for projected year p = (p1, . . . , pm) > 0 of

products 1, . . . , m by solution of (14)).
Step 3. Given equilibrium price indices P = (p1, . . . , pm, s1) > 0 and demand function

F0
π(X) evaluate demand vector Z0,π =

(
Z0,π

1 , . . . , Z0,π
m , Z0,π

imp

)
of each final consumer π for

the projected year by solution of the problem (17) with budget constraint Aπ :

max
X

F0
π(X)

〈P, X〉 ≤ Aπ .
(23)

If X∗ is a solution of the problem (23) then

Z0,π
i = piX∗i , i = 1, . . . , m, Z0,π

imp = s1X∗m+1. (24)

We calculate the scenario projection of Konyus–Divisia consumption index as F0
π(X∗).

We calculate the scenario projection of Konyus–Divisia price index as Aπ

F0
π(X∗)

.

Step 4. Given total final consumption of each domestic product Z0
j = ∑

π
Z0,π

j ,

j = 1, . . . , m (i.e., quadrant II of IO Table Z), we evaluate the quadrants I, III of IO Ta-
ble Z for projected year by (15).

5. Applications: Scenario Evaluations of Final Consumption Structure of
Kazakhstan Economy

In paper [11], we identified the IO model with CES technologies by the IO statistics
2012–2020 of Kazakhstan, having 2013 as the base year. Aggregation principles of IO
Table reflected the heterogeneity of the Kazakhstan production network in relation to
export–import flows. We aggregated economy sectors into four large industrial complexes:
manufacturing, exporting, infrastructure, and services [11]. The comparison of calculated
macroeconomic indices with statistics from 2013–2020 demonstrated high accuracy of
model-based evaluations [11].

In this section, we present the result of two-stage framework scenario calculations
(Section 4.2) of a four-sector IO Table of Kazakhstan, based on the results of [11]. The
modified framework allows us to evaluate not only the quadrants I, III of IO Table Z, but



Mathematics 2023, 11, 4216 16 of 22

also detailed aspects of industrial complexes and final consumer quadrant II. That is the
novelty of our approach.

For evaluations, we use the official Kazakhstan statistics [48–50]. Given the initial base
IData (Stage I, Step II), we use the IO model-based results of [11] to execute steps 3–6 of the
Stage I (Section 4.2). We evaluate the irrationality index wmin > 1 for each final consumer
of the Kazakhstan production network 2012–2020: households, government, export, and
gross capital formation (Step 6). In Table 2, we present calculated values of irrationality
index of each final consumer. All irrationality indices are close to 1.0, so the trade statistics
of each final consumer is rationalizable. In accordance with Stage I (Step 6), we evaluate
demand functions F0

π(X) of each final consumer π as well as Konyus–Divisia consumption
and price indices time series 2012–2021. For 2022, the IO Table is not published yet, so we
form the base scenario conditions 2022 SDataB by actual Kazakhstan statistics [49–51]. We
shoe the statistics for 2022 of total final consumption values Aπ in Appendix A, Table A1.
We apply Stage II of the framework to evaluate the indices for the base scenario 2022. In
Figures 1 and 2, we show the results of Konyus–Divisia indices evaluation 2013–2021 by
trade statistics and base scenario evaluation 2022 compared to 2012. The comparison of
results to consumer price index (CPI) and exchange rate (KZT/USD) statistics 2012–2022
confirms the adequacy of framework-based evaluations (Figure 1). Note that evaluation of
statistics show the inflation growth in 2022.

Table 2. Irrationality indices.

Consumer Irrationality Index

1 Households 1.00051
2 Government 1.00017
3 Export 1.00063
4 Gross capital formation 1.00245

Figure 1. Model evaluation: Konyus-Divisia price index. CPI and KZT/USD statistics. Compared
to 2012.

As we see in Figure 2, the framework-based evaluation of Konyus–Divisia index
reflects the main features of dynamic agents’ final demand, which are connected to macroe-
conomic shocks. For example, the fall of household and export spending and the increase
in government spending during the 2020 COVID pandemic year as well as recovery of
export in 2021, 2022. The household demand fall in 2022 reflects a negative Konyus–Divisia
price index dynamic (see Figure 1). At the same time, we can see a slow change of KDDI
which indicates capital investment stagnation.
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Figure 2. Konyus–Divisia demand index compared to 2012. Model evaluation.

We show the result of evaluation of total outputs 2021, 2022 (2022—base scenario) of
aggregate complexes as well as statistics 202in Figure 3. We show an evaluation of IO Table
2022 for base scenario in Appendix A, Table A3.

Figure 3. Total Outputs. Base scenario evaluation 2021, 2022. Statistics 2021.

Evaluation of final consumer demand for 2022 shows essential shifts in the consumption
structure of households, export, and gross capital formation (see Table 3) At the same time, we
see the uniform growth of government spending 2022, because due to calculations, 2021 has the
closest to the optimal structure of government spending in the period 2012–2021. A decrease
in the final demand of households, export, and gross capital formation in manufacturing
products with an increase in the final consumption of imports threatens the growing import
dependence of Kazakhstan’s economy.

Table 3. Demand structure 2022 evaluation (in comparable prices), compared to 2021. Base scenario.

Households Government Export Gross Capital Formation

Manufacturing −1.0% 4.6% −42.7% −32.2%
Exporting 1.8% 4.6% 33.2% −3.4%
Infrastructure 37.0% 4.6% 33.0% 7.0%
Service −18.0% 4.6% −50.6% −1.1%
Import 11.7% - - 33.5%

Scenario evaluations for 2022 within the framework aimed to evaluate the responses
of production network as well as final consumption structure to tax collection shifts. We
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consider two groups of scenario conditions SData that we interpret as “high taxes” and
“low taxes”. The both scenarios differs from the base scenario SDataB 2022 by budget
constraints values Aπ only

• “High taxes”, Aπ formation scenario: increase by 1 tln KZT of government spend-
ing (budget constraints) while decreasing household and export spending (budget
constraints) by 0.5 tln KZT each compared to base scenario 2022;

• “Low taxes”, Aπ formation scenario: increase by 1 tln KZT of households spending
while decreasing government spending by 1 tln KZT compared to base scenario 2022.

With the developed framework, we evaluate the “high taxes” and “low taxes” scenario
for IO Table 2022 and compare the results with the base scenario IO Table 2022. In Figure 4,
we show the propagation of scenario shift of tax collection trough the production network
of Kazakhstan. Note that the service complex only demonstrates an opposite economic
response to tax shift among the four large industrial complexes of Kazakhstan. At the same
time, the exporting sector has the most negative shift in the “high taxes” scenario, while
manufacturing has the most positive shift in the "low taxes" scenario.

In Figure 5, we show evaluated shifts of the total final consumption structure for 2022
to 2021 for the considered scenarios. The evaluation confirms the risk of higher import
dependence and the heterogeneity of Kazakhstan’s economy. At the same time, the growth
of export earnings ensures the fulfillment of the international trade balance.

Figure 4. Scenario evaluation. Total Output shifts.

Figure 5. Scenario evaluation. Total final consumption shifts.

We present an evaluation of the “high taxes” and “low taxes” scenario demand struc-
ture for 2022 compared to 2021 (in compatible prices) in Appendix A, Tables A4 and A5.
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6. Conclusions

The paper provides the following main results.

• A new IO framework with CES technologies for scenario analysis and forecasting of
national IO Tables with substitution of inputs is developed.

• The framework is based on synthesis of two technologies:

(1) Variational inequality theory and Young duality for evaluating equilibrium prices
and equilibrium inter-industry flows in production network;

(2) Generalized nonparametric method of demand analysis for evaluation
of demand functions of final consumers and scenario projection of final
demand structure.

• The clear methodology of the solution of the inverse problem of framework identifica-
tion is developed, which is based on officially published national statistics data.

• The framework-based algorithm for scenario evaluations is provided.
• The results of applying the algorithm to national IO Tables with the full three-quadrant

structure are constructed: inter-industry cash flows (quadrant I), final demand for
products of industries of major final consumers (quadrant II), and industry cash flows
for intermediate consumption of primary inputs (quadrant III).

• Application of the framework for analysis and scenario projection to the production
network of Kazakhstan’s economy is considered. The results show the appropriate
accuracy of the model evaluations in comparison to the official statistical data. The
model calculations show that the isolated growth of tax collection negatively affects
the real sector indicators of the economy. At the same time, the isolated reduction of tax
collection activates production. This suggests that tax reforms should be accompanied
by measures to support production.

• It should be noted that the algorithm application based on the model is limited by
parameter identification opportunity. Several-year IO Tables with a similar set of
products should be available from official statistics for elasticity of substitution and
demand functions of final consumer identification.

We plan to develop our research both in terms of practical applications and in the
direction of obtaining theoretical results on the existence and uniqueness of a solution of
variational inequalities that arise when describing an equilibrium in complex production
networks. The theory of monotone operators could be useful for the study of such problems.

The results obtained in this article confirm that the developed IO framework with
CES technologies provides a useful tool for real-time scenario analysis and forecast of
inter-industry cash-flows, taking into account the interests of final consumers in national
production networks. The developed technology can be used as part of macroeconomic
decision support systems for planning sustainable production and economic development.
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Abbreviations
The following abbreviations are used in this manuscript:

IO Input–Output
CES Constant elasticity of substitution

Appendix A

Table A1. Kazakhstan 2021 and 2022 GDP by final use, million KZT [51].

Aπ 2021 2022

Household final consumption A1 42,419,295.9 49,724,894.8

Government final consumption A2 9,461,635.3 11,680,972.2

Gross capital formation A4 22,275,240.5 25,030,635.8

Export A3 28,245,396.0 43,354,558.7

Table A2. Primary resource prices.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

KZT/$ 149 152 179 222 342 326 345 383 413 426 460

CPI 1.00 1.05 1.13 1.28 1.39 1.49 1.57 1.65 1.77 1.93 2.32

Table A3. IO Table 2022. Evaluation. (tln. KZT).

Manufacturing Exporting Infrastructure Service Total Inter-
mediates

Households Final
Consumption

Government Final
Consumtpion

Gross Capital
Formation Export Total Final

Consumption Total Demand

Manufacturing 0.47 1.02 0.41 2.01 3.90 3.97 0.00 0.57 0.67 5.21 9.11
Exporting 2.35 14.68 1.73 4.79 23.55 7.82 0.18 5.47 36.30 49.76 73.31
Infrastructure 0.37 4.38 1.43 2.88 9.06 5.86 0.63 0.71 2.87 10.07 19.12
Service 0.39 5.85 2.39 9.52 18.16 23.76 10.87 9.99 0.49 45.11 63.27

Import 0.98 4.66 1.79 4.67 12.09 6.82 0.00 8.30 0.00 15.11 27.20
GVA 4.55 42.72 11.38 39.41

Total output 9.11 73.31 19.12 63.27

Table A4. Low-taxes scenario demand structure 2022 evaluation, compared to 2021.

Households Government Export Gross Capital Formation

Manufacturing 1.0% −4.3% −42.7% −32.2%
Exporting 3.9% −4.3% 33.2% −3.4%
Infrastructure 39.8% −4.3% 33.0% 7.0%
Service −16.3% −4.3% −50.6% −1.1%
Import 14.0% - - 33.5%

Table A5. High-taxes scenario demand structure 2022 evaluation, compared to 2021.

Households Government Export Gross Capital Formation

Manufacturing −2.1% 13.6% −43.4% −32.2%
Exporting 0.7% 13.6% 31.6% −3.4%
Infrastructure 35.5% 13.6% 31.3% 7.0%
Service −18.8% 13.6% −51.2% −1.1%
Import 10.6% - - 33.5%
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