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Abstract: In recent years, fractional kinetic equations (FKEs) involving various special functions
have been widely used to describe and solve significant problems in control theory, biology, physics,
image processing, engineering, astrophysics, and many others. This current work proposes a new
solution to fractional λ−kinetic equations based on generalized degenerate hypergeometric functions
(GDHFs), which has the potential to be applied to calculate changes in the chemical composition of
stars such as the sun. Furthermore, this expanded form can also help to solve various problems with
phenomena in physics, such as fractional statistical mechanics, anomalous diffusion, and fractional
quantum mechanics. Moreover, some of the well-known outcomes are just special cases of this
class of pathway-type solutions involving GDHFs, with greater accuracy, while providing an easily
calculable solution. Additionally, numerical graphs of these analytical solutions, using MATLAB
Software (latest version 2023b), are also considered.

Keywords: degenerate generalized hypergeometric functions; pathway-type transform; fractional
kinetic equations

MSC: 15A16; 33B15; 33C05; 33C20; 34A05

1. Introduction

The calculus of derivatives and integrals of any order is the subject of fractional
calculus. Because of its scientific uses over the previous three decades, its importance and
appeal to researchers have grown to in this field [1,2]. Furthermore, fractional calculus has
several applications in physics, finance, biology, image processing, engineering, and other
disciplines. It can, for example, be used to simulate the behavior of viscoelastic materials,
which have both elastic and viscous properties. Moreover, it can also solve differential
equations that standard calculus cannot. We encourage readers to use the cited sources for
more information on fractional calculus and its applications [3–5].

FKEs are types of differential equations that describe a system’s evolution over time
and are based on the concept of fractional calculus [6,7]. One of the most essential applica-
tions of FKEs is modeling anomalous diffusion. Anomalous diffusion is a type of diffusion
in which the mean square displacement of a particle grows sublinearly with time. This
type of diffusion is observed in various systems, including turbulent fluids, porous media,
and biological tissues (see, e.g., [8–11]). Furthermore, FKEs have also been used to model
a variety of other systems, including, for example, the relaxation of viscoelastic materi-
als, the spread of disease, the evolution of traffic patterns, and the behavior of financial
markets [12–14].
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Kinetic equation (KE) is defined by (cf. [1–3])

dK
dw

= −δK, δ ∈ R+, K(0) = K0; (1)

The kinetic equation of fractional-order (KEFO) is presented by (see, e.g., [6–9])

K(w)−K0 = −δ 0D−1
w K(w), δ, w ∈ R+, (2)

where 0D−α
w is the fractional integral operator (cf. [1,2]) given by

0D−α
w f (w) =

1
Γ(α)

∫ w

0
(w− τ)α−1 f (τ)dτ, α ∈ R+. (3)

Recently, several generalizations of the KEFO have been proposed by several re-
searchers using various special functions. For instance, Alqarni et al. [15] introduced
solutions involving the generalized incomplete Wright hypergeometric functions. Mean-
while, Khan et al. [16] considered solutions for KEFO associated with the (p, q)−extended
τ−hypergeometric and confluent hypergeometric functions, and Abubakar [17] focused on
a solution for KEFO using the (p, q; l)-extended τ-Gauss hypergeometric function. In a sim-
ilar vein, Fuli He et al. [18] derived the solution of KEFO in terms of the Hadamard product
of (p, k)−hypergeometric functions. Further, Hidan et al. [19] discussed the solution of
FKEs involving extended (k, t)−Gauss hypergeometric matrix functions. Additionally,
the general fractional kinetic model involving the hypergeometric super hyperbolic sine
function via the Gauss hypergeometric series was recently presented by Geng et al. [20].
Building upon this research in this context, we present a new generalized structure of the
λ−KEFO involving a degenerate generalized hypergeometric function, which was further
supported by graphical presentations derived through pathway-type transform approach
methodologies. Our investigation provides detailed and different results from those given
in previous works and derives several special cases of known and new outcomes.

2. Some Definitions Related to the Concept of DEGENERATE

Carlitz [21,22] initiated the theory of degenerate polynomials by introducing the de-
generate forms of the conventional Bernoulli and Euler polynomials. Later, mathematicians
investigated degenerate versions of several special numbers and polynomials, such as
degenerate Stirling numbers and polynomials [23,24], degenerate Bernoulli and Euler
polynomials [25], degenerate generalized Bell polynomials [26], degenerate generalized La-
guerre polynomials [27], degenerate Gould–Hopper polynomials [28], degenerate Hermite
polynomials [29], and so on (see [30–32] and the references therein). It is also worth mention-
ing that the study of degenerate versions of polynomials and numbers extends to special
functions, such as the Euler zeta function [33], the gamma, digamma, and polygamma
functions [34,35], and degenerate hypergeometric functions [36,37]. Degenerate exponen-
tials are especially potent tools that can be used to solve various problems in probability,
statistics, and other areas of mathematics, such as differential and integral equations.

For any λ ∈ R, the degenerate exponentials are defined in [23–25] by

eθ
λ(w) =

∞

∑
m=0

(θ)m,λ wm

m!
, (4)

where (θ)m,λ = θ(θ − λ)(θ − 2λ) . . . (θ − (m− 1)λ), for m ≥ 1 and (θ)0,λ = 1. Note that
at λ → 0, then eθ

λ(w) = eθw and (θ)m,λ = θm. In [34], Kim-Kim defined the degenerate
gamma function as follows:

Γλ(w) =
∫ ∞

0
(1 + λζ)−

1
λ ζw−1dζ =

∫ ∞

0
e−ζ

λ ζw−1dζ, 0 < Re(w) <
1
λ

; λ ∈ (0, 1). (5)
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It is clear that limλ→0 eζ
λ = eζ and limλ→0 Γλ(w) = Γ(w), where Γ(w) is the classical

gamma function

Γ(w) =
∫ ∞

0
rw−1 e−rdr, Re(w) > 0.

For λ ∈ (0, 1), we can rewrite (5) in the form

Γλ(w) = λ−w B(w,
1
λ
− w) = λ−w Γ(w)Γ( 1

λ − w)

Γ( 1
λ )

. (6)

where

B(a, b) =
∫ 1

0
wa−1(1− w)b−1dw =

∫ ∞

0

wa−1

(1 + w)a+b dw, a > 0, b > 0,

is the Euler beta function [33,34].

Remark 1. Note here that (6) holds initially for w ∈ C with 0 < Re(w) < 1
λ and that it further

holds for any w ∈ C \ {0,−1,−2, . . . , 1
λ , 1

λ + 1, 1
λ + 2, . . .} by the analytic continuation, and

defines an analytic function on C \ {0,−1,−2, . . . , 1
λ , 1

λ + 1, 1
λ + 2, . . .}.

Recently, Yağci and Şahin [37] introduced the degenerate Pochhammer symbol using
the degenerate gamma function (5) as follows:

(v; λ)` =
Γλ(v + `)

Γ(v)

=
1

Γ(v)

∫ ∞

0
(1 + λw)−

1
λ wv+`−1 dw, λ > Re(v + `) > 0,

(7)

where λ ∈ (0, 1) and limλ→0 (v; λ)` = (v)`,

(v)` =
Γ(v + `)

Γ(v)
=


v(v + 1) · · · (v + `− 1), ` ∈ N, v ∈ C

1, ` = 0; v ∈ C \ {0},
(8)

is the standard Pochhammer symbol. The degenerate Pochhammer symbol (7) satisfied
several properties in [37]. Also, based on the definition (7), the GDHF is defined in [37] as

mDHλ
n(w) = mDHλ

n

 (γ1; λ) · · · γm

ϑ1 · · · ϑn

; w

 =
∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r
.
wr

r!
, (9)

where w, γi ∈ C for i = 1, 2, 3, . . . , m, and ϑj ∈ C \Z−0 for j = 1, 2, 3, . . . , n.

Remark 2. Some particular cases of (9) are as follows

(I) For λ → 0 in (9), we obtain the classical generalized hypergeometric function (see, e.g., [38]
[Section 1.5]))

mFn

 γ1 . . . γm

ϑ1 . . . ϑn

; w

 =
∞

∑
r=0

(γ1)r . . . (γm)r

(ϑ1)r . . . (ϑn)r
.
wr

r!
, (10)

where w, γi ∈ C for i = 1, 2, 3, . . . , m, and ϑj ∈ C \Z−0 for j = 1, 2, 3, . . . , n.
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(II) Taking m = 2 and n = 1 in (9), we have the following degenerate Gauss hypergeometric
function

2DHλ
1

(
(γ1; λ), γ2, ϑ3; w

)
=

∞

∑
j=0

(γ1; λ)j (γ2)j

(ϑ3)j

wj

j!
, w ∈ C, (11)

which is absolutely and uniformly convergent if |w| < 1, where γ1, γ2, ϑ3 are complex
parameters with ϑ3 ∈ C \Z−0 .

(III) Substituting m = 1 and n = 1 in (9), we have the following degenerate Kummer (confluent)
hypergeometric function

1DHλ
1

(
(γ1; λ), ϑ3; w

)
=

∞

∑
j=0

(γ1; λ)j

(ϑ3)j

wj

j!
, w ∈ C. (12)

(VI) For λ→ 0, (11) gives the classical Gauss hypergeometric function [38]

2F1

(
θ1, θ2, θ3; w

)
=

∞

∑
j=0

(θ1)j (θ2)j

(θ3)j

wj

j!
, (13)

which is absolutely and uniformly convergent if |w| < 1, where w, θ1, θ2 are complex param-
eters with θ3 ∈ C \ Z−0 , and (12) lead to the classical Kummer (confluent) hypergeometric
function [38]

1F1

(
θ1, θ2; w

)
=

∞

∑
j=0

(θ1)j

(θ2)j

wj

j!
, (14)

where θ1, w ∈ C and θ2 ∈ C \Z−0 .

The derivative formula of the GDHF mDHλ
n(w) is given in [37] by(

mDHλ
n(w)

)(k)

=
dk

dwk mDHλ
n

 (γ1; λ) · · · γm

ϑ1, · · · ϑn

; w


=

(γ1)k, · · · (γm)k
(ϑ1)k, · · · (ϑn)k

mDHλ
n

 (γ1 + k; λ) · · · γm + k

ϑ1 + k, · · · ϑn + k
; w

, k ∈ N.

(15)

3. Pathway-Type Transform

The pathway-type integral transform (Pς−transform) of a function f (w), of a real
variable w, denoted by Pς[ f (w); ϕ], is an important concept in mathematics. It has been
defined initially in [15,39,40] under certain conditions on f (w), as well as the condition
ς > 1. This transform can be used to convert a given function from its original domain
into another domain and can thus provide insight into the properties and behavior of the
original functions. Moreover, the pathway-type integral transform is regarded as one of the
most helpful mathematics tools and has numerous applications (see, e.g., [41–43]). Indeed,
the pathway-type integral transform is strongly linked to the Laplace transform, the Mellin
transform, and the Fourier transform; see for example [15,43,44].

The pathway-type transform (Pς−transform) is given in [15,39,40] in the form

Pς[ f (w), ϕ] = F(ϕ) =
∫ ∞

0
[1 + (ς− 1)ϕ]

−w
ς−1 f (w)dw ς > 1, (16)
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with

lim
ς→1+

[1 + (ς− 1)ϕ]
−w
ς−1 = e−φw, (17)

and

lim
ς→1+

Pς[ f (w), ϕ] = L[ f (w), ϕ], (18)

where (L[., .]) is the Laplace transform (see, [1,2]). Moreover, the Pς-transform of a function
f (w) converges under certain conditions as established in [39] by the following theorem.

Theorem 1. If

(i) f (w) is integrable over a finite limit (a, b), 0 < a < w < b,;

(ii) for arbitrary positive a, the integral
∫ a

υ

∣∣∣ f (w)
∣∣∣ dw resort to a finite limit as υ→ 0+,;

(iii) f (w) = O(eεw), ε > 0 as w→ ∞ where O(.) is the standard big O notation which means
f (w) is of order not exceeding eεw.

Then the Pς− transform defined in (16) converges absolutely if Re
(

ln(1+(ς−1)ϕ)
ς−1

)
> ε, ς > 1.

Some basic results of the Pς− transform are proven in [39,40] as follows

Pς[1, ϕ] =
ς− 1

ln[1 + (ς− 1)ϕ]
, (19)

Pς[wυ, ϕ] =
{ ς− 1

ln[1 + (ς− 1)ϕ]

}υ+1
Γ(υ + 1), υ ∈ C, (20)

and

Pς[0D−α
w f (w), ϕ] =

[ ς− 1
ln[1 + (ς− 1)ϕ]

]α
Pς[ f (w), ϕ], Re(α) > 0, ς > 1, (21)

where 0D−α
w f (w) is given in (3). More information about the Pς−transform and its applica-

tions may be found in [15,39,40,45–48].

4. Main Results

The purpose of this section is to study the solutions of the new generalized form of
the fractional λ−kinetic equations involving GDHFs, as well as some special cases.

Theorem 2. Let α, β, σ,℘ ∈ R+, w ∈ C, λ ∈ (0, 1), γi ∈ C for i = 1, 2, 3, . . . , m and ϑj ∈
C \Z−0 for j = 1, 2, 3, . . . , n. The solution of

K(w)−K0 mDHλ
n(σ

βwβ) = −℘α
0D−α

w K(w), (22)

is

Kα
λ(w) = K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r

Γ(βr + 1)
r!

σβr wrβ Eα,βr+1(−℘α wα), (23)

where Eθ,ϑ(η) is the generalized Mittag-Leffler function defined in [15] as

Eθ,ϑ(η) =
∞

∑
ı=0

ηı

Γ(ıθ + ϑ)
(θ, ϑ ∈ C, Re(θ) > 0, Re(ϑ) > 0). (24)
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Proof. Projecting the Equation (22) to the Pς-transform (16) and using the relations (20),
(21), and (9), we observe that

K̂(ϕ)−K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r
σrβ Pς

{
wrβ

r!
: ϕ

}

= −℘α
[ ς− 1

ln[1 + (ς− 1)ϕ]

]α
.

Hence,

K̂(ϕ) = K0

[
1 +

( ℘(ς− 1)
ln[1 + (ς− 1)ϕ]

)α
]−1

×
∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r
σrβ Γ(rβ + 1)

r!

[ ς− 1
ln[1 + (ς− 1)ϕ]

]rβ+1
,

where K̂(ϕ) = Pς

{
Pς(w) : ϕ

}
. Upon using the following geometric series

1[
1 +

{
℘(ς−1)

ln{1+(ς−1)ϕ}

}α
] =

∞

∑
`=0

(−1)`
( ℘(ς− 1)

ln{1 + (ς− 1)ϕ}

)`α
(∣∣∣ ℘(ς− 1)

ln{1 + (ς− 1)ϕ}

∣∣∣ < 1

)
,

and simple computation yields

K̂(ϕ) = K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r
σrβ Γ(rβ + 1)

r!

×
∞

∑
`=0

(−1)` ℘`α (ς− 1)rβ+`α+1
{

ln[1 + (ς− 1)ϕ
}−(rβ+`α+1)

.
(25)

Applying the inverting Pς−transform to the last equation and making use of the
relation (24), we arrive at the desired result.

Theorem 3. Assume that α,℘ ∈ R+, w ∈ C, λ ∈ (0, 1), γi ∈ C for i = 1, 2, 3, . . . , m and
ϑj ∈ C \Z−0 for j = 1, 2, 3, . . . , n. The solution of

K(w)−K0 mDHλ
n(w) = −℘α

0D−α
w K(w), (26)

is

Kα
λ(w) = K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r
wr Eα,r+1(−℘α wα), (27)

where Eθ,ϑ(η) is defined in (24).

Proof. We obtain the required result in the same manner as provided in the proof of
Theorem 2; thus, the details have been avoided.

Theorem 4. Suppose that α,℘ ∈ R+, w ∈ C, λ ∈ (0, 1), γi ∈ C for i = 1, 2, 3, . . . , m and
ϑj ∈ C \Z−0 for j = 1, 2, 3, . . . , n. The solution of

K(w)−K0 mDHλ
n(℘

αwα) = −℘α
0D−α

w K(w), (28)
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is

Kα
λ(w) = K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r

Γ(αr + 1)
r!

wrα Eα,αr+1(−℘α wα), (29)

where Eθ,ϑ(η) is defined in (24).

Proof. The proof is similar to that of Theorem 2 with choosing σ = ℘ and α = β.

Theorem 5. Let σ, α,℘ ∈ R+, σ 6= ℘, w ∈ C, λ ∈ (0, 1), γi ∈ C for i = 1, 2, 3, . . . , m and
ϑj ∈ C \Z−0 for j = 1, 2, 3, . . . , n. The solution of

K(w)−K0 mDHλ
n
(
℘α wα

)
= −σα

0D−α
w K(w), (30)

is given by

Kα
λ(w) = K0

∞

∑
r=0

(γ1; λ)r · · · (γm)r

(ϑ1)r · · · (ϑn)r

Γ(αr + 1)
r!

(
℘α wα

)r Eα,αr+1(−σα wα). (31)

Eθ,ϑ(η) is the generalized Mittag-Leffler function defined in (24).

Proof. The proof runs in parallel with that of Theorem 2 when α = β, σ 6= ℘, and
σ←→ ℘.

Theorem 6. Let α,℘ ∈ R+, w ∈ C, λ ∈ (0, 1) with γi ∈ C for i = 1, 2, 3, . . . , m and ϑj ∈
C \Z−0 for j = 1, 2, 3, . . . , n. The solution of the following equation

K(w)−K0

{
mDHλ

n
(
w
)}(k)

= −℘α
0D−α

w K(w), (32)

is given by

Kα
λ(w) = K0

(γ1)k, · · · (γm)k
(ϑ1)k, · · · (ϑn)k

×
∞

∑
r=0

(γ1 + k; λ)r · · · (γm + k)r

(ϑ1 + k)r · · · (ϑn + k)r
wr Eα,r+1(−℘α wα),

(33)

where Eθ,ϑ(η) is defined in (24).

Proof. By taking the Pς-transform of both sides of (30) and then using (15), we can obtain
the proof as in Theorem 2.

Special Cases

Some examples of special cases of the theorems mentioned earlier are archived as

Example 1. By insert (10) into (22), we have

K(w)−K0 mFn

 γ1 . . . γm

ϑ1 . . . ϑn

; σβwβ

 = −℘α
0D−α

w K(w), (34)

the solution of which is

Kα
λ(w) = K0

∞

∑
r=0

(γ1)r · · · (γm)r

(ϑ1)r · · · (ϑn)r

Γ(βr + 1)
r!

σβr wrβ Eα,βr+1(−℘α wα), (35)
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where Eθ,ϑ(η) is defined in (24).

Example 2. Upon inserting (10) into (32), we arrive at

K(w)−K0

{
mFn

(
w
)}(k)

= −℘α
0D−α

w K(w), (36)

and its solution is

Kα
λ(w) = K0

(γ1)k, · · · (γm)k
(ϑ1)k, · · · (ϑn)k

×
∞

∑
r=0

(γ1 + k)r · · · (γm + k)r

(ϑ1 + k)r · · · (ϑn + k)r
wr Eα,r+1(−℘α wα),

(37)

where Eθ,ϑ(η) is defined in (24).

Example 3. By invoking (11) into (22), we obtain

K(w)−K0 2DHλ
1 (σ

βwβ) = −℘α
0D−α

w K(w), (38)

the solution of which is

Kα
λ(w) = K0

∞

∑
r=0

(γ1; λ)r(γ2)r

(ϑ1)r

Γ(βr + 1)
r!

σβr wrβ Eα,βr+1(−℘α wα), (39)

where Eθ,ϑ(η) is defined in (24).

Remark 3. The results already established in [6–9,15–17] can be easily obtained as special cases
by applying the functions in Remark 2 to Theorems 2–6, which gives us a more comprehensive
understanding of the topic and allows for further exploration.

5. Numerical Representations of the Solutions

In this section, we give graphical representations of the solutions discussed in the
previous section for certain values of their parameters. Figure 1 depicts the plots of the
solutions to Equation (23) with the chosen values for the parameters as K0 = 1, m = 2,
n = 3, and w = 1, 2, . . . , 5 for different values of λ in the interval (0, 1). In Figure 1A–C, we
set the value of α to 0.05 while that for β, σ, and ℘ equal 1. We notice that the shape of the
solutions when the values of λ in the interval ( 1

r+γ1
, 1

r+γ1−1 ) tend to be negative because
of the negative values of the degenerate gamma function (6) in this interval, as shown in
Figure 1A. However, for λ being in (0, 1

r+γ1
) and ( 1

r+γ1−1 , 1), we observe positive valued
solutions, which are large for small values of λ and smaller for its values when approaching
one, as shown in Figure 1B and 1C, respectively.

To illustrate the impact of α in the solutions of Equation (23), we fix the values of λ to
be 0.118, 0.055, 0.75 while choosing 1 to be the values of β, σ,℘,K0, and setting m = 2, n = 3
in Figure 2. A similar pattern to the solutions in Figure 1 can be seen clearly for various
values of α in Figure 2A–C, with small-scale deviation in the solutions as α increases.
Moreover, the large values of β lead to the large solutions while the small values of β lead
to the small solutions in Figure 3, with fixed values of σ = ℘ = K0 = 1, α = 0.05, and
λ = 0.055. Furthermore, we could change the values of α, β, and λ to obtain more accurate
solutions that do not appear in previous works.
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Figure 1. Solutions of (23) of Kα
λ(w) with different values of λ in (A–C).
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Figure 2. Solutions of (23) of Kα
λ(w) with different values of α in (A–C).

To show the significance of the derivatives of the GDHF in the solutions of Equation (33)
in Figure 3, we fix the values of β, σ,℘,K0 to equal 1, and set m = 2, n = 3 with the different
values of λ in Figure 4A and of α in Figure 4B.
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Figure 3. Solution of (23) for Kα
λ(w) with different values of β.
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Figure 4. Solutions of (33) of Kα
λ(w) with different values of λ and α in (A,B).

6. Conclusions

The KE has been widely studied due to its usefulness in astrophysical issues and
others. Recently, FKEs have been investigated to describe anomalous reactions in dynamical
systems [1–4]. Various researchers have established solutions to these families of FKEs using
Laplace transform [6–9], Millen transform [49], Sumudu transform [10,11], and pathway-
type transform [15,39,40]. To expand upon this research base, the authors developed a new
and generalized form of the λ−KEFO involving GDHFs. This new generalization can be
used for computing changes in chemical composition, such as those found within stars like
our sun [20,50].

Furthermore, we used the Pς− transform approach, but other authors applied different
transform techniques, and existing results are particular cases of these results, implying
that the current work is a generalization. Further, our analysis yields detailed and different
results from those presented in previous studies and various situations of known and new
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results. In addition, plotting the solutions numerically was also supplied to show their
conduct and examine unique cases for FKEs.
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