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Abstract: This paper mainly studies the application of the linearized alternating direction method
of multiplier (LADMM) and the accelerated symmetric linearized alternating direction method
of multipliers (As-LADMM) for high dimensional partially linear models. First, we construct a
l1-penalty for the least squares estimation of partially linear models under constrained contours.
Next, we design the LADMM algorithm to solve the model, in which the linearization technique
is introduced to linearize one of the subproblems to obtain an approximate solution. Furthermore,
we add the appropriate acceleration techniques to form the As-LADMM algorithm and to solve the
model. Then numerical simulations are conducted to compare and analyze the effectiveness of the
algorithms. It indicates that the As-LADMM algorithm is better than the LADMM algorithm from
the view of the mean squared error, the number of iterations and the running time of the algorithm.
Finally, we apply them to the practical problem of predicting Boston housing price data analysis. This
indicates that the loss between the predicted and actual values is relatively small, and the As-LADMM
algorithm has a good prediction effect.
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1. Introduction

With the development of information and intelligence in the era of big data, the
analysis of high-dimensional data has become an important research topic [1,2]. The
relationships between variables of high-dimensional data are diverse and complex with
the partially linear model being one of the most important relationships among them [3,4],
and some research results have been achieved [5]. Various methods have been proposed
for variable selection and estimation in high-dimensional partially linear models, such as
the SCAD-penalized method [6], and the selection method via the lasso [7,8]. Ma et al. [9]
studied the properties of Lasso in high-dimensional partially linear models. The selection
method via profile and restricted profile estimation method [10–12]. Lian et al. [13,14], Guo
et al. [15], and Wu et al. [16] have all conducted research on variable selection in partially
linear additive models, and the other regression and variable selection methods [17–19],
such as quantile regression and spline estimation.

This paper considers the following partially linear model (PLM)

Y = XTβ + BTγ + ε (1)

where Y ∈ R is a response variable, X = (X1, . . . , Xp)T ∈ Rp and Z ∈ R is explanatory
variable. β = (β1, . . . , βp)T ∈ Rp is parameter vector, B = B(Z) = (B1(Z), . . . , Bmn(Z))T

is a set of B-spline basis functions of order r, γ = (γ1, . . . , γmn)
T is the spline coefficient

vector, ε is a random error. The parametric part of the model uses a linear model, and the
nonparametric part uses the B-spline basis function [20] method to estimate the unknown
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function, which combines the advantages of the interpretability of the linear model and the
flexibility of the nonparametric model.

In [11], restricted profile estimation was proposed for partially linear models with
large-dimensional covariates, and solved by the Lagrange multiplier method [21]. In [12],
the alternating-direction method of multipliers (ADMM) to solve the model by constructing
an augmented Lagrangian function. The ADMM algorithm was studied in [22,23].

Now, we will further investigate this partially linear model. In practically estimating β
and γ, it is possible that the model is more complex and there is overfitting, or all training
sets can fit well to obtain results, but it does not have generalization ability. Specifically,
as the sparsity of the covariates in the parametric part, l1-norm regularization term can
be added to increase the generalization ability of the model. Therefore, we will study
the l1-penalty of partially linear models. We mainly consider the linearized alternating
direction method of multiplier(LADMM) and the accelerated symmetric linearized alter-
nating direction method of multipliers (As-LADMM) algorithm when solving a partially
linear model.

The linearized alternating direction method of multiplier (LADMM) is studied by [24],
and the linearization technique is introduced to linearize one of the subproblems to obtain
an approximate solution. As appropriate acceleration techniques are added to the optimiza-
tion algorithm, the rate of convergence of the algorithm can be effectively improved, such as
the Nesterov acceleration technique [25,26]. An accelerated linearized alternating direction
method of multipliers (AADMM) was proposed in [27,28], which combines multi-step
acceleration schemes into linearized ADMM, and demonstrated that AADMM has a better
convergence rate than ADMM. A symmetric ADMM (s-ADMM) is proposed in [29], which
is an easy-to-implement strategy for accelerating ADMM. This strategy can be immediately
applied to various practical examples. In [30], an inexact accelerated random alternating
direction multiplier (AS-ADMM) scheme for separable convex optimization of linearly
constrained structures was proposed.

Considering the sparsity of the covariates in the parametric part, by reducing the
complexity of the model and avoiding the problem of overfitting, we study the l1-penalty of
partially linear models. Since the subproblems generated by ADMM must have analytical
expression in each iteration process, but not all subproblems have analytical expression,
the approximate solution of the subproblems is obtained by using the linearization method,
LADMM and As-LDMM for solving the model.

This paper is organized as follows. In Section 2, we construct l1-penalty estimation of
the high-dimensional partially linear model. In Section 3, we employ LADMM to solve
the l1-penalty model of L1PLM. In Section 4, we apply the As-LADMM algorithm for
l1-Penalty estimation in a high-dimensional partially linear model. In Section 5, some
numerical illustrations are reported. Finally, we apply them to the practical problem.

2. l1-Penalty Estimation for High-Dimensional Partially Linear Model

Supposing (Y1; XT
1 ; T1), · · · , (Yn; XT

n ; Tn) is an independent homogeneous sample of
the model, ε = (ε1, . . . , εn)T, and then model (1) can be written as

Yi = Xi
Tβ + B(Zi)

Tγ + εi. (2)

In order to estimate β and γ, Wang [11] studied restricted profile least squares es-
timation by using the Lagrange multiplier method for the following optimal problem

min
β,γ

1
2 ||Y− XTβ− B(Z)Tγ||2,

s.t.Rβ = d.
(3)
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where R is a given k× p matrix whose rank is k, and d is a known k-dimensional vector.
The augmented Lagrange function was constructed to transform constrained optimization
problems into unconstrained optimization problems, the ADMM algorithm was applied
for this high-dimensional partially linear model in [12].

In practice, when the covariates are sparse in the parametric part of partially linear
models, we can add a regularization term to partially linear models. The l1-norm regulariza-
tion term can be added to increase the generalization ability of the model. On the one hand,
l1-norm regularization can obtain sparse solutions. That is to say, many dimensions of the
parameter vector have values of zero. The existence of a sparse solution discards features
that do not affect the results or have weak effects in the sample, and it can effectively
simplify the model. On the other hand, the obtained parameter vector is not unique, and it
is more likely that the absolute value of a single dimension within the parameter vector is
particularly large. In this case, weak changes in the characteristics of a certain dimension
can cause pathological changes in the results, so a l1-penalty of parameter vector has been
added to the objective function, which can effectively prevent this situation. Therefore,
due to the sparsity of the covariates in the parametric part, by introducing the l1-penalty,
the resulting model can not only cater to the training set but also be simple and effective.
Therefore, we study the l1-penalty of partially linear models.

The objective functions of estimating β and γ using l1-penalty least squares method is

min
β,γ

1
2
||Y− XTβ− B(Z)Tγ||2 + θ||β||1 (4)

Therefore, we study the following optimization problem of estimating β and γ, de-
noted L1PLM:

min
β,γ

1
2 ||Y− XTβ− B(Z)Tγ||2 + θ||β||1

s.t.Rβ = d

3. LADMM Algorithms of l1-Penalty Estimation for High-Dimensional
Partially Linear Model

In this section, we apply LADMM to solve the l1-penalty model of L1PLM and provide
an algorithm framework for solving the problem.

3.1. Solution of l1-Penalty Estimation for High-Dimensional Partially Linear Model
Using LADMM

For the optimization problem L1PLM, by using the augmented Lagrange multiplier
method, the constrained programming problem is transformed into an unconstrained
programming problem, and the augmented Lagrange function is

min Qρ(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + θ||β||1 + 〈λ, Rβ− d〉+ ρ

2
‖Rβ− d‖2. (5)

Using the classical alternating direction method of multiplier (ADMM), its n-step iteration
starts from the given (βn, λn) and iterates to obtain a new iteration point (γn+1, βn+1, λn+1)
via the following scheme 

γn+1 = arg min
γ

Qρ(βn, γ, λn)

βn+1 = arg min
β

Qρ(β, γn+1, λn)

λn+1 = λn + ρ(Rβn+1 − d)

(6)

Now, let us solve these subproblems.
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Firstly, for the solution of the subproblem, the problem can be written as follows

γn+1 = arg min
γ
{1

2
‖Y− Xβn − Bγ‖2}.

Since βn can be given, taking the partial derivative of γ

∂Qρ(β, γ, λ)

∂γ
= −B(Y− Xβn − Bγ) = 0

The analytical solution of γ is

γn+1 = (BTB)−1BT(Y− Xβn) (7)

Secondly, for the solution of β-subproblem, by substituting γ into Equation (5), we
can write the problem as follows

βn+1 = arg min
β
{1

2

∥∥∥Y− Xβ− Bγn+1
∥∥∥2

+ θ||β||1 + 〈λn, Rβ− d〉+ ρ

2
‖Rβ− d‖2}

= arg min
β
{θ||β||1 +

1
2

∥∥∥Y− Xβ− Bγn+1
∥∥∥2

+
ρ

2

∥∥∥∥Rβ− d +
λn

ρ

∥∥∥∥2
}

= arg min
β
{θ||β||1 +

1
2

∥∥∥X̂β + B̂γn+1 − Ŷ
∥∥∥2
}

(8)

where X̂ = (XT,
√

ρR)T, B̂ = (BT, 0).
Since X̂ may be a non-positive-definite matrix, there is no closed-form solution for this

subproblem. We can use the LADMM method by the linearized quadratic term as follows.

1
2

∥∥∥X̂β + B̂γn+1 − Ŷ
∥∥∥2 ∼= (X̂T(X̂β + B̂γn+1 − Ŷ))T(β− βn) +

ν

2
||β− βn||2 (9)

Therefore, the solved subproblem is equivalent to

βn+1 = arg min
β
{θ||β||1 + (X̂T(X̂β + B̂γn+1 − Ŷ))T(β− βn) +

ν

2
||β− βn||2}

= arg min
β
{θ||β||1 +

ν

2
||β− βn +

X̂T(X̂β + B̂γn+1 − Ŷ)
ν

||2}
(10)

The closed-form solution of this subproblem can be obtained by using the method of
soft threshold

βn+1= shrink1,2{βn − X̂T(X̂β + B̂γn+1 − Ŷ)
ν

,
θ

ν
} = ũn − PC(ũn). (11)

where ũn = βn − X̂T(X̂β+B̂γn+1−Ŷ)
ν , C = [− θ

ν , θ
ν ].

By solving the γ, β, λ subproblem separately, we obtained γn+1, βn+1, λn+1 as follows
γn+1 = (BTB)−1BT(Y− Xβn)

βn+1 = ũn − PC(ũn)
λn+1 = λn + ρ(Rβn+1 − d)

(12)

3.2. LADMM Algorithm Design for l1-Penalty Estimation High-Dimensional Partially
Linear Model

Based on the characteristics of the solution of l1-penalty estimation for the high-
dimensional partially linear model, the algorithm scheme using LADMM is as follows
(Algorithm 1).
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Algorithm 1 Iterative Scheme of LADMM for LIPLM

Step 1: Input X, Y, B. Given the initial variables (β0, γ0, λ0).
Choose penalty parametric ρ > 0, θ > 0. Let n = 1 be iteration;

Step 2: Update γn+1, βn+1, λn+1 by Equation (12);
Step 3: If the algorithm does not meet the termination criteria at N-th iteration,

let n = n + 1 go to Step 2; otherwise, go to the next step;
Step4: Output (βN , γN , λN) is the approximate solution of (β̂, γ̂, λ̂).

We can prove that the LADMM algorithm should converge to the optimal solution
under certain conditions, see references [28,29].

4. As-LADMM Algorithm for l1-Penalty Estimation in High-Dimensional Partially
Linear Model

In this section, we apply As-LADMM to solve the l1-penalty model of L1PLM and
provide an algorithm framework for solving the problem. He B. el studied the symmetric
version of ADMM with larger step sizes and provided an easily implementable strategy
to accelerate the ADMM numerically that can be immediately applied to a variety of
applications [29]. We use the symmetric version of ADMM for solving the l1-penalty model
of L1PLM.

4.1. The Solution of l1-Penalty Estimation for High-Dimensional Partially Linear Model by
As-LADMM

In order to solve the optimization problem L1PLM using As-LADMM, the augmented
Lagrange function is constructed

min φρ(β, γ, λ) =
1
2
‖Y− Xβ− Bγ‖2 + θ||β||1 + 〈λ, Rβ− d〉+ ρ

2η
‖Rβ− d‖2 (13)

For a given (βn, λn), we obtain (γn+1, βn+1, λn+1) by the following iteration scheme

νn = βn + ηn(1−ηn−1)
ηn−1 (βn − βn−1)

γn+1 = arg min
γ

φρ(νn, γ, λn)

λn+ 1
2 = λn + ρτ(Rνn+1 − d)

βn+1 = arg min
β

φρ(β, γn+1, λn+ 1
2 )

λn+1 = λn+ 1
2 + ρτ(Rβn+1 − d)

(14)

Now, let us solve these subproblems.
Firstly, for the solution of the γ-subproblem, the problem can be written as follows

γn+1 = arg min
γ
{1

2
‖Y− Xνn − Bγ‖2}

Taking the partial derivative of γ

∂φρ(β, γ, λ)

∂γ
= −B(Y− Xνn − Bγ) = 0

The analytical expression of γ is

γn+1 = (BTB)−1BT(Y− Xνn) (15)
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Secondly, for the solution of β-subproblems, the problem can be written as follows

βn+1 = arg min
β
{1

2

∥∥∥Y− Xβ− Bγn+1
∥∥∥2

+ θ||β||1 +
〈

λn+ 1
2 , Rβ− d

〉
+

ρ

2ηn ‖Rβ− d‖2}

= arg min
β
{θ||β||1 +

1
2

∥∥∥Y− Xβ− Bγn+1
∥∥∥2

+
ρ

2ηn

∥∥∥∥∥Rβ− d +
λn+ 1

2 ηn

ρ

∥∥∥∥∥
2

}

= arg min
β
{θ||β||1 +

1
2

∥∥∥_

Xβ +
_

Bγn+1 −
_

Y
∥∥∥2
}.

where
_

X = (XT,
√

ρ
ηn R)T,

_

Y = (YT,
√

ρ
ηn (d− λn+ 1

2 ηn

ρ ))T,
_

B = (BT, 0).

Since X̂ may be a non-positive-definite matrix, there is no closed-form solution to
this subproblem. The quadratic term 1

2

∥∥X̂β + B̂γn+1 − Ŷ
∥∥2 can be replaced by linearized.

LADMM method can be used. Therefore, the solved subproblem is equivalent to

βn+1 = arg min
β
{θ||β||1 + (

_

X
T
(
_

Xβ +
_

Bγn+1 −
_

Y))T(β− βn) +
ν

2
||β− βn||2}

= arg min
β
{θ||β||1 +

ν

2
||β− βn +

_

X
T
(
_

Xβ +
_

Bγn+1 −
_

Y)
ν

||2}.

The closed-form solution of this subproblem can be obtained by using the method of
soft threshold

βn+1= shrink1,2{βn −
_

X
T
(
_

Xβ +
_

Bγn+1 −
_

Y)
ν

,
θ

ν
} = ν̃n − PC(ν̃

n) (16)

where

ν̃n = βn −
_

X
T
(
_

Xβ +
_

Bγn+1 −
_

Y)
ν

, C = [− θ

ν
,

θ

ν
].

Overall, by solving the γ, β, λ subproblems separately, the solutions γn+1, βn+1, λn+1

are obtained. Therefore, its algorithm iteration framework is
γn+1 = (BTB)−1BT(Y− Xνn),

βn+1 = ν̃n − PC(ν̃
n),

λn+1 = λn + ρτ(Rνn+1 − d) + ρτ(Rβn+1 − d).
(17)

4.2. As-LADMM Algorithm Design for l1-Penalty Estimation in High-Dimensional Partial
Linear Model

Based on the idea of the As-LADMM solution for l1-penalty estimation in a high-
dimensional partially linear model, we design an algorithm framework as follows
(Algorithm 2).

Algorithm 2 Iterative Scheme of As-LADMM for LIPLM
Step 1: Input X, Y, B and tol. Given the initial variables (β0, γ0, λ0),

choose ρ > 0, θ0 = −1, θ−1 = 1
τ , 0.5 < τ < 1. Let n = 1 ;

Step 2: Update γn+1, βn+1, λn+1 by Equation (17);
Step 3: If the algorithm meets the termination criteria at N-th iteration, go to the next step.

Otherwise, let n = n + 1 go to Step 2; ;
Step 4: Output (βN , γN , λN) . It is the approximate solution of (β̂, γ̂, λ̂).

We can similarly prove that this algorithm should converge to the optimal solution
under certain conditions, see references [28,29].
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5. Numerical Simulation
5.1. Parameter Setting

Numerical simulation is performed for high-dimensional partial linear model estima-
tion, with a sample size of n generated by the model. Here, ε ∼ N(0, σ2), data set X follows
the p-dimensional multivariate normal distribution, X ∼ N(0, Σ), Σ = 0.5|j−k|, j and k is
the jth and kth components of the covariance, respectively. Z ∼ U(0, 1), g(z) = 3 cos(2πz),
β = (1, 2, 0.5,−1, 0, . . . , 0)T and β5 = . . . = βp = 0. Parameter τ = 0.95, the smoothness
function is estimated by cubic spline interpolation, and the cubic B-spline basis function is
used for numerical simulation. The results show that the effect of the smoothness is good.

5.2. Simulation Results

The simulation effect is expressed by the mean squared error (mse), objective value
(obj), iteration times (iter) and running time (time) of the algorithm, where the sample size
is taken as n = 100, 200, p = 109, 209, 409, 509, 1009.

mse =
∥∥β̂− β

∥∥2 obj =
1
2
||Y− Xβ̂− Bγ||2 + θ||β̂||1

By determining the value of sample size and dimensionality from small to large, we
study the effectiveness of simulation in high dimensional ( p >> n) situations.

Based on the above parameters settings, the specific results are obtained by using the
LADMM algorithm are shown in Table 1; The specific results obtained using the As-LDMM
algorithm are shown in Table 2.

Table 1. Simulation results of LADMM in different parameters set.

n p σ mse obj Iter Time

100

109

0.5

0.0028 0.9912 189 0.023358
209 0.0026 0.4000 71 0.017601
509 0.0022 0.1675 24 0.010753

1009 0.0021 0.1444 18 0.011368

200

209 0.0031 1.2943 262 0.032774
409 0.0026 0.3700 46 0.014811
509 0.0026 0.3205 34 0.011893

1009 0.0024 0.2101 22 0.011691

100

109

1

0.0030 1.1306 230 0.026888
209 0.0028 0.4549 76 0.015361
509 0.0020 0.2015 25 0.010161

1009 0.0020 0.1735 18 0.010081

200

209 0.0039 1.6863 329 0.041064
409 0.0027 0.4233 50 0.014497
509 0.0026 0.4001 40 0.012453

1009 0.0025 0.2704 23 0.012234

100

109

2

0.0040 1.6747 196 0.028308
209 0.0033 0.5872 86 0.014744
509 0.0023 0.3052 26 0.013412

1009 0.0024 0.2498 20 0.010456

200

209 0.0062 2.8058 372 0.044700
409 0.0031 0.5956 56 0.015718
509 0.0030 0.5985 46 0.012268

1009 0.0027 0.4011 26 0.012453

According to the results of Tables 1 and 2, in the high-dimensional case, for a fixed
σ, the mean squared error of parameter estimation for these algorithm decreases with
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the increase in dimension p, and the mean squared error of the As-LADMM algorithm
is slightly lower than that of the LADMM algorithm. It indicates that the As-LADMM
algorithm is better than the LADMM algorithm.

Compared to the LADMM algorithm, the As-LADMM algorithm performs accelerated
symmetry transformation to improve the performance of the algorithm. For a fixed value
of p, the mean squared error, the objective value, the number of iteration and the running
time of the algorithm increases with the increase in σ. However, the As-LDMM algorithm
performs better than the LADMM algorithm.

We draw a comparison line of mean squared error and objective value under different
variances with the sample size of 100 and 200, specifically comparing and expressing the
effectiveness of the As-LDMM algorithm with Figures 1–12.

Table 2. Simulation results of As-LADMM in different parameters set.

n p σ mse obj Iter Time

100

109

0.5

0.0028 0.9879 189 0.020590
209 0.0026 0.3958 72 0.014416
509 0.0019 0.1626 26 0.014585

1009 0.0019 0.1435 17 0.011211

200

209 0.0031 1.2944 262 0.035734
409 0.0026 0.3708 46 0.018151
509 0.0026 0.3216 34 0.015442

1009 0.0023 0.2097 19 0.012723

100

109

1

0.0030 1.1288 230 0.023713
209 0.0028 0.4502 77 0.014860
509 0.0020 0.2013 24 0.013338

1009 0.0017 0.1718 16 0.010901

200

209 0.0039 1.6853 329 0.037359
409 0.0027 0.4133 50 0.015312
509 0.0027 0.3881 40 0.015518

1009 0.0024 0.2635 25 0.012891

100

109

2

0.0040 1.6727 296 0.026368
209 0.0032 0.5740 86 0.015204
509 0.0023 0.2957 26 0.012608

1009 0.0021 0.2470 19 0.011138

200

209 0.0062 2.8041 372 0.042947
409 0.0032 0.5755 56 0.016475
509 0.0032 0.5474 53 0.015811

1009 0.0022 0.3819 30 0.013330

Figure 1. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 0.5.
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Figure 2. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 1.

Figure 3. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 2.

Figure 4. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 0.5.

Figure 5. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 1.
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Figure 6. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 100, σ = 2.

Figure 7. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 0.5.

Figure 8. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 1.

Figure 9. Comparison of mean squared error line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 2.
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Figure 10. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 0.5.

It can be seen from these figures that the mean squared error of the LADMM algorithm
and the As-LADMM algorithm is very small and nearly zero, but the mean squared error
of the As-LADMM algorithm is smaller than that. The objective values of the LADMM
algorithm and the As-LDMM algorithm are both small, while the objective values of the
As-LDMM algorithm are smaller. Therefore, it indicates that the As-LADMM algorithm has
better performance and is suitable for solving high-dimensional partially linear models.

Figure 11. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 1.

Figure 12. Comparison of objective value line of LADMM algorithm and As-LADMM algorithm
under n = 200, σ = 2.

6. Application: Boston Housing Price Data Analysis

In order to verify the application of As-LADMM in high-dimensional data, we take
Boston house price data as an example to analyze. The Boston home price data were
information about home prices in Boston, Massachusetts, collected by the U. S. Census
Bureau in the 1970 U. S. Census. It is obtained from the StatLib archive (http://lib.stat.
cmu.edu/datasets/boston, accessed on 6 March 2023). The data are more representative of
the actual situation [31,32]. The data set is composed of 13 input variables and one output

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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variable that is the median value of owner-occupied homes in $1000’s (MEDV). The input
variables include per capita crime rate by town (CRIM), the proportion of residential land
zoned for lots over 25,000 sq.ft. (ZN), the proportion of non-retail business acres per town
(INDUS), nitric oxides concentration (parts per 10 million) (NOX), the average number of
rooms per dwelling (RM), the proportion of owner-occupied units built prior to 1940 (AGE),
weighted distances to five Boston employment centers (DIS), index of accessibility to radial
highways(RAD), and full-value property-tax rate per $10,000 (TAX). In addition, PTRATIO
is the pupil–teacher ratio by town; LSTAT is the lower status of the population. For thirteen
independent variables, the PTRATIO is not necessarily linear with the proportion of MEDV.
Therefore, the importance of other independent variables to MEDV is mainly considered.
The model is as follows

Yi =
12

∑
j

Xijβ j + m(Ui) + εi

where Yi is MEDV of the i-th sample , and Ui is PTRATIO of the i-th sample, Xij is the j-th
variable of the i-th sample, and εi ∼ N(0, σ2).

During the experiment, we selected 75% of the training samples and 25% of the test
samples. The predictive value of MEDV in the prediction sample is expressed in y, with
median absolute error (MAE) and standard error (SE) to evaluate the predictive ability of
the model. The MAE can reduce the impact of outliers. The SE reflects the degree to which
the sample deviates from the average value, and the smaller the value, the more reliable
the method. The calculation method is

MAE = medain{|y1 − ŷ1|, |y2 − ŷ2|, · · · , |yn − ŷn|}.

SE =

√
∑ (yi − ŷi)

2

n
.

The prediction ability of the As-LADMM algorithm was compared with LADMM, as
shown in Table 3.

Table 3. MAE and SE effects of housing price forecasts for owner-occupied housing.

Variable LADMM AS-LADMM
MAE SE MAE SE

CRIM 1.4785 0.0748 0.972 0.0504
ZN 1.4809 0.0752 0.9717 0.0549

INDUS 1.48 0.0782 0.9712 0.0544
CHAS 1.4474 0.0748 0.9726 0.0563
NOX 1.5046 0.0787 0.9612 0.0535
RM 1.5063 0.0776 0.977 0.0549

AGE 1.4715 0.0775 0.9649 0.0466
DIS 1.45596 0.0748 0.97 0.0523

RAD 1.4776 0.0746 0.9708 0.0538
TAX 1.4552 0.0747 0.9712 0.0524

B 1.4848 0.0752 0.9727 0.0513
LSTAT 1.2362 0.0598 0.8972 0.0323

From the results in Table 3, it can be seen that the values of MAE predicted using the
As-LADMM algorithm are basically lower than those predicted by the LADMM algorithm.
This indicates that the loss between the predicted and actual values of MEDV results is
relatively small, and the As-LADMM algorithm has a good prediction effect. The values
of SE are all below 0.09, and the corresponding As-LADMM algorithm predicts smaller
values, indicating that the As-LADMM algorithm has a more reliable prediction ability than
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the LADMM algorithm. The overall performance is very good, so the parameter estimation
method in this article is relatively effective.

7. Conclusions

In this paper, we mainly studied the application of LADMM and As-LADMM for
high-dimensional partially linear models. As the sparsity of the covariates in the parametric
part, we added to l1-norm regularization term to estimate the parametric and increase
the generalization ability of the model. We constructed the augmented Lagrange func-
tion to transform the constrained optimization problems into unconstrained optimization
problems and solved the model using LADMM and As-LADMM. Through numerical
simulation, we compared and analyzed the superiority of the designed algorithm. From
the view of the mean squared error, the number of iterations and the running time of the
algorithm, the As-LADMM algorithm is better than the LADMM algorithm. Finally, the
two algorithms were applied to Boston housing price data, and the comparison showed
the effectiveness of As-LADMM as well.
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