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Abstract: Software requirement changes, code changes, software reuse, and testing are important
activities in software engineering that involve the traceability links between software requirements
and code. Software requirement documents, design documents, code documents, and test case
documents are the intermediate products of software development. The lack of interrelationship
between these documents can make it extremely difficult to change and maintain the software.
Frequent requirements and code changes are inevitable in software development. Software reuse,
change impact analysis, and testing also require the relationship between software requirements and
code. Using these traceability links can improve the efficiency and quality of related software activities.
Existing methods for constructing these links need to be better automated and accurate. To address
these problems, we propose to embed software requirements and source code into feature vectors
containing their semantic information based on four neural networks (NBOW, RNN, CNN, and
self-attention). Accurate traceability links from requirements to code are established by comparing
the similarity between these vectors. We develop a prototype tool RCT based on this method. These
four networks’ performances in constructing links are explored on 18 open-source projects. The
experimental results show that the self-attention network performs best, with an average Recall@50
value of 0.687 on the 18 projects, which is higher than the other three neural network models and
much higher than previous approaches using information retrieval and machine learning.

Keywords: requirements-code traceability; semantic understanding; feature representation; neural
networks

MSC: 68T20

1. Introduction

Approximately 40% of the problems in software development are related to software
requirements engineering [1]. Software engineering is about solving real-life problems
through software technology, whereas requirements engineering defines the issues that
need to be solved. Its goal is to use a systematic approach and engineering management
tools to efficiently develop software requirements specifications and specific performance
parameters that accurately express user needs.

In the current era of rapidly changing software requirements, it is unrealistic to ask
the customer to set forward all requirements at once and never change them again, which
means that changes to software requirements are inevitable. Therefore, the difficulty of
software requirements management is caused by the requirements’ volatility. It has been
observed that requirements change at different stages of the software development lifecycle
and that such changes play a critical role in the success of a project. Usually, requirements
change is caused by differences in developer understanding, changes in user business
requirements, and normal system upgrades. Changes to source code and related software

Mathematics 2023, 11, 315. https://doi.org/10.3390/math11020315 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11020315
https://doi.org/10.3390/math11020315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1919-2498
https://doi.org/10.3390/math11020315
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020315?type=check_update&version=2


Mathematics 2023, 11, 315 2 of 24

engineering products inevitably accompany changes in requirements. Constructing links
between software requirements and software design documents, source code, and test
cases are essential for software requirement relationships. For example, to test the imple-
mentation code of a modified requirement, the test cases must be adjusted accordingly.
Software test managers need to understand the possible impact of requirements changes on
product quality and requirements testing. Therefore, analyzing the relationships between
software engineering artifacts produced during different software development lifecycles
can improve the accuracy of change impact analysis.

Requirements traceability is defined as the ability to describe and track the lifecycle
of requirements, including the ability to trace backwards and forwards through periods
of continuous refinement and iteration. The construction of requirements traceability
relationships can support various software engineering activities, including change impact
analysis, regression test selection, cost prediction, and compliance validation [2]. The need
to establish and maintain traceability links between requirements, design, code, faults, and
test cases to demonstrate that the software system is safe to use is specified in regulatory
standards for high-reliability systems (e.g., Federal Aviation Authority (FAA) standard
DO178b/c) [3]. However, creating traceability relationships is more difficult and is prone
to errors or omissions. In practice, manually creating traceability links or capturing them
as a byproduct of the development process is often incomplete and inaccurate [4], even in
some critical security systems [5]. In particular, software source code has a higher level of
structured information and inherent complexity than other modules in a software system,
containing more semantic and functional features that represent the software system. This
makes it possible to develop requirements-to-code tracing tools that will support the field of
software engineering and are essential for improving the efficiency and quality of software
development.

Existing automated methods for establishing requirements and code traceability links
can be classified as follows: information retrieval, program analysis, machine learning, etc.
Information retrieval (IR) is the most commonly used method for establishing links [6–10].
The core idea of using IR to establish traceability is to extract comments, tokens, and
key phrases from source code and requirement documents, then vectorize them using
LSA, VSM, TF-IDF, and topic modeling. Finally, the similarity between them is used to
determine whether links exist. These methods all split software requirements or source code
into combinations of words or terms without understanding the conceptual connections
between them [11], and the embedded semantic information in these artifacts is lost. This
is caused by the lack of ability of these techniques to reason about the semantic relatedness
between software artifacts. These approaches ignore conceptually similar tokens. For
example, “audio” may be represented as “audio” in the requirements but is often expressed
as “stream” in the code. This is a vocabulary mismatch problem. As a result, conventional
information retrieval methods may not be able to establish links between files that contain
overlapping terms. Most current technologies cannot reason about semantic associations
between artifacts. Thus, traceability links in software can only be constructed when the
words used overlap.

Deep learning techniques have now been successfully applied to solve many natural
language processing (NLP) tasks, including text parsing [12], sentiment analysis [13] and
machine translation [14]. Deep learning techniques divide the problem into multiple layers
of nonlinear processing nodes. They use supervised or unsupervised learning techniques
to automatically learn a linguistic or textual representation, which is then used to perform
complex NLP tasks. This paper aims to use deep learning to provide scalable, portable, and
fully automated solutions for constructing links between software requirements and code
to bridge the semantic gap that currently prevents traceability link creation algorithms.

Aiming at the problems existing in the automatic establishment of requirement-code
traceability link and the advantages of deep learning in processing natural language, this
paper proposes a neural-network-based software requirement and source code tracing
method (RCT). The method can automatically construct horizontal tracing links between
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software requirements and source code. Hindle et al. [15] showed that programming
languages are comparable and predictive, similar to natural languages. The semantic gap
that prevents the construction of tracing links can be bridged using deep learning. Word
embeddings can learn the semantics of each word and represent it as a continuous high-
dimensional word vector so that similar words are adjacent in the vector space. Neural
networks can use these word vectors to learn the semantics of requirements and sentences
or code segments in source code. For example, recurrent neural networks (RNNs) are
suitable for processing sequential data such as text and audio. The core idea of RCT is
to convert requirements and source code documents into same-dimensional feature vec-
tors and determine whether they are linked by comparing the similarity between them.
First, requirement-code link data are collected from open-source software repositories
(e.g., GitHub) and preprocessed. This includes removing useless information, such as
constructors and duplicate functions, from the code files, and parsing function names or
tokens within functions named with camel or underscore. Secondly, we use four neural
network models to embed the preprocessed software requirements and words or sentences
from the source code into spatial vectors and then fuse these vectors using pooling func-
tions or fully connected layers. Since these embedded spatial vectors contain semantic
information about each word and implicit semantic associations between the requirements
and code segments, the problem of “vocabulary mismatch” and semantic gaps is solved
compared to information retrieval or machine learning methods. Finally, the links between
software requirements and source code are constructed by calculating the spatial distance
or cosine similarity between them and ranking them according to their similarity. The
optimal neural network model is selected based on the experimental results. In addition,
the dataset used for training and validating includes many different open-source projects,
reducing the impact of differences in developers’ coding styles and habits and improving
the generalization of the tracing model to real-world scenarios. We made our codes publicly
available at: https://drive.google.com/drive/folders/1MadnriCIU0ShohG_csfKaTzJqm6
FvQsy?usp=share_link (accessed on 30 December 2022).

To sum up, the main contributions of this paper are as follows:

1. We propose a generic and automated technique for mapping software requirements
to source code.

2. We use a combination of neural network techniques to extract semantic information
from software artifacts.

3. We develop DCT, a tool for constructing traceability links between software require-
ments and source code.

4. We demonstrate that self-attention is better at constructing traceability networks than
other neural network models.

5. We demonstrate that neural network technology can surpass or even substitute infor-
mation retrieval techniques in traceability tasks.

The remainder of the paper is structured as follows. We first introduce techniques
and works related to the tracing network in Section 2. The overview of our approach is
described in Section 3. Sections 4 and 5 describe the subject programs and metrics, our
experiment process, the results achieved, and the discussion. Finally, the conclusion is
summarized in Section 6.

2. Related Works

Change is an intrinsic feature of the software engineering discipline compared to
other engineering disciplines. Due to the ever-changing scenarios and environments
in which software is used, it is difficult to specify all its requirements simultaneously.
Factors such as customer requirements, market changes, and peer competition can all
lead to changes in requirements. Nurmuliani [16] defines requirements fluctuation as “the
tendency for requirements to change over time in response to constant changes in the
customer, the organization, and the work environment”. The main factors contributing
to the failure of software projects are given in the Standish Group report [17]. As seen

https://drive.google.com/drive/folders/1MadnriCIU0ShohG_csfKaTzJqm6FvQsy?usp= share_link
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from the data in Table 1, the most significant causes of failure in these projects are related
to requirements, particularly requirements change and the addition of new requirements.
Their study also shows that requirements changes can increase project costs by a factor
of three and project time by a factor of two. Furthermore, Huang et al.’s study also
indicates that 40–90% of the total software development cost is spent on dealing with
issues related to requirement changes [18]. Managing these change requirements has
proven to be a significant challenge in requirements engineering [19,20]. Unmanaged
or poorly managed changes to requirements can spell disaster for system development.
These negative consequences can lead to software cost and schedule overruns, unstable
requirements, endless testing, and, ultimately, project failure and business loss [16,21,22].
Therefore, change management can be both rewarding and challenging and is one of the
essential factors in the success of a software project.

Table 1. Factors that cause software projects to fail.

Reasons for Failure Proportions (%)

1 Incomplete requirements 13.1
2 Lack of user engagement 12.4
3 Lack of resources 10.6
4 Unrealistic expectations 9.9
5 Lack of administrative support 9.3
6 Changes in the requirements specification 8.7
7 Lack of project plan 8.1
8 The user no longer needs 7.5
9 Lack of IT management 6.2
10 Technical error 4.3
11 other 9.9

Requirements traceability is the core of software requirements management. A key
component of requirements traceability is constructing links between software requirements
and software design documents, source code, and test cases. However, much of the
existing research is requirements-focused, ignoring the tracing of requirements to other
software artifacts [23–33]. Changes to requirements can affect almost all software artifacts
along the relationship between entities in the software development lifecycle. Analyzing
the relationships between software engineering artifacts can improve the accuracy of
change impact analysis. In particular, software source code has a higher level of structured
information and inherent complexity than other modules in a software system. It can
contain more semantic and functional features that represent the software system.

Manually creating links between software requirements and source code can be per-
formed, but it is costly, especially for large software systems. The program analysis
approach [9,34] is analyzed and implemented by automating the selection of the two main
information dimensions in requirements and code, i.e., the dependencies between textual
information (requirements text and source code files) and code elements (e.g., function
call relationships and data dependencies). Information retrieval (IR) is still the most com-
monly used method for establishing traceability links [6–10]. Vale et al. [10] selected five
representative methods to compare the performance of constructing links between them for
feature-codes. The machine-learning-based methods first need to build training features
representing the tracking characteristics, then use classifiers to identify the tracing links
between requirements and code. Li Zeheng et al. [35] constructed a supervised mapped
link classifier with access to additional training samples and features. In the supervised
learning model proposed by Mills [36] to generate tracing links, the method first uses
existing link data to train classifiers, and subsequently uses these classifiers to label possible
links. Cleland et al. [8] used two machine-learning methods to improve the quality of
links between code and software requirements. Although these machine-learning-based
approaches improve information retrieval, they still train the classifier with specific features
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or word frequency scores and therefore need help identifying semantic information in the
software requirements and source code.

3. Overview of Approach

In view of the powerful representation and feature extraction capabilities of neural
networks, this paper proposes a neural-network-based tracing model, RCT, which consists
of four layers, as shown in Figure 1. These are the input layer, the embedding layer, the
pooling/fusion layer, and the comparison layer. The source code and requirements are
finally embedded into a unified vector space after passing through these four layers, and
the similarity between them is compared.

Requirements DocumentSource code files

Code Vector Requirement Vector

Source code embedding
model(CoNN)

Requirement embedding
model(ReNN)

Similarity
calculation

RN
N

N
BO
W
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C
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function name Source code segment summary Detailed descriptionTokens

Pooling/Fusion Pooling/Fusion

Code Requirement

Code Vector Requirement Vector

Similarity
calculation

Figure 1. Tracing model between software requirement and source code based on neural network.

Firstly, the input layer is the lowest level of the model and is used to input each
requirement from the requirements document and the functions from the source code
file into the tracing model. Each input requirement contains an overview and a detailed
description of the requirement. The source code file input consists of function names, source
code segments, and preprocessed tokens: (1) A function name is the name that defines
a function. For each function, we extract its name and parse it into a sequence of tokens
based on camel case or underscore naming. For example, valid_path or validPath would be
parsed into valid and path tokens. (2) We extract the entire contents of each Java function
body as a segment. (3) For the preprocessing of tokens, we first collect the tokens from
the function, split each token according to camel or underscore nomenclature, and remove
duplicate tokens. We also remove stop words (e.g., and, in, etc.) and keywords as they
often appear in the source code and are indistinguishable. In addition, the functions’ APIs
contain important semantic information. We obtain information about the API sequence of
a function by parsing the abstract syntax tree (AST). The source code files are stripped of
files such as build configurations, binaries, project descriptions, data descriptions, etc. We
do not consider third-party files, such as various library files. Instead, the focus is only on
the code files created by the developer. The CoNN and ReNN of the embedding layer are
used to embed the requirements and source code input into the feature space to obtain the
feature vectors, each containing the semantic information of the word. A total of four neural
network architectures are chosen: neural bag of words (NBOW), recurrent neural network
(RNN), convolutional neural network (CNN), and self-attention model. The performance
of each neural network is compared in the subsequent experimental validation to select
the optimal embedding model. The third layer is the pooling/fusion layer, where the
embedding vectors obtained in the previous layer are fused into a sequence vector using
a pooling function, generating a feature vector for each requirement (Requirement vector)
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and a feature vector for each function in the source code file (Code vector). The final layer is
the comparison layer, which compares the cosine similarity or spatial distance between the
software requirements and the feature vectors (Requirement vector and Code vector) of the
source code, and constructs a tracing relationship between the vectors with high similarity
or short spatial distance. Next, we show how to use neural networks to transform software
requirements and source code into feature vectors and build links between these feature
vectors by calculating their similarities.

3.1. Neural Network Structures

Many existing deep learning models and related training methods have origins in
studying artificial neural networks (ANNs). Inspired by advances in neuroscience, artificial
neural networks have been designed to approximate the human brain’s complex functions
by connecting a large number of computational units in a multilayer structure. Based on
ANNs, deep learning models have a more complex network structure with more connected
layers. Data features can be better represented from the more complex structures, which
often allows more information to be extracted than more traditional machine learning
techniques. In traditional machine learning techniques, human expertise is required to
select data features for training. Backpropagation [37] is an effective method for training
deep neural networks that indicates how a neural network should adjust its internal
parameters to better compute the representation in each layer. Furthermore, as RCT is
designed to create trace links and evaluate different neural network models, we will explain
in depth how these techniques extract semantic information from software requirements
and source code.

The tracing model’s most important component is converting the software require-
ments and source code into feature vectors via a neural network, which extracts the semantic
information in the software requirements and source code as input to the comparison layer.
The network consists of the embedding layer and the pooling/fusion layer. Due to the
differences in the textual composition of software requirements and source code, the words
included in these texts are only partially semantically relevant. Neural network models can
be more accurate if they can process the contextual relationships and remove distracting
words to obtain the textual semantics of sentences, paragraphs, and documents. Source
code is a list of readable instructions under specific authoring rules and has a much more
complex structure than text written in natural language. Source code files contain many file
names, function names, variable names, etc. Some of these contain the textual semantics of
the source code, while others are related to the implementation of functions. In this paper,
four embedding neural network models are selected, namely, neural bag of words (NBOW),
recurrent neural network (RNN), convolutional neural network (CNN), and self-attention
network. The overall structure of the word embedding layer is shown in Figure 2.

3.1.1. Embedding Model Based on NBOW

The bag of words (BOW) model is initially used in text classification to represent
documents as a vector of features. The basic idea is that a text is a collection of words,
ignoring word order, syntax, and grammar. Each word in the text is independent, and each
document is viewed as a bag of words. The neural bag of words model is a fully connected
feedforward network with BOW input. It maps the text X (a sequence of words) to one
of k output labels, where each vector has dimension d. The input used in this paper is the
one-hot vector. The one-hot encoding represents a word in the text by a vector of word
number dimensions, where the value corresponding to the word is 1, and the other values
are 0. For each word w ∈ X in this word sequence, its corresponding word vector is vw.
Based on the input set of vectors, their average is taken as the hidden vector z. Preliminary
experiments indicate that averaging outperforms the vector sum used in NBOW from
Kalchbrenner et al. [38].
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Figure 2. Requirement and source code embedding layer model based on neural network.

z =
1
|X| ∑

w∈X
vw. (1)

This average vector z is then fed into a fully connected layer to obtain the probability of
the output label. Its hidden layer consists of linear cells and does not require an activation
function. The vector dimension of the output layer is the same as the dimension of the
input layer and uses so f tmax regression.

ŷ = so f tmax(Wlz + b). (2)

where Wl is a matrix of k× d, b is a bias vector, and so f tmax(x) = exp(x)/ ∑k
j=1 exp(xj).

The NBOW model can be trained using the stochastic gradient descent algorithm, where
the loss function can be used as a cross-entropy function. Additional fully connected
layers can be added into the NBOW model to form deep averaging networks (DANs) [39].
Both CBOW and skip-gram models [40] can be seen as an improvement of the neural
bag-of-words model, although they are of opposite mindsets. The training input to the
CBOW model is the contextually relevant words, and the output is the word vector of this
particular word. The input to the skip-gram model is a particular word, and the output is
the contextual word vector corresponding to it. The neural bag-of-words model embeds the
vocabulary, as shown in Equation (3). Pooling functions later combine the feature vectors
e1, e2, ..., en.

e1, e2, ..., en = embedding(words in requirement or source code). (3)
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3.1.2. Embedding Model Based on RNN

Recurrent neural networks (RNNs) are mainly used for tasks related to natural lan-
guage processing. In the case of textual information, the fact that the nodes of a conventional
neural network are not connected at each layer means that such networks cannot deal
with, for example, temporal problems. Because these neural networks can only process
the content of the current input word, they need a reference to the context of the word
and therefore miss a lot of information during training. Recurrent neural networks have
neuronal feedback connections, allowing the network to store information about the most
recent input data in a stimulated form (short-term memory). In Figure 3, it is clear that
information about the state of the network at the last moment will act on the output com-
puted at the next moment. We use a function g(t) to represent the computation after t steps
of expansion.

h(t) = g(t)(x(t), x(t−1), x(t−2), · · · , x(2), x(1)) = f (Wh(t−1) + Ux(t) + b). (4)

where W, U is the transformation matrix, b is the bias vector, and f is the nonlinear activa-
tion function, e.g., the hyperbolic tangent function tanh(z) = (e(z) − e(−z))/(e(z) + e(−z)).

Figure 3. Recurrent neural network (RNN) model.

Figure 3 shows a single-layer RNN network. The RNN network in Figure 2 is a stack
of single-layer RNNs in a multilayer network, where x<1>, · · · , x<4> is the input to the
RNN network. In this paper, this is a vector of words from software requirements or source
code text. ŷ<1>, · · · , ŷ<4> is the output of the RNN. The output of the red neural unit is
related to the green and blue neural units, and the equations are shown in (5). Since the
RNN can store information on input data from the most recent time period (short-term
memory), y<4> contains the semantic information of these words.

a[2]<3> = g(Wa[a[2]<2>, a[1]<3>] + ba). (5)

A significant problem with RNN models is that when there are long dependent terms
in the sequence, the network degrades because of the gradient explosion or disappearance
during backpropagation [41]. Using GRU or LSTM [42] can better solve the problem of
gradient explosion and gradient disappearance. LSTM remembers information by adding
unit states and reduces the possibility of gradient disappearance and gradient explosion by
using input gates, output gates, and forget gates. This enables both short-term and long-
term dependency problems to be dealt with. LSTM has been repeatedly applied to solve
semantic relatedness tasks and has achieved convincing performance [13,43]. This paper,
therefore, uses the LSTM network as a superordinate replacement for the RNN network.
Since the LSTM network contains a vector of memory units in each cell, remembering
longer history information is its default behavior rather than something they struggle to
learn. Each LSTM unit contains an input gate it, an output gate ot, and a forget gate ft, and
they are each calculated as shown below.

it = σ(Wixt + Uiht−1 + bi). (6)
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ot = σ(Woxt + Uoht−1 + bo). (7)

ft = σ(W f xt + U f ht−1 + b f ). (8)

To update the information in the memory cell, a memory candidate vector (c̃t) is first
calculated using the tanh function. The memory unit ct is then obtained from the sum of
the candidate vector (c̃t) passing through the input gate and the previous memory unit ct−1
passing through the forget gate. The purpose of this memory candidate is to control how
much of the candidate vector and information from the previous memory cell needs to be
“remembered”.

c̃t = Tanh(Wcxi + Ucht−1). (9)

ct = ft � ct−1 + it � c̃t. (10)

Finally, the LSTM unit calculates its output ht with an output gate as follows:

ht = ot � Tanh(ct). (11)

3.1.3. Embedding Model Based on Self-Attention

The self-attention model is one of the building modules in Transformer, a new net-
work architecture proposed by Google in 2017 [44]. Encoder–decoders were previously
implemented based on convolutional or recurrent neural networks. On the other hand, the
Transformer is implemented entirely based on the attention mechanism. Their experiments
on two machine translation tasks show that the model is easier to parallelize and requires
less training time. This is because the traditional Seq2Seq model has difficulty processing
long sequences of sentences and is not parallelizable.

The attention mechanism allows the neural network to learn the differences and
weights of words in a sentence, which can improve the accuracy of the neural network
model. The self-attention network used in this paper consists of several parallel atten-
tion layers, and the attention mechanism is an addressing process. Given a task-related
queryvector Q, its attention distribution with respect to the key is computed and attached
to the value.

The process is divided into three steps: (1) Information input: the Q, K, V is repre-
sented by X = [x1, x2, · · · , xn] as the input weight vector. For example, a sequence contains
four words, then their embedding vectors are a1, a2, a3, a4. Each vector is multiplied by
a different transformation matrix Wq, Wk, Wv, for example, using the vector a1 to obtain
q1, k1, v1, respectively. (2) Calculate the attention distribution: compute the correlation by
the dot product of Q and K, and compute the attention weight αi = so f tmax(s(ki, q)) =
so f tmax(kT

i q/
√

dk) by so f tmax. Attention is used to match the similarity of these two vec-
tors. For example, computing q1 and k2 yields α1,2. Since the value of q× k increases as the
dimensionality increases, dividing by the value of

√
dk is equivalent to normalization [45].

Next, all the computed αi,j values are passed through the so f tmax layer to obtain α̃i,j. The
attention weight αi is used to explain how much attention is paid to the ith attention weight
information in the contextual query qi. For example, when computing the spatial vector
for a software requirement “read an object from an XML file”, the attention score for each
word in the sentence is first computed, which ultimately determines the attention devoted
to each part of the sentence when encoding the word embedding. (3) The output vector
is computed from the attention weights. Since α̃i,j has been obtained, it is multiplied and
summed with all vj. For example, o1 = ∑j α̂1,jvj. Thus, it can be seen that o1 is generated,
taking into account the semantic information of the whole sentence.

To summarize the above steps: the input matrix is I ∈ R(d, N) containing N-dimensional
vectors after word embedding. The I are multiplied by three different transformation matrices
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Wq, Wk, Wv to obtain the intermediate matrices Q, K, V ∈ R(d, N). Transpose K and multiply
it with Q to obtain the attention matrix A ∈ R(N, N), which is then subjected to so f tmax
to obtain Â ∈ R(N, N). It is multiplied by the matrix V to obtain the final output matrix
O ∈ R(d, N). The formulae are shown in (12) and (13).

Â = so f tmax(A) = KT ·Q. (12)

O = V · Â. (13)

3.2. Embedding Model Based on CNN

Convolutional neural networks (CNNs) can learn local features and assume that
these features are not constrained by absolute position. In the field of natural language
processing, it is mainly used for lexical annotation, named entity recognition, etc. [38,46].
The convolutional layer applies a one-dimensional filter to each row of features in the
sentence matrix. The same filter at each position in the sentence as the n-gram convolution
allows features to be extracted independently. The model of the convolutional neural
network is shown in Figure 4. For the green nodes h0 = f (W(x0, x1, x2) + b) = f (w0x0 +
w1x1 + w2x2 + b), h1 = f (W(x1, x2, x3) + b) = f (w1x1 + w2x2 + w3x3 + b). In each layer of
the neural network, the value of W is shared. This leads to the following two characteristics
of convolutional neural networks [47].

1. Sparse connection: This enables each neuron in the neural network to focus on
acquiring local features.

2. Weight sharing: It increases efficiency by reducing the number of parameters to be
learned and allows the model to be generalized.

y0 y1 y2

h0 h1 h2 h3

x0 x1 x2 x3 x4 x5

Figure 4. Convolutional neural network (CNN) model.

CNN for natural language processing can be divided into single-convolutional layer
CNN and multiconvolutional layer CNN, so the convolution used can be 1d, 2d, or even
3d. A single convolutional layer CNN extracts token features from word embeddings and
learns sentence features through a layer of convolutional neural networks. The token and
sentence features are then fed back into the neural network to predict the relationship
between two given words in a sentence. A single convolutional layer CNN used by RCT is
illustrated in Figure 2, and the structure is defined and applied to the semantic modeling
of sentences, which can handle input sequences of different lengths. The layers in the
network are divided into a one-dimensional convolutional layer and a dynamic k−max
pooling layer. Assuming that there are n words in a sentence and that the dimension of the
word vector is k after each word is embedded, the input to the CNN network is an n× k-
dimensional matrix. We set a sliding window of length h, i.e., the number of words in the
vertical direction. Using this sliding window to slide through the entire matrix, the window
size of the convolution is h× k, after which the vector c corresponding to one feature is
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calculated by Equation (14). The feature ci is generated from a window consisting of the
words xi:i+h−1. w is the weight and b is the bias.

ci = f (W · xi:i+h−1 + b). (14)

where the weights obtained from training in W correspond to feature detectors that learn to
recognize specific classes of n− grams. n− grams ≤ h, where h is the width of the sliding
window. A wide convolutional sliding window h is preferable to a narrow convolutional
sliding window h. Wide convolution ensures that all weights in the filter reach the entire
sentence, including words at the edges. This is particularly important when h is set to a
relatively large value, such as 8 or 10. In addition, wide convolution ensures that applying
the sliding window filter to the input sentence s always produces a valid nonempty result
c, independent of the width h and sentence length n. Multiple feature vectors can be
generated by varying the size of h, and the set of these vectors is called a Feature map.
Feature map c = [c1, c2, · · · , cn−h+1)]. This Feature map c is then passed through a dynamic
k−max pooling layer. The dynamic k−max pooling layer is a morphing and generalization
of maxpooling. The max pooling operator is a nonlinear subsampling function that returns
the maximum of a set of values. The dynamic k−max pooling layer has been improved
in two ways. Firstly, for linear sequences of values k−max, the pooling layer will return
a subsequence of k maxima in the sequence rather than a single maximum. Secondly, the
pooling parameter k can be dynamically chosen by a function of other aspects, such as
input. The pooling layer also solves the problem of variable-length sentence inputs. The
final output layer is a fully connected layer + a so f tmax layer for different NLP tasks, using
dropout or L2 regularization to avoid overfitting the network [48].

3.3. Requirement and Source Code Feature Vector Generation

Based on these neural networks, it is possible to convert software requirement vocabu-
laries or sentences and source code tokens into spatial vectors. RCT fuses these distributed
feature vectors into a single feature vector representing the semantic information of the
software requirements or source code functions through pooling or fully connected neural
networks. Pooling-related techniques are also gaining interest in natural language pro-
cessing. The pooling layer is responsible for maintaining invariance in the event of data
changes and perturbations. A pooling operation is generally divided into two steps. First,
the pooling operator scans the feature map or feature vector and aggregates the feature
information within each local region. Information aggregation can enhance robustness
against data translation and change to a certain extent. For example, an average or maxi-
mum pooling operation takes a local region’s average or maximum value. Secondly, the
downsampling operation retains only a portion of the aggregated data for each feature
channel and skips the rest with a fixed sampling step. A larger matrix of feature vectors is
obtained after passing through the neural network for software requirements and source
code. A simplified natural approach is used to statistically aggregate the data by calculating
the mean, maximum, and L2 parity of particular values. Pooling results in fewer features
and fewer parameters. Taking Maxpooling as an example, Maxpooling captures the most
important features in each region, i.e., the features with the maximum values, as shown in
Figure 5.
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6

Figure 5. Maxpooling model.

In RCT, Maxpooling extracts the most important features in the vector for representing
semantic information. The idea is to capture the most important feature for each feature
vector—the feature with the highest value [49]. This pooling scheme naturally deals
with variable sentence lengths. Thus, the source code is embedded to obtain a feature
vector

−→
hM for function names, a feature vector

−→
hCS for source segment, and

−→
hCT for tokens

in the preprocessed source generation. The software requirements are passed through
the embedding layer to obtain feature vectors,

−→
hRS,

−−→
hRD, representing the requirement

summary and description, respectively. After passing through the pooling network, the
output vectors are calculated as shown in (15) and (16), respectively, where ⊕ denotes the
pooling network or fully connected network, the final Code vector and Requirement vector
represent the software requirements and the source codes. Theyare generated through the
pooling network.

code vector =
−→
hM ⊕

−→
hCS ⊕

−→
hCT . (15)

code vector =
−→
hRS ⊕

−−→
hRD. (16)

3.4. Similarity Calculation and Model Training

The software requirement and source code functions pass through the embedding
and pooling/fusion layers to obtain a source code feature vector (Code vector) and a
requirement feature vector (Requirement vector) containing their semantic information,
respectively. These vectors are then used as input to the comparison layer, the final layer
of the RCT model. It compares the Code vector with the Requirement vector and calculates
the similarity between them, generating links between the requirements and the source
code for the top-ranked requirements. The final traceability links between requirements
and code are constructed and used to analyze the impact of requirements changes on the
code or in software development and testing. Commonly used vector similarity calculation
methods are shown in Equations (17)–(19).

Pearson Correlation Coe f f icient : Psim(x, y) =
n ∑ xiyi −∑ xi ∑ yi√

n ∑ xi
2 − (∑ xi)2

√
n ∑ yi

2 − (∑ yi)2
. (17)

Euclidean Distance : Exim(x, y) =
1√

∑(xi − yi)2 + 1
. (18)

Cosine Similarity : Csim(x, y) = ∑ xiyi√
∑ x2

i

√
∑ y2

i

. (19)

Once a tracing neural network model has been built, training the neural network
model is one of the key issues to be considered, as it is directly related to the accuracy of the
final tracing relationship established. Traditional classification models can use exponential
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loss, Hinge loss, and cross-entropy loss functions. However, these functions are not suitable
for this paper’s study because our tracing model aims to obtain the similarity between
software requirements and code. In other words, given a code fragment C and a software
requirement R, if there is a tracing link between C and R, the model will predict a high
similarity; otherwise, a low similarity. Therefore, during training, each training datum is
constructed as a triple < C, R+, R− >: for each code fragment C there is a requirement
R+ with tracing relationship and a requirement R− without tracing relationship. The final
loss function improves on the Hinge loss function. RCT predicts the cosine similarity
between < C, R+ > and < C, R− > and minimizes the ranking loss [50]. This is shown in
Equation (20).

L(θ) = ∑
<c,R+ ,R−>∈TS

max(ε, λ− sim(c, R+) + sim(c, R−)). (20)

where θ represents the parameters of the model, TS represents the training set, and the
similarity between the software requirements and the source code is sim(C, R+). sim(C, R−)
can be calculated using Equations (17)–(19). We use an initial value of λ minus the similarity
between sim(C, R+) and add the similarity between sim(C, R−) as the final loss function.
It is not necessary to mark the similarity between software requirements and source code
in each piece of data. This is because as the model is trained, this ranking loss function L(θ)
will gradually increase the cosine similarity between software requirements and source code
with tracing relationships and, conversely, decrease for those without tracing relationships.
The RCT thus trained will result in a high similarity between requirement-code pairs with
tracing relationships and a high ranking when constructing trace links. Requirement-code
pairs without tracing relationships are less similar and are ranked lower. In addition, to
prevent the loss function from being less than 0, a decimal “ε”, which is slightly larger than
0, is used as a lower bound for the loss function.

4. Experiment Setup
4.1. Subject Programs and Metrics

This paper uses the natural language description-code corpus [51] provided by Mi-
crosoft as a training set. The corpus contains thousands of Java functions and their cor-
responding natural language descriptions, i.e., < C, R+ >. To obtain the < C, R+, R− >
needed for training, we manually add a natural language description R− that does not
have a tracing relationship to form (C, R−). The tracing neural network is trained using
the training set and the loss function L(θ). The validation and test set use traceability
links between issues (including requirements, bug reports, and code change history) and
the entire project source code (from 33 open source projects) provided by Rath et al. [52].
We select data with the issue types feature, new feature, feature request, improvement,
and enhancement, then remove data with the issue types bugs, tasks, patches, etc. This
means that the focus is only on new requirements for the product and enhancements to
existing requirements. Each piece of data in this dataset contains a brief and detailed
description of the requirement (for example, a new feature in the archiva project is outlined
as “Repository purge feature for snapshots”, and the detailed description is “We need a
way to purge a repository of snapshots older than a certain date, (optionally retaining the
most recent one) and fixing the metadata”) and traceability links between it and the code
files. A piece of data is < R, C11+, C+

2 , · · · , C+
n >. A requirement R and the source code

C+
n have tracing relationships. This dataset is stored in a relational database in SQLite, and

the data in this database are filtered and integrated to obtain the final validation set. Once
the model is trained, each requirement R is fed into the tracing neural network, and the
number of code functions that the model predicts to have tracing relationship C+

n (true
positive) is counted, which provides a visual representation of how well the tracing model
performs. Theoretically, RCT can construct traceability links between source code and
requirements written in any programming language. For this paper, only Java projects
are used as experimental objects, so 18 projects developed in Java are selected from these
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33 projects to verify the model performance. The specific project names and the number of
requirements they contain, the number of source code files, and the number of traceability
links between requirements and source code files are shown in Table 2.

Table 2. Experimental data.

Project Name Requirement Number Number of Source Files Number of Traceability Links

archiva 1 174 750 3028
cassandra 2 1992 2203 22,399

derby 3 980 2849 14,736
drools 4 654 4342 29,399
errai 5 152 3815 2630
flink 6 1177 5366 22,082

groovy 7 736 1376 2693
hbase 8 2169 3429 24,986

hibernate 9 819 9178 23,542
hive 10 1738 5544 15,468

kafka 11 257 1564 3156
keycloak 12 505 4343 21,820
maven 13 357 966 2782
railo 14 167 2788 1147
spark 15 513 857 2338

switchyard 16 334 2954 12,719
teiid 17 768 2 269 23,941

zookepper 18 229 603 2457
total 13,721 55,196 231,323

1 https://doi.org/10.7910/DVN/PDDZ4Q/SYQTC9; 2 https://doi.org/10.7910/DVN/PDDZ4Q/E9PAND;
3 https://doi.org/10.7910/DVN/PDDZ4Q/I74GST; 4 https://doi.org/10.7910/DVN/PDDZ4Q/BFEOXT;
5 https://doi.org/10.7910/DVN/PDDZ4Q/OPG8N9; 6 https://doi.org/10.7910/DVN/PDDZ4Q/KFMXVI;
7 https://doi.org/10.7910/DVN/PDDZ4Q/PLQP8O; 8 https://doi.org/10.7910/DVN/PDDZ4Q/NO3KD8;
9 https://doi.org/10.7910/DVN/PDDZ4Q/0ITQ9A; 10 https://doi.org/10.7910/DVN/PDDZ4Q/CEUQJR;
11 https://doi.org/10.7910/DVN/PDDZ4Q/LYZAIU; 12 https://doi.org/10.7910/DVN/PDDZ4Q/0IMEHO;
13 https://doi.org/10.7910/DVN/PDDZ4Q/TFY2J1; 14 https://doi.org/10.7910/DVN/PDDZ4Q/AVY9DX;
15 https://doi.org/10.7910/DVN/PDDZ4Q/U2DEMZ; 16 https://doi.org/10.7910/DVN/PDDZ4Q/HS3IF6;
17 https://doi.org/10.7910/DVN/PDDZ4Q/J8NZXZ; 18 https://doi.org/10.7910/DVN/PDDZ4Q/OVRUZW
(accessed on 24 May 2019).

This experiment uses two common metrics to measure the performance of neural
networks in constructing traceability links between software requirement and code, namely,
Recall@k and mean reciprocal rank (MRR), which are widely used in recommendation
algorithms, information retrieval, etc. [53–55].

• The Recall@k metric measures the percentage of correct relevant results among the
first k results returned by each query or prediction [44], which is calculated as shown
in Equation (21), where TP@k is the correct relevant results among the first k results
and FN@k is the correct results that were not detected in the first k results.

Recall@k =
TP@k

TP@k + FN@k
. (21)

Because a requirement may be related to multiple code files in the software, a higher
value of Recall@k indicates a better performance in constructing traceability links
between the software requirements and the source code.

• Meanreciprocalrank(MRR) [44,50] is the position of the first relevant result f irstq in
the ranked list obtained based on each query or search q, calculated as shown in (22):

MRR =
1
|Q|

|Q|

∑
q=1

1
f irstq

. (22)

https://doi.org/10.7910/DVN/PDDZ4Q/SYQTC9
https://doi.org/10.7910/DVN/PDDZ4Q/E9PAND
https://doi.org/10.7910/DVN/PDDZ4Q/I74GST
https://doi.org/10.7910/DVN/PDDZ4Q/BFEOXT
https://doi.org/10.7910/DVN/PDDZ4Q/OPG8N9
https://doi.org/10.7910/DVN/PDDZ4Q/KFMXVI
https://doi.org/10.7910/DVN/PDDZ4Q/PLQP8O
https://doi.org/10.7910/DVN/PDDZ4Q/NO3KD8
https://doi.org/10.7910/DVN/PDDZ4Q/0ITQ9A
https://doi.org/10.7910/DVN/PDDZ4Q/CEUQJR
https://doi.org/10.7910/DVN/PDDZ4Q/LYZAIU
https://doi.org/10.7910/DVN/PDDZ4Q/0IMEHO
https://doi.org/10.7910/DVN/PDDZ4Q/TFY2J1
https://doi.org/10.7910/DVN/PDDZ4Q/AVY9DX
https://doi.org/10.7910/DVN/PDDZ4Q/U2DEMZ
https://doi.org/10.7910/DVN/PDDZ4Q/HS3IF6
https://doi.org/10.7910/DVN/PDDZ4Q/J8NZXZ
https://doi.org/10.7910/DVN/PDDZ4Q/OVRUZW
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4.2. Experiment Process

We use the natural language description-code corpus provided by Microsoft as the
training set. The traceability link data provided by Rath et al. from the open-source project
mentioned above are used as validation and test data. These advantages are twofold: (1)
there is no overlap between the training set and the validation and test sets, which allows
for better evaluation of the tracing model’s properties and avoids errors in the test results
due to the same data; (2) the projects in Rath et al.’s dataset are real open-source projects,
and their job is to collect the traceability link data from these projects. Therefore, using
them as a validation or test set gives an idea of how well the tracing model generalizes to
real scenarios. These data are preprocessed as input to the tracing model. The processing
of the requirements is relatively straightforward, extracting their general and detailed
descriptions and removing the stop words. The source code is processed by first traversing
all the project files, and RCT uses TreeSitter (a generic parser from Github) to compile the
functions in these projects and extract the function name, function segment, and each token
in them. Source code and natural language requirements are embedded in the same vector
space. The similarity between requirement vector and code vector is calculated to determine
whether there are traceability links. After the tracing model is trained, we use the validation
and test set data to compare the performance of each neural network to select the best
embedding network. Finally, we compare RCT with previous link-constructing methods
(LSA, VSM, BM25, TraceNN, Poirot (PN)). The overall process is shown in Figure 6 below.

codebase requirement document

JAVA

training set

Similarity
comparison

Tracing
network

codebase requirement document

Training data Validation data

JAVA summary and
description

Compare the results
and verify the model

accuracy

Building tracing
links

Established trace links

requirement
vector

code vector

summary and
description

Figure 6. Overall experiment process of RCT.

The implementation of the RCT model is written in Python. The neural network’s
hyperparameters are continuously tuned during training to achieve the best combination
of parameters, with the best average over all the source items, as the optimal parameter
configuration, as shown in Table 3. The “Code Max Num Tokens” and “Query Max Num
Tokens” are the maximum length of each code segment and each requirement input into the
network. Tokens after the maximum length are removed. The performance of the resulting
tracing model is guaranteed to converge under the optimal parameter configuration.
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Table 3. Tracing network configuration.

Network Type NBOW, RNN, CNN, Self-Attention

Batch Size 1000
Learning Rate 0.01

Learning Rate Decay 0.98
Code Max Num Tokens 200
Query Max Num Tokens 30

Dropout Keep Rate 0.9
Max Epoch 500
Optimizer Adam

5. Results

In order to evaluate the effectiveness of the tracking network, the following two
questions (RQ) are investigated.

1. RQ1: Which neural network model in RCT can obtain better results for constructing
traceability links between software requirements and source code?

2. RQ2: Is RCT better than other methods of constructing traceability links between
software requirements and source code?

5.1. RQ1 Comparative Experimental Analysis

To answer RQ1, this paper uses four neural networks (NBOW, RNN, CNN, and self-
attention) to embed software requirements and source code, and conducts comparative
experiments using training datasets. The experimental results are shown in Figure 7.

Figure 7 shows the change in the loss function values of the model and the MRR values
as the training process continues to advance. The overall performance of the neural bag-
of-words model (NBOW) changes less as the training process progresses. In addition, the
convolutional neural network (CNN), recurrent neural network (RNN), and self-attention
models gradually decrease the value of the loss function and increase the value of MRR as
the training process progresses. CNN has the slowest convergence rate and the worst MRR
value in the validation set. Self-attention has the best performance on the validation set
and performs slightly better than RNN.

To further compare the performance of each neural network in various real-world
projects, we use 18 practical projects as the test set. The testing metrics are Recall@10,
Recall@30, and Recall@50. In the context of constructing traceability links, recall is the
key measure because it shows the percentage of correct links between requirements and
code that the model can find. A high recall means there is little likelihood that our model
will miss a correct link, which is in line with the ultimate goal of traceability research.
It is not appropriate to use precision@k as a metric because the number of source codes
corresponding to each software requirement is different. Once RCT has found all the source
code for a requirement, increasing the value of k at this point will cause the Precision@k
value to decrease, resulting in inaccurate results. For example, all ten source code functions
related to a requirement are in the top 10 prediction results, showing that RCT can construct
accurate traceability links for that requirement. Recall@10, Recall@30, and Recall@50 all
have a value of 1; however, Precision@10, Precision@30, and Precision@50 have values of
1 (10/10), 0.333 (10/30), and 0.2 (10/50), respectively. It can be seen that Precision@k does
not reflect the performance of RCT; therefore, it is better to use Recall@k as a metric.

Tables 4–6 show the significant variation in the evaluation metric Recall@k between
projects. They also verify that there is a large variation in the number of traceability links
for different requirements. The results for each neural network on the test set are consistent
with the results using MRR as the evaluation metric on the validation set. NBOW performs
best under the Recall@10 metric (with the best performance on 7/18 projects, average
Recall@10 is 0.430); self-attention performs best under the Recall@30 metric (with the best
performance on 9/18 projects, average Recall@10 is 0.571) and the Recall@50 metric (with
the best performance on 8/18 projects, average Recall@50 is 0.687). In total, self-attention
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has the best performance (best performance on 22/54 projects, average is 0.561) when
all of the above results are tallied. This also shows that the performance of each neural
network on the test set is consistent with the performance results on the validation set. The
performance of CNN is the worst in Recall@10 (0.396) and Recall@30 (0.542). Therefore,
CNN has the worst performance (average is 0.524) when all of the above results are tallied.

Table 4. Performance of 4 neural network models under Recall@10.

Project Name NBOW CNN RNN Self-Attention

archiva 0.281 0.443 0.449 0.298
cassandra 0.419 0.384 0.411 0.416

derby 0.520 0.213 0.622 0.521
drools 0.325 0.255 0.312 0.334
errai 0.358 0.334 0.365 0.337
flink 0.349 0.333 0.343 0.340

groovy 0.736 0.727 0.709 0.743
hbase 0.398 0.381 0.380 0.382

hibernate 0.443 0.434 0.460 0.461
hive 0.419 0.401 0.392 0.410

kafka 0.367 0.333 0.396 0.343
keycloak 0.357 0.316 0.340 0.326
maven 0.485 0.434 0.509 0.481
railo 0.434 0.397 0.409 0.397
spark 0.598 0.476 0.538 0.554

switchyard 0.484 0.492 0.288 0.502
teiid 0.290 0.301 0.293 0.309

zookepper 0.480 0.481 0.459 0.479

Table 5. Performance of 4 neural network models under Recall@30.

Project Name NBOW CNN RNN Self-Attention

archiva 0.483 0.532 0.579 0.553
cassandra 0.543 0.540 0.531 0.546

derby 0.639 0.458 0.675 0.605
drools 0.480 0.419 0.427 0.452
errai 0.511 0.516 0.476 0.519
flink 0.487 0.461 0.487 0.502

groovy 0.793 0.768 0.788 0.768
hbase 0.516 0.511 0.518 0.523

hibernate 0.581 0.562 0.614 0.590
hive 0.562 0.552 0.544 0.536

kafka 0.503 0.514 0.504 0.527
keycloak 0.484 0.494 0.497 0.511
maven 0.595 0.570 0.611 0.604
railo 0.569 0.510 0.590 0.527
spark 0.700 0.614 0.633 0.682

switchyard 0.714 0.702 0.572 0.741
teiid 0.439 0.418 0.437 0.448

zookepper 0.621 0.609 0.586 0.640
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Table 6. Performance of 4 neural network models under Recall@50.

Project Name NBOW CNN RNN Self-Attention

archiva 0.574 0.651 0.629 0.621
cassandra 0.620 0.630 0.617 0.636

derby 0.713 0.767 0.683 0.676
drools 0.544 0.548 0.526 0.550
errai 0.561 0.596 0.557 0.587
flink 0.578 0.572 0.579 0.599

groovy 0.812 0.800 0.821 0.799
hbase 0.604 0.595 0.594 0.610

hibernate 0.665 0.639 0.690 0.647
hive 0.638 0.625 0.620 0.625

kafka 0.610 0.625 0.593 0.670
keycloak 0.564 0.580 0.612 0.586
maven 0.677 0.647 0.688 0.662
railo 0.661 0.558 0.622 0.601
spark 0.735 0.701 0.700 0.720

switchyard 0.822 0.740 0.701 0.838
teiid 0.517 0.499 0.533 0.599

zookepper 0.683 0.692 0.677 0.723

Figure 7. Comparison of learning curve and performance of four embedding neural networks.

The best performance achieved by self-attention is explainable. This is because in
constructing software traceability, the goodness of the remote dependencies between se-
quences in the learned text determines the final prediction performance. A key factor
affecting the ability to learn such dependencies is the length of the signal’s forward versus
backward traversal path in the neural network. The shorter the path between any com-
bination of positions in the input and output sequences, the easier it is to learn remote
dependencies. The maximum path length in self-attention is O(1), in RNN it is O(n), and
in CNN it is O(log(n)k ) [44]. n is the length of the text sequence, and k is the convolutional
kernel size. The neural bag-of-words model does not have dependencies between learning
sequences. Since the convolutional kernel k ≤ n, the maximum path length in both RNN
and CNN is larger than self-attention. In addition, self-attention can accept all vectors as
input simultaneously, so, to some extent, self-attention is more efficient than RNN.

In summary, this experiment use several projects and evaluation metrics to compare
the performance of each neural network in constructing software traceability. It is veri-
fied that self-attention has the best performance results and is thus the most suitable for
constructing the links between software requirements and source code.

We also compare the time overhead of each neural network model. In Figure 8, the
vertical coordinate is the time required to train or validate the data within a single epoch.
The NBOW structure is relatively simple, and the CNN can reduce the time overhead
through weight sharing and sparse connections. Self-attention has the best performance
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but also has more time overhead. However, in practice, when using RCT to construct the
requirement-code traceability links, the difference in time overhead is not significant (as can
be seen from the time difference in seconds required to perform the validation set analysis).
Thus, it does not cause problems for the user due to excessive overhead time. Self-attention
is still the best neural network model.

Figure 8. The time cost of training and validating four neural networks.

5.2. RQ2 Comparative Experimental Analysis

To answer this question, we compare the performance of RCT with existing automated
methods for constructing software tracing links. First, the information retrieval algorithms
include LSA, VSM, and BM25. These three methods are chosen for comparison because
the LSA and VSM algorithms are the most commonly used information retrieval methods
for constructing links between software artifacts. In Vale’s experimental results [10], BM25
achieved the best recall results on the five retrieval methods (CV, LSI, NN, EB, and BM25)
when constructing traceability links between software feature-codes. The results of the
comparative experiments are shown in Table 7.

Table 7. Performance comparison of RCT with existing techniques for constructing traceability links
under Recall@50.

Projects Name RCT [Self-Attention] LSA BM25 VSM TraceNN Poirot (PN)

archiva 0.621 0.154 0.102 - 0.374 0.201
cassandra 0.636 0.234 0.070 - 0.432 0.181

derby 0.676 0.247 - - 0.411 0.112
drools 0.550 0.188 - - 0.387 0.231
errai 0.587 0.191 0.128 - 0.365 0.215
flink 0.599 0.188 0.166 - 0.401 0.224

groovy 0.799 0.312 0.074 - 0.525 0.281
hbase 0.610 0.171 - - 0.372 0.264

hibernate 0.647 0.203 - - 0.390 0.275
hive 0.625 0.295 - - 0.501 0.223

kafka 0.670 0.193 - 0.149 0.421 0.301
keycloak 0.586 0.231 0.115 - 0.347 0.211
maven 0.662 0.345 0.155 - 0.476 0.292
railo 0.601 0.205 0.101 - 0.365 0.177
spark 0.720 0.379 0.196 - 0.545 0.286

switchyard 0.838 0.394 - - 0.582 0.216
teiid 0.599 0.210 0.165 - 0.388 0.257

zookepper 0.723 0.401 0.089 - 0.491 0.208

The performance of using neural networks to build links significantly improved
compared to LSA, BM25, and VSM. In terms of mean values, self-attention averaged
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0.687, and LSA averaged 0.252 on the 18 projects. VSM obtained inferior results when
constructing traceability links on the experimental dataset. The recall results of VSM on
many projects converged to 0, suggesting that this method has difficulty finding traceability
links between requirements and source code in these projects. The performance of BM25
(average Recall@50 is 0.076) is intermediate between LSA and VSM. A careful analysis
of the principles of the VSM reveals that it uses the TF-IDF algorithm, which is based
on the core idea that if a word is relatively rare and occurs several times in a given text,
then it is likely to reflect the characteristics of that text, i.e., the keywords of that text.
However, in most experimental projects, the requirements and the corresponding source
code have difficulty with the same keywords due to the different styles and habits of
vocabulary used by those who formulate the requirements and those who write the code.
As a result, VSM has difficulty constructing links between them. The BM25 algorithm is a
modified version of the TF-IDF algorithm, as it sums the TF-IDF values of each word in the
requirements and source code text to obtain a similarity score between the requirements
and the source code text. The similarity score between the requirement and the source text
is obtained. In addition, the traditional TF value is theoretically infinite, whereas BM25
adds a constant k to the calculation of the TF to limit the growth limit of it. The LSA can
obtain part of the underlying semantic information and therefore has better predictions
than the BM25 and VSM. Conversely, RCT can identify the embedded semantic information
in software requirements and source code to construct links between them. This confirms
that the most important reason for the low accuracy of tracing requirements to source code
using information retrieval methods is that they only represent requirements, code, and
other documents as simple word sets but cannot identify their embedded semantics. This
experimental result is consistent with the results of Guo et al. [56] in comparing neural
networks with information retrieval methods for constructing traceability links between
individual artifacts in software.

To further validate the advantages of RCT in constructing traceability links between
software requirement and source code, we compare it to existing deep learning or proba-
bilistic network-based methods for building tracing links (TraceNN [56], Poirot). TraceNN
is implemented in the scripting language Lua and can be deployed directly to run and
train locally. We also trained TraceNN using the training set Microsoft Corpus [51], with
TraceNN hyperparameters configured according to the paper [56]. Poirot is a software
tracking tool for industrial research developed by members of the Cleland-Huang [8] team,
which uses a probabilistic network model to construct links between software artifacts.
In this paper, we validate the performance of Poirot by implementing a probabilistic net-
work model (PN) in order to obtain complete results of the tool for constructing software
requirement-source code links on 18 projects in the validation set. Poirot also preprocesses
software artifacts before constructing traceability links, for example, by removing discontin-
ued words and keywords from the source code. We therefore also input the preprocessed
software requirements and source code files into the probabilistic network model. The
experimental results obtained by these two methods in the test project are shown in Table 7.

As can be seen from Table 7, RCT (self-attention) (average Recall@50 is 0.687) performs
better than TraceNN (average Recall@50 is 0.432) and Poirot (average Recall@50 is 0.231)
in constructing links. Combined with the experimental data in Table 6, TraceNN also
does not perform as well as RCT (RNN) (average Recall@50 is 0.635). Although both
methods use RNN (LSTM or GRU) to extract semantic information from software artifacts,
TraceNN constructs the trace link between software requirements and source code without
preprocessing the software requirements as well as the source code, and without removing
stop words from the requirements and configuration file library files from the source code,
etc., which reduces the accuracy of the results. The probabilistic network approach used by
Poirot still calculates a weighted score for how often a particular term appears in the text
and then ranks the terms in decreasing order according to the weight score. It converts the
raw probability score into a more intuitive confidence level, and once the algorithm has
calculated a credit score, it returns a set of candidate links. Methods such as information
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retrieval still have difficulty extracting semantic information from requirements and source
code. The performance is, therefore, far inferior to that of the deep-learning-based approach.

Therefore, RCT has a more significant advantage over previous traceability link con-
struction methods and is more instructive and practically valuable. The above experimental
results demonstrated the difference in the performance of different neural networks in
constructing links between software requirements and source code, and showed the sig-
nificant improvement over previous methods such as information retrieval or machine
learning. The importance of applying neural networks in requirements traceability was
verified. Developers, testers, and others can use RCT to quickly and accurately find the
corresponding code when requirements are changed.

6. Discussion
6.1. Why Does RCT Work?

We identified three advantages of RCT that may explain its effectiveness in construct-
ing traceability links:

A unified representation of heterogeneous data. Source code and natural language
requirements are heterogeneous. By jointly embedding source code and natural language
requirements in the same vector space, it is possible to more accurately measure the
similarity between the two and, thus, construct traceability links between them.

Better requirement and code understanding through deep learning. Unlike tradi-
tional techniques, RCT learns requirements and source code representations through deep
learning. The model considers requirements and source code features such as semantically
relevant words, word order, statement structure, etc. As a result, it can better identify the
semantics of requirements and code.

Clustering requirement and code by semantic similarity. RCT embeds semantically
similar code segments and software requirements into vectors close to each other. Semanti-
cally similar code segments are grouped according to their semantics. As a result, RCT can
quickly find code segments with traceability relationships to requirements.

6.2. Limitation of RCT

Despite advantages such as extracting semantic information about software artifacts,
RCT can still return inaccurate results. It will sometimes rank results that do not have a
traceability relationship ahead of correct results. This is because RCT only ranks results
based on the textual semantic vector of the source code and requirements. In future work,
our model could consider more code features (e.g., control flow, data flow, etc. [57]) to
optimize the query results further.

6.3. Threats to Validity

We then explore threats to effectiveness in terms of both external validity and internal
validity.

• External validity: Firstly, the dataset used for this experiment is the natural language
description-code base provided by Microsoft and some projects on GitHub, so the
results of this paper may not apply to all open-source projects. At the same time,
the code in these datasets is well written, which helps build links between software
requirements and source code. However, due to the varying levels of programmers,
there are many irregularities in writing, such as poor naming. Therefore, more actual
projects can be considered in the future. In addition, we use Java projects as the subject
of the experiment. However, the coding specifications and syntax vary between
programming languages, so the performance of building links may also be different.
The performance of RCT will be further evaluated.

• Internal validity: RCT uses neural networks to extract textual semantic information
from software requirements and code and uses the similarity between their feature
vectors to construct traceability links. However, the functionality of the code imple-
mentation sometimes cannot be summarized from the vocabulary used in the code text
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alone but needs to be analyzed in terms of the code’s abstract syntax tree, control flow
graphs, etc., to understand the code functionality better. Therefore, the following work
will further improve the neural network models: combine multiple neural network
models to better extract semantic information from the source code, or use other neural
networks (tree-LSTM [58], GNN [59]) to extract a source code’s control flow graph and
deeper structural semantic information in the abstract syntax tree. This will further
improve the accuracy of constructing traceability.

7. Conclusions

In this paper, we proposed a novel deep neural network named RCT for constructing
traceability links. Instead of matching keywords in the text, RCT learns a uniform vector
representation of source code and natural language requirements so that code fragments
semantically related to the requirements can be retrieved based on these vectors. We
selected four neural network models to extract semantic information from requirements
and source code. Our experimental studies show that the method is effective and that
self-attention performs best (recall 0.687) and outperforms related approaches (TraceNN:
0.432, LSA: 0.252, Poirot: 0.231, BM25: 0.076, VSM: very bad).

RCT is geared toward the current market demand for software engineering. It provides
a new software engineering support tool, significantly improving software development
efficiency and shortening the software development cycle. The approach of studying
optimal neural networks also has applicability to other fields. In the future, we will
investigate more aspects of source code, such as abstract syntax trees, to better represent
the high-level semantics of source code.
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