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Abstract: Pricing using a Generalised Linear Model is the gold standard in the auto insurance
industry and rate regulation. Generalised Additive Model applications in insurance pricing are
receiving increasing attention from academic researchers and actuarial pricing professionals. The
actuarial practice has constantly shown evidence of significantly different premium rates among the
different rating territories. In this work, we build predictive models for claim frequency and severity
using the synthetic Usage Based Insurance (UBI) dataset variables. First, we conduct territorial
clustering based on each location’s claim counts and amounts by grouping those locations into a
smaller set, defined as a cluster for rating purposes. After clustering, we incorporate these clusters
into our predictive model to determine the risk relativity for each factor level. Through predictive
modelling, we have successfully identified key factors that may be helpful for the rate regulation
of UBI. Our work aims to fill the gap between individual-level pricing and rate regulation using
the UBI database and provides insights on consistency in using traditional rating variables for UBI
pricing. Our main contribution is to outline how GAM can address a more complicated functionality
of risk factors and the interactions among them. We also contribute to demonstrating the territory
clustering problem in UBI to construct the rating territories for pricing and rate regulation. We find
that relativity for high annual mileage driven is almost three times that associated with low annual
mileage level, which implies its importance in premium calculation. Overall, we provide insights into
how UBI can be regulated through traditional pricing factors, additional factors from UBI datasets
and rating territories derived from basic rating units and the driver’s location.

Keywords: auto insurance regulation; generalised linear models; generalised additive models; rate
making; predictive modeling; usage based insurance
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1. Introduction

Usage-based insurance (UBI) and its pricing and regulation problems have received
much attention in actuarial science and insurance technology [1–4]. UBI aims to use in-
vehicle devices or smartphones to collect drivers’ driving behaviour and driving trajectory,
which may lead to a better classification of auto insurance risk. In [5], machine learning
techniques, including a logistic regression approach, were used to extensively investigate
how driving behaviour variables affect the prediction of the risk probability and claim
frequency. The study in [5] illustrates how interpretability and high predictive accuracy
can be achieved in the machine learning modelling framework of auto insurance pricing.
Additionally, research in [6] shows improved underwriting performance at the early stage
of adoption and a higher return on equity for insurance companies. However, research on
exploring UBI data for pricing and how rate regulation can be made with UBI is still in the
premature stage. In [7], a study of predictive analytics using UBI shows how they contradict
the aggregate nature of insurance. The pricing based on the individual prediction may
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deeply shake the homogeneity hypothesis behind the insurance pooling. This motivates
us to explore how traditional risk factors may potentially be helpful and how they can be
used to address rate regulation problems.

Research on connecting UBI with a traditional auto insurance policy is fundamental
to a better understanding of the difference between individual-level and collective-based
pricing. Traditional rate-making and rate regulation are based on conventional variables
related to insured drivers and vehicles. The major risk factors associated with drivers may
include the driver’s accident history and a variable that often combines gender, age and car
use. For instance, this type of major risk factor used in auto insurance rate regulation in
Canada consists of Driving Record (DR) and Class (i.e., the type of use). Through these
two major factors, regulators aim to identify the key information from policyholders so
that the insurance risks can be further discriminated. The relativities of these major risk
factors provide benchmark values for the auto insurance industry. For regulating UBI, it is
crucial to explore continuous variables such as Insured Age, Car age, Credit Scores, and
Annual Mileage Driven from UBI data to address their impact on the predictive modelling
of insurance risk. The contribution to the predictive models from these variables may be
significantly different when it comes to the UBI, although they are proven to be important
risk factors in auto insurance pricing. Therefore, further investigation of the significance
associated with these rating variables is needed to better understand their impact on UBI
pricing. This motivated us to conduct this study, which mainly focuses on the conventional
pricing factors from the UBI database to address the significance of pricing factors, the
interaction between crucial variables, and relativity estimates of rating factors. Studying
these aspects will help us regulate auto insurance and provide insights into the connections
and differences between individual-level and collective-based pricing.

Pricing using a Generalised Linear Model (GLM) is the gold standard in the auto
insurance industry, and rate regulation [8–12]. In particular, it plays a crucial role in rate
regulation due to its model interpretability. In [13], two classification techniques, including
GLM, are used to investigate the claim frequency using UBI. In addition, the modelling tools
facilitate the use of telemetric data to improve risk management in insurance. In [14], GLM
was used to model UBI, and the study shows the potential applications of UBI by insurance
companies for setting up auto insurance premium rates. The extension of modelling using
GLM to UBI data is natural, and much of the UBI predictive modelling is based on GLM.
The linearity assumption enables an easy understanding and interpretation of the effect of
a risk factor on the model responses: either loss severity or loss frequency or loss cost. To
facilitate rate regulation, variable selections or variable importance measures associated
with linear models are much more accessible to conduct than non-linear models such
as neural networks or decision-tree-based methods. The machine learning models often
outperform GLM or other linear models [15–17], but they are considered to be black box
models and may create obstacles in communication among the fields associated with the
regulatory practice. This helps to answer why, in rate regulation, regulators are reluctant
to use machine learning models to estimate relativities of major risk factors, which are
served as benchmark values for auto insurance companies. Because of this, this work
also illustrates how we can calculate risk relativities for major risk factors we considered
using GLM. However, GLM cannot identify a more complicated relationship between risk
factors and the response, such as claim frequency. Therefore, the interpretability of the
model in this regard needs to be improved. Additionally, balancing the interpretability of
the models used and the predictive power and accuracy of the models [18,19] is required;
to achieve this, we may have to seek alternative solutions. This motivates us to focus
on statistical models that play a role between linear models and complicated non-linear
machine learning models. On the one hand, the model has desired interpretability due to
the requirement of rate regulation practice of auto insurance. On the other hand, we expect
some non-linear functional patterns to be addressed by specific components of proposed
modelling techniques, which maintain the interpretability of models.
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Applications of Generalised Additive Models (GAM) in insurance pricing are receiving
increasing attention from academic researchers and actuarial pricing professionals [20–22].
In [21], GAM was applied to near-miss event data from a sample of drivers to identify the
risk factors associated with a higher risk of near-miss occurrence. The study reveals that
certain factors are associated with a higher expected number of near-miss events, which
may be useful when implementing dynamic risk monitoring through telematics. In [9],
GAM was used to model loss frequency and severity that involved both categorical and
continuous numerical variables, but the study shows that GLM can approximate the GAM
model closely, which leads to a similar premium structure when they are used for pricing.
The additivity nature of GAM maintains the desired model interpretability in terms of
the significance of contribution by each component. In addition, the ease of producing
variable importance measures associated with each component makes GAM even more
interpretable in explaining which risk factors contribute more or less. On the other hand,
the flexibility of specifying functionality using parametric and non-parametric approaches
improves the ability to explain the impact on the response using non-linear functions. From
an actuarial pricing perspective, some monotonic functions, such as the relativity function
of Driving Records, may be required and must be imposed on pricing. GAM provides
us flexibility in specifying the functionality of the given predictor based on the need,
resulting in more practically applying predictive modelling techniques for rate regulation
purposes. Another reason for using GAM to predict insurance losses or claim counts is
to reduce the dimension of output model parameters. This is particularly important and
meaningful when adding additional variables from UBI datasets to the traditional risk
factors for regulation purposes. Because of this, the total number of estimated model
parameters becomes more manageable. The estimation of functionality using a set of basis
function within each additive component provide an easy and intuitive explanation of
the relationship between risk factors and response. This motivates us to investigate the
functionality of risk factors and their impact to claim frequency and severity modelling
using the UBI database. This work will fill the gap in improving connections between risk
factors and the response variable using a more complicated function, such as spline [23].

Territory risk clustering [24–26] and its use in predictive models have been critical
aspects of auto insurance pricing [27,28]. Rating territory has been considered a key factor
in calculating auto insurance premiums. Depending on how the basic rating unit is set for
pricing, these rating units may consist of postal codes, zip codes, or a larger residential area.
The risk relativities associated with the rating territory are discriminative from one region
to the other. The actuarial practice has constantly shown evidence of significantly different
premium rates among rating territories. The main reason for this is if drivers rely heavily
on personal vehicles, then the loss cost will be higher than in other areas where people
have more choices in terms of local transportation, therefore, a high premium in that area.
Because of this, clustering the territory risk is essential in auto insurance pricing. However,
to the best of our knowledge, literature has yet to be found in the research on clustering
territory risk for UBI. This may call for a study of how clustering of the territory risk can be
incorporated into the predictive modelling of loss frequency or loss severity or both. In this
work, we build predictive models for claim frequency and severity using the synthetic UBI
dataset variables. To achieve this goal, first, we conduct territorial clustering based on each
location’s claim counts and amounts by grouping those locations into a smaller set and
define them as a cluster for rating purposes. Grouping the neighbouring areas or similar
loss severity or frequency helps improve the credibility of the risk measures; therefore, it
helps improve the stability of modelling results. After clustering, we incorporate these
clusters into our predictive model to determine the risk relativity for each factor level.
Within the modelling using GAM, we consider models both with and without interactions
between variables of interest. We are interested in obtaining the numerical risk factor
functionality conditional on different categorical risk factor levels. This allows us to obtain
insights into how risk factors are related and whether or not some interactions between
them can be excluded due to the less significant impact.
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In auto insurance rate regulation, rate making and risk classification are typical tasks.
Therefore, determining the risk-level relativity and territory risk clustering are two primary
focuses. When working with UBI, insurance pricing is determined at the individual level
based on personal risk characteristics, and an investigation into how we can predict the
claim frequency and claim amounts using the UBI database for the risk factors available
from such a database is needed. However, from a rate regulation perspective, each driver’s
driving patterns or behaviours are of no interest, but pricing factors from UBI may help
predict claim frequency and severity. Our work does not aim to build a predictive model for
individual-level pricing for UBI. Instead, we fill the gap between individual-level pricing
and rate regulation using the UBI database and provide insights on potential consistency
in using traditional rating variables for UBI pricing. Although an insurance company may
use many other factors linked to specific drivers, where the type of risk is more detailed,
regulators will only aim to determine the actuarial fairness based on major risk factors.
Because of this, the approaches used to evaluate the level of risk are all group based. Since
how rate regulation on traditional group-based insurance pricing can be extended to UBI
is still an open question, regulation of UBI from an actuarial perspective needs to be well
addressed. Therefore, predictive modelling problems using traditional variables from the
UBI database must be explored. Our main contribution is to outline how GAM can address
a more complicated functionality of risk factors and their interaction among them. We also
contribute to demonstrating the territory clustering problem in UBI to construct the rating
territories for pricing and rate regulation. The rest of this paper is organised as follows. In
Section 2, GAM modelling techniques, territory clustering, and risk relativity estimates
are discussed. Next, in Section 3, the application to UBI synthetic data is presented and
analyzed. Finally, we conclude our findings, provide further remarks and outline future
work in Section 4.

2. Materials and Methods
2.1. Data

The dataset used in this research is a synthetic dataset that consists of a portfolio of
100,000 auto UBI policies provided by [29]. The dataset can be found in http://www2.math.
uconn.edu/~valdez/data.html (accessed on 1 November 2021). This synthetic dataset
contains three types of variables: traditional policy variables, driving patterns-related
variables, and response variables, which are claim amounts and claim counts. There
are 52 variables, including categorical variables such as marital status and car use and
numerical variables such as annual mileage driven and credit scores. In addition, some
variables are used to describe driving patterns, such as the speeds of acceleration and
braking. Some variables capture the intensity of left or right turns. Due to the imbalance
of the dataset, the information related to claim counts and claim amounts is limited. To
enrich the information and become more useful for the illustration of predictive modelling
for insurance loss using UBI, the dataset was generated using SMOTE technique [30] from
a relatively smaller real-world telematics dataset. The application of oversampling via
SMOTE is due to the limited available observations and the imbalanced nature of insurance
data. Furthermore, this dataset is of transactional type, and each record reports if there is a
claim. If so, then there is an associated loss amount of claim. For an additional introduction
of telematics variables and descriptive data analysis of variables in this dataset, readers can
refer to [29]; however, this is not required, and more detailed information will not affect the
self-contained property of this paper.

In the present study, we focus on traditional policy variables and territory clustering
problems to address statistical modelling and clustering with applications in UBI. Since we
aim to provide the general guideline for rate regulation, we focus on the prediction of claim
amounts and claim frequency based on the major risk factors only. We specifically focus
on modelling using Insured Age, Gender, Car Age, Marital Status, Car Use, Credit Scores,
Annual Mileage Driven, and Years of no Claims. Within this predictive modelling, we also
incorporate clustering techniques to define new territories to reduce the dimensionality
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of the current level of territory variable. As we can see from Table 1, there are many
levels of territory codes that indicate different locations of losses, but claim counts and
total exposures associated with each territory level are low for many levels. This may
cause a credibility issue regarding the estimate of loss cost and average loss. This implies
that regrouping of the territory is needed to improve credibility. We observe a significant
positive correlation between the Claim Probability and average loss, which is typical in
auto insurance. We also observe a negative correlation between the Claim Probability and
Credit Scores, as well as the claim probability and Annual Mileage Driven. To get an idea
of the distribution of variables used in our predictive modelling using GAM, we present
the five-number summary statistics for numerical variables, including Insured Age, Car
Age, Credit Scores, Annual Mileages Driven, Year of no Claims, and Claim Amounts. The
results are summarized in Table 2. We observe that Annual Mileages Driven, Years of no
Claims, and Claim Amounts are quite right-skewed. The frequency distributions of those
categorical variables, including Insured Sex, Marital Status, Car Use, and Claim Counts,
are shown in Figure 1. From the presented results, we see that the frequency distributions
of these variables are quite imbalanced. These data characteristics demonstrate a certain
level of complexity for the given data, implying more advanced statistical techniques may
be considered.

Table 1. Key summary statistics by original territory code (i.e., without clustering). Note, Loss Cost = Sum
of Claim Amounts/Total Exposures; Average Loss = Sum of Claim Amounts/Sum of Claim Counts.

Territory
Code

Sum of
Claim
Counts

Total Ex-
posures

Sum of
Claim
Amounts

Average
of Credit
Score

Average of
Annual Miles
Drive

Claim
Probability

Loss
Cost

Average
Loss

11 0 52 0 826 8675 0 0 NA
12 42 1296 146,074 813 9244 3.24% 113 3478
13 57 1277 170,183 808 9122 4.46% 133 2986
14 50 1245 131,196 801 8789 4.02% 105 2624
15 83 1885 245,435 797 8728 4.40% 130 2957
18 109 2710 468,572 803 9167 4.02% 173 4299
23 58 1533 202,581 802 9156 3.78% 132 3493
24 67 1865 127,610 799 8170 3.59% 68 1905
26 75 1504 243,652 798 8343 4.99% 162 3249
30 105 2716 309,225 793 8573 3.87% 114 2945
31 103 2612 325,271 800 9103 3.94% 125 3158
32 113 2307 308,753 801 9292 4.90% 134 2732
33 89 1893 316,630 796 9401 4.70% 167 3558
35 122 3279 338,824 797 8971 3.72% 103 2777
36 85 1962 208,506 800 8670 4.33% 106 2453
37 75 1938 215,604 803 9500 3.87% 111 2875
38 102 2839 357,571 813 9902 3.59% 126 3506
39 166 3686 385,668 805 9772 4.50% 105 2323
43 162 3842 430,690 806 9730 4.22% 112 2659
52 93 2366 240,624 799 9204 3.93% 102 2587
54 62 1175 151,053 801 8770 5.28% 129 2436
57 85 1530 310,372 803 8781 5.56% 203 3651
59 69 1562 332,517 804 8860 4.42% 213 4819
60 52 987 204,317 798 9116 5.27% 207 3929
61 43 944 227,861 799 8842 4.56% 241 5299
62 45 1034 113,990 804 8780 4.35% 110 2533
63 61 1365 272,002 801 8982 4.47% 199 4459
64 57 1304 221,465 799 8817 4.37% 170 3885
65 51 1320 187,664 804 8914 3.86% 142 3680
66 80 1770 220,030 801 9057 4.52% 124 2750
67 58 1379 180,420 796 9169 4.21% 131 3111
68 81 1499 221,893 798 8996 5.40% 148 2739
69 98 1731 286,512 800 8943 5.66% 166 2924
70 70 1406 272,776 793 8849 4.98% 194 3897
71 97 1532 415,526 795 8807 6.33% 271 4284
72 104 1891 433,089 798 8786 5.50% 229 4164
73 103 2035 428,190 800 8770 5.06% 210 4157
74 101 2064 600,002 798 9143 4.89% 291 5941
75 86 1733 371,354 799 8674 4.96% 214 4318
76 91 1585 331,613 798 8962 5.74% 209 3644
77 90 1733 388,935 795 8961 5.19% 224 4321
78 52 1287 150,199 800 9450 4.04% 117 2888
79 52 1357 124,776 791 9389 3.83% 92 2400
80 59 1505 165,601 794 9396 3.92% 110 2807
81 49 1320 79,334 797 9458 3.71% 60 1619
82 51 1234 106,663 795 9316 4.13% 86 2091
83 74 1569 292,613 794 9476 4.72% 186 3954
84 90 2552 253,480 803 9379 3.53% 99 2816
85 102 3288 314,241 805 9203 3.10% 96 3081
86 81 2209 184,604 795 9571 3.67% 84 2279
87 83 2372 184,865 802 9326 3.50% 78 2227
88 98 2511 214,715 804 8597 3.90% 86 2191
89 68 2404 204,761 810 9007 2.83% 85 3011
90 30 972 83,123 815 9619 3.09% 86 2771
91 43 1034 57,003 814 10356 4.16% 55 1326



Mathematics 2023, 11, 334 6 of 24

Using this database, we compare the results obtained from the empirical study (no
models involved) and modelling with and without rating territories that we design from
clustering. We also address how these major risk factors from the UBI database can be used
for rate regulation purposes and how risk relativity can be obtained from GLM.

Table 2. Five number summary statistics (i.e., Minimum, 1st Quartile, Median, 3rd Quartile, and
Maximum) and the mean value for numerical variables used in this work including the response
variable Claim amounts where zero losses are excluded. Note that the minimum value −2 for Car
Age is due to the fact that buying a newer model can occur up to two years in advance.

Insured Age Car Age Credit Score Annual Miles
Driven

Years of No
Claims

Claim
Amounts

Min. 16.00 −2.00 422.0 0 0.00 0.77
1st Qu. 39.00 2.00 766.0 6214 15.00 786.27
Median 51.00 5.00 825.0 7456 29.00 1988.60
Mean 51.38 5.64 800.9 9124 28.84 3561.13
3rd Qu. 63.00 8.00 856.0 12,427 41.00 4037.89
Max. 103.00 20.00 900.0 56,731 79.00 104,074.89

(a) (b)

(c) (d)

Figure 1. The frequency distributions for categorical variables used in this work, including Insured
Sex (a), Marital Status (b), Car Use (c) and Claim Counts (d), which is the response variable for model
that predicts claim probability.

2.2. Generalised Additive Models

Generalised Additive Models are an extension of Generalised Linear Models [31,32],
which have been used as an important modelling tool in risk analysis, particularly for
auto insurance pricing and rate regulation problems. The beauty of using GAM instead
of GLM is that GAM facilitates the estimate of linear, additive model components that
can be used to reflect how those factors affect the response through a clear functional
relationship in terms of those predictor variables, independently, for a more interpretable
model. Additionally, an easy way of incorporating non-linear components through a
specification of an interaction term between different variables makes the modelling using
GAM even more powerful. Investigation of dependency or interaction between pricing
variables using GAM is new in auto insurance pricing and rate regulation, and we aim to
discover the interesting patterns behind the pricing variables and insights into how they
interact using UBI data.
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Mathematically speaking, modelling using GAM with K predictors with an assump-
tion of no interaction among them can be represented as follows:

f (X1, X2, . . . , XK) = β0 +
K

∑
k=1

fk(Xk), (1)

where fk(Xk) is the kth additive component of the model that represents a non-linear
smoothing function of Xk. The idea behind GAM is to model functionality between a
response Y and K different predictors through an additive, linear in parameters regression
problem where the following squared loss function is minimised

L(β0, . . . , βk) =

(
Y− β0 −

K

∑
k=1

fk(Xk)

)2

. (2)

Of course, the functionality of f (X1, X2, . . . , XK) in the GAM model is only an approxi-
mation, as we do not have a ground truth model to reflect the actual relationship. However,
such linear and additive approximation often performs better than other regression models
such as polynomial regression [33], piecewise linear regression [34]. Additionally, the loss
function can be extended by including an extended term allowing control of the smoothness
of the curve estimate. In this work, we use a set of spline basis functions {bkl(Xk)}l=1,2,...,Lk
for the kth predictor to model each additive component fk(Xk) in the model. We control the
sparsity of {bkl(Xk)} by adding a penalty term to the loss function. Therefore, the penalised
version of loss function in (2) becomes:

Lp(β0, . . . , βkl) =

(
Y− β0 −

K

∑
k=1

Lk

∑
l=1

βklbkl(Xk)

)2

+
K

∑
k=1

Lk

∑
l=1

λk
(

βk,l+1 − βkl
)2. (3)

Note that the parameters were produced using the mgcv R package, which auto-
matically selects optimal wiggliness-penalty, λk to produce the functionality between the
numerical risk factor Xk and the response variables Y. Here, λk controls the wiggliness
of the smoothed terms or the B-spline basis by penalising the squared difference of two
consecutive coefficients of basis functions with each factor, and it is cross-validated in terms
of its choice. This work uses REML (restricted maximum likelihood) to produce smooth
terms. Other methods, such as GCV (generalised cross-validation) and Mallow’s Cp are
available in the mgcv package, and they can also be used to achieve integrated smoothness
estimation of functionality [35]. A more complicated smoothing function for fk(Xk) other
than splines [36] is possible when it is needed, but this is outside the scope of this paper.

In this work, both claim frequency and claim amount are modelled by GAM. The
GAM model of the claim amount can be described as follows:

Yl
i = β0 + β1 InsuredAge + β2 InsuredSex + β3Marital + β4CarUse + s(CarAgei)

+ s(CreditScorei) + s(AnnualMilesi) + s(YearsNoClaimi) + εi, (4)

where s(·) is a spline function used to capture the smooth functionality between the
response variable and the given predictor variable. Yl

i represents the ith claim amount.
The error term εi, is assumed to independently, identically follow a Gamma distribution,
a popular loss distribution selection. As we mentioned earlier, the advantage of using
GAM is its flexibility in constructing functions of numerical variables controlled by other
categorical variables at a certain level. This allows us to see how the functional behaviour of
a variable of interest will depend on other factors to discover their potential interaction. For
example, when we aim to study how Annual Miles Driven depend on the type of Car use,
the model becomes the following for the case in which CarUse is not one of the predictors.
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Yl
i = β0 + β1 InsuredAge + β2 InsuredSex + β3Marital + s(CreditScorei)

+ s(CarAgei) + s(AnnualMilesi) + s(YearsNoClaimi|InsuredSex) + εi, (5)

Since GAM is an extension of GLM, the setting of an error function, link function, and
variance function shares the commonality of GLM. Although there are many other choices,
we use log link and Gamma distribution as error distribution due to their popularity in
practice. The model form of GAM for claim probability is identical to the claim amount
except for the different response variable and error function, which is assumed to be
binomial.

2.3. Incorporating Designed Territories to Predictive Modelling

In auto insurance pricing, the territory risk is critical and plays an important role, since
the risk levels have been well discriminated against, and those basic rating units are formed
into clusters. Thanks to the clustering effect, the overall variation of loss cost is minimised.
Using Model (4), we further use Location.Cluster as a variable to indicate the location or
rating territory, and we have to design such territory from the UBI dataset. In this data, there
are 57 territories. These territories belong to either an Urban or a Rural region. In order to
take the region into consideration, we re-organised this location information by appending
region to the territories to create 57× 2 = 114 different locations. To conduct the clustering,
we applied the K-mean clustering algorithm to the predicted claim frequency from a logistic
regression model and claim amounts from the GAM model. This selection is based on
our intensive study of interpretable clustering using low-dimensional feature vectors (i.e.,
two-dimensional). Our study shows that clustering based on the claim frequency and
claim amounts leads to the most discriminative clusters. This two-dimensional feature
vector in clustering enables a visualisation of clustering results, which is critical in rate
regulation, where interpretability is highly desirable. This method outperforms the one
that uses principal component analysis (PCA) to extract low-dimensional feature vectors
from all risk characteristics available to us. Unfortunately, the PCA approach does not help
improve the discriminative power in clustering territory risk.

We should realize that this work has two layers of predictive modelling when rating
territory is incorporated into the model. In auto insurance, rating territory has been proven
to have the most discriminative power in risk analysis, therefore, we will investigate how
our design of new rating territories affect the predicted outcomes of the risk measures,
including claim probability and claim amounts. After incorporating the designed rating
territory to the GAM for claim amounts, the new model becomes:

Yl
i = β0 + β1 InsuredAge + β2 InsuredSex + β3Marital + β4CarUse + β5Location.Cluster

+ s(CarAgei) + s(CreditScorei) + s(AnnualMilesi) + s(YearsNoClaimi) + εi. (6)

The model for claim frequency prediction is similar to (6), but some variables that do
not have significant impact to the prediction are removed from the model. The model can
be described as follows:

Yc
i = α0 + α1CarUse + α2Location.Cluster + s(CarAgei) + s(CreditScorei)

+ s(AnnualMilesi) + s(YearsNoClaimi) + εi, (7)

where Yc
i represents the claim counts.

2.4. Deriving Relativities for Risk Factors

In GAM modelling, functional patterns are obtained for those numerical variables
and interaction between different risk factors can also be investigated. In rate regulation,
an essential aspect of evaluating the risk factors is estimating their risk relativity, and we
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rely on a generalised linear model to complete this task. The main reason for using GLM
is that the risk relativity needs to be derived at the factor level, including numerical and
categorical variables. Of course, in theory, one may derive the risk relativity based on the
estimated functional component for a given continuous risk factor. However, this may
be only practically achievable and useful for a monotonic functional pattern, as a more
detailed local pattern may not lead to a meaningful implication, and one needs to explain
why the local fluctuation of risk relativity should be considered. However, this is outside
the scope of this work.

To obtain a set of relativity for each factor at each level, we regroup each numerical
variable to produce different levels. For instance, we regroup the Insured Ages into the
following classes: 16 to 22, 23 to 35, 36 to 45, 46 to 65, and 65 and above. For Car Ages, we
group them into less than 0, 1 to 5, 6 to 10, 11 to 15, and greater than 16. In the regrouping of
Insured Ages and Car Ages, we maintain consistency with common practices in Canadian
rate regulation. In addition, variables such as Annual Mileage Driven and Years of no
Claims, appeared in rate regulation less often, as far as we know. The groupings were made
by considering the total number of risk exposures, particularly for the first and the last
group. The same principle is applied to variables of Credit Scores and Years of no Claims.
For the detail of the grouping level of these two variables, readers can refer to the relativity
output shown in the result section.This regrouping helps to improve the stability of risk
relativity for each factor level as later, the claim counts and claim amounts are aggregated
and will be taking a log-scale transformation via a link function within GLM to handle the
heterogeneity of data.

There are two steps in deriving risk relativity. First, we fit the data after regrouping
for each individual observation to GLM (i.e., logistic regression) using claim frequency as a
response for the model to obtain the coefficient of the ith factor at the jth level, denoted by
αij. We then repeat the same procedure by changing the response variable to claim severity,
which is the claim amount, to obtain βij, which is the coefficient of the ith factor and jth
level. If a level has been selected as a basis in GLM, the coefficient of such a factor level is
zero. Since the log link is used for both GLMs that are used to model severity and frequency,
we have to transform the coefficients back to the original scale; therefore, the risk relativity
of the ith factor and jth factor level becomes exp{αij + βij}. If we further select the first

level in each factor as the basis, the final relativity estimate is
exp{αij+βij}
exp{αi1+βi1}

. This is to ensure
that the selected factor level will have relativity to be one. To estimate relativity, we use
the same set of predictors for the models we considered; although they may exist, some of
them are not statistically significant in one of the models. However, this does not affect our
estimate of risk relativity, as their relativities will be close to one when such a factor does
not significantly impact the prediction outcome. Note that the intercept coefficients of both
models will form a basis rate, which can be treated as an overall average premium for all
drivers. It is equal to exp{α0 + β0}. So, the risk relativity at a level of a given risk factor is a
modifier that is used to reflect the relative risk level when a driver falls into that category.

3. Results

This section will present and discuss the results from various statistical models, in-
cluding GLM, GAM, GAM with the designed territory, and GAM with the interaction of
variables. We will present the comparative results to demonstrate the strength of using
GAM. When producing functionality of numerical variables in GAM, the penalised B-spline
was used, and the optimal selection of a number of basis functions was cross-validated
through an internal mechanism of the mgcv R package. This is how we achieve the smooth-
ness estimation for the GAM model. Finally, the results on risk relativities for risk factors at
each level, obtained from GLM mode, are analyzed and discussed.

Since we focus on the rate regulation aspect, we first investigate the group-based
distribution of numerical risk factors for the claim probability and loss cost. Then, we
compute the predicted probability and loss cost by different groups after predicting the
claim frequency and severity using GAMs. Finally, the results are separated by the predic-
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tion with and without designed clusters as an additional rating factor and the empirical
estimates, where the claim probability and average claim amount are computed based
on the actual observations of claim occurrences. These grouped distributions provide an
overall pattern of claim frequency and loss cost depending on the rating factors we consider.
The results are reported in Figures 2–6, respectively, for Driver Age, Credit Scores, Car Age,
Annual Mileage Driven and Years of no Claims. We observe that the major pattern of distri-
butions of these rating variables from the predictive models (with and without designed
clusters) is in line with the empirical distributions. However, there is still a discrepancy
for some factor levels; for instance, the group of youngest drivers. The main reason for
this discrepancy may be due to a smaller number of exposures for the young driver class.
From Figures 2 and 3, we do not see a significant impact from the inclusion of clusters as an
additional rating factor. The distributional pattern for Credit Scores is similar to Driver Age
or Car Age, with more distinguishable results from the predictive models. This may tell us
that predictive modelling can balance overall loss or claim frequency patterns; therefore,
it is more useful and more practical than empirical results. In particular, from the results
presented in Figure 5, we notice the power of GAM in capturing the desired distributional
pattern for Annual Mileage Driven. For example, we expect that risk will increase with
the increase in Annual Mileage driven, but due to insufficient observations, we may not
be able to determine this from the observed data. However, the GAM modelling can pick
up this expected pattern, even though the information presented in the dataset is limited,
especially for the GAM predictive modelling with designed clusters. This may suggest
that incorporating clusters to the GAM for rate making is necessary to better discriminate
the underlying risk. The significant increasing or decreasing patterns of distributions may
imply that the rating factors are helpful in clearly discriminating claim probability of loss
cost by different factor levels. Therefore, the risk relativities computed later become more
distinguishable among different levels with a risk factor.

(a) (b)

Figure 2. Comparison of empirical and the predicted values of claim probability and loss cost by
different age groups. (a) presents the results of claim probability. (b) corresponds to the loss cost. The
orange bar shows results for predictions without using clusters. The grey bar presents results for
predictions with designed clusters.

(a) (b)

Figure 3. Comparison of empirical and predicted values of claim probability and loss cost by car age
groups. (a) presents the results of claim probability. (b) corresponds to the loss cost. The orange bar
shows results for predictions without using clusters. The grey bar presents results for predictions
with designed clusters.
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(a) (b)

Figure 4. Comparison of empirical and predicted values of claim probability and loss cost by Credit
Scores. (a) presents the results of claim probability. (b) corresponds to the loss cost. The orange bar
shows results for predictions without using clusters. The grey bar presents results for predictions
with designed clusters.

(a) (b)

Figure 5. Comparison of empirical and the predicted values of claim probability and loss cost by
Annual Mileage Driven (a) presents the results of claim probability. (b) corresponds to the loss cost.
The orange bar shows results for predictions without using clusters. The grey bar presents results for
predictions with designed clusters.

(a) (b)

Figure 6. Comparison of empirical and predicted values of claim probability and loss cost by Years of
no Claims (a) presents the results of claim probability. (b) corresponds to the loss cost. The orange
bar shows results for predictions without using clusters. The grey bar presents results for predictions
with designed clusters.

Based on our results, we notice some merits for the inclusion of designed clusters in
GAM, as it seems to outperform other cases in connecting the responses and the Annual
Mileage Driven. The Annual Mileage Driven is particularly important for UBI pricing as it
measures important drivers’ driving characteristics. We present the parameter output for
GAM models, including both prediction models, to understand the driving force affecting
the claim frequency and amounts. The results are shown in Table 3 for frequency modelling
and in Table 4 for claim amounts modelling. First, the set of variables deemed essential
have significantly different results for modelling frequency and severity, but they share a
commonality. In modelling frequency, Car Age, Car Use, Credit Scores, Clusters, Annual
Mileage Driven, and Year of no Claims are statistically significant. In contrast, Car Use,
Clusters, Insured Age, Car Age, Credit Scores, and Year of no Claims are substantial for
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the GAM model in predicting claim amounts. The exciting thing related to UBI is the
Annual Mileage Driven. This variable is only significant in predicting frequency, but not
the claim amounts. However, given that the pattern of loss cost distribution of Annual
Mileage Driven presented in Figure 5 is linearly strongly increasing, we can infer that this
tendency is mainly due to the significant impact of the frequency distribution of such a
variable. Given that the Annual Mileage Driven variable represents the usage of the vehicle
and is a driving force of high claim probability, which further leads to increased loss cost, it
may become a major risk factor for rate regulation of UBI on a collective basis. This means
that the distribution of Annual Mileage Driven can be estimated based on industry-level
data to obtain a set of benchmark values for different levels of such risk factors. In this
case, rate regulation of UBI can be started by extending the traditional focus to include
an additional key factor that can describe UBI’s key characteristics, such as the Annual
Mileage Driven variable.

Table 3. The model outputs from Logistic Regression (with designed clusters) used to predict claim
frequency.

Estimate Std. Error z Value Pr (>|z|)

(Intercept) 0.075 0.172 0.434 0.664
Car.age −0.075 0.004 −17.813 0.000 ***

Car.useCommute −0.192 0.082 −2.335 0.020 *
Car.useFarmer −0.859 0.236 −3.633 0.0003 ***
Car.usePrivate −0.216 0.088 −2.463 0.014 *

Credit.score −0.003 0.0002 −18.908 0.000 ***
Location.Cluster2 0.221 0.095 2.317 0.020 *
Location.Cluster3 −1.070 0.416 −2.573 0.010 *
Location.Cluster4 0.199 0.070 2.837 0.005 **
Location.Cluster5 0.445 0.320 1.393 0.164
Location.Cluster6 −0.221 0.084 −2.638 0.008 **
Location.Cluster7 0.102 0.112 0.915 0.360
Location.Cluster8 −0.678 0.457 −1.484 0.138
Location.Cluster9 0.010 0.069 0.138 0.890

Location.Cluster10 0.187 0.075 2.492 0.013 *
Location.Cluster11 0.080 0.517 0.155 0.877
Location.Cluster12 −0.512 0.119 −4.304 0.00002 ***
Location.Cluster13 −0.058 0.078 −0.740 0.459
Location.Cluster14 0.104 0.067 1.546 0.122
Annual.miles.drive 0.00003 0.00000 7.069 0.000 ***

Years.noclaims −0.012 0.001 −10.511 0.000 ***
Note: * p < 0.05; ** p < 0.01; *** p < 0.001.

One of the key characteristics in GAM modelling is the additive component, which
can be used to reflect if the impact from such a variable is significant and if the functional
relationship is significantly non-linear. We display the relevant results in Table 5 to explore
this. In Table 5, the effective degree of freedom for all additive components is greater than
one, and they are all statistically significant, indicating a non-linearity of each additive
component. So, we further investigate the functional patterns for each numerical risk factor.
Figure 7 displays the functional pattern of Car Age, Credit Scores, Insured Age, and Year of
no Claims, respectively. They are the four smooth terms included in the GAM for predicting
claims. The results show that the sampling errors become much larger for the groups with
fewer risk exposures. This leads to the confidence intervals being much wider for those
groups. With the increase in the Car Age, the effect on the claim amounts decreases. From
the functional pattern of the Car Age, we see that the new car has a much greater impact
on the claim amounts. The general functional pattern of Credit Scores decreases with the
increase in scores, implying that a driver with higher Credit Scores seems to represent a
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greater risk. Additionally, it is interesting that the pattern is periodic, with a frequency of
approximately 20. After 80 years old, the claim amounts’ impact continues to be negative.
As for Years of no Claims, the trend appears to decrease with the increase in the number of
Years of no Claims. After the number of Years of no claim reaches 60, the impact on claim
amounts becomes positive.

Table 4. The model outputs from GAM (with clusters) used to predict claim amounts.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 7.831 0.151 51.920 0.000 ***
Insured.sexMale 0.024 0.043 0.558 0.577

MaritalSingle 0.007 0.049 0.151 0.880
Car.useCommute 0.100 0.111 0.896 0.370

Car.useFarmer −0.852 0.311 −2.738 0.006 **
Car.usePrivate 0.018 0.119 0.149 0.881

Location.Cluster2 −0.002 0.128 −0.018 0.986
Location.Cluster3 −0.514 0.588 −0.874 0.382
Location.Cluster4 0.309 0.095 3.266 0.001 **
Location.Cluster5 0.027 0.418 0.064 0.949
Location.Cluster6 −0.097 0.113 −0.861 0.389
Location.Cluster7 0.531 0.148 3.578 0.0004 ***
Location.Cluster8 1.130 0.585 1.931 0.054
Location.Cluster9 0.018 0.092 0.191 0.849

Location.Cluster10 0.252 0.100 2.514 0.012 *
Location.Cluster11 1.543 0.653 2.362 0.018 *
Location.Cluster12 0.152 0.158 0.964 0.335
Location.Cluster13 0.059 0.106 0.557 0.577
Location.Cluster14 0.229 0.090 2.541 0.011 *
Annual.miles.drive 0.00000 0.00001 0.362 0.718

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.

Table 5. The statistical significance of smooth terms for Insured Age, Car Age, Credit Scores, and
Years of no Claims, respectively.

edf Ref.df F p-Value

s (Insured.age) 7.560 8.351 1.973 0.044 *
s (Car.age) 6.748 7.709 4.325 0.000 ***

s (Credit.score) 7.460 8.339 14.568 0.000 ***
s (Years.noclaims) 8.012 8.617 3.276 0.001 ***

Note: * p < 0.05; *** p < 0.001.

In rate regulation, the rating variables are separated by vehicles and drivers. The Car
age is often used to determine the vehicle’s rate group and is considered a factor that affects
the vehicle’s rate group. The other three variables are related to drivers and are continuous
in nature. Their impact on claim frequency and severity can be estimated by using risk
relativity at each factor level. Therefore, the rate regulation of UBI can be extended to
include the estimate of these risk factors, which may be used by traditional rate regulation
one way or another, but obtaining the risk relativity for each level of a given factor can
better reflect the pricing at an individual level. We should notice that rate regulation is still a
collective basis rate making, but with some details that can be used to drive individual-level
pricing toward the correct direction. So, Car Age, Credit Scores, Insured Age, and Years of
no Claims can become additional rating variables besides the Annual Mileage Driven.
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Figure 7. The plots of fitted spline functions, respectively, for Car age, Credit Scores, Annual miles
drive, and Years of no claims.

We observe that most of the categorical risk factors are traditional rating variables.
In UBI, the new rating variables are mostly continuous, as the data were the outcome of
continuously monitoring drivers’ driving behaviours or location. Although we have yet
to reach the stage of analysing such data, we should prepare for how one can explore
this type of data to enhance the regulation of UBI. Because of this, our next focus is
on investigating how these functional patterns of numerical variables interact with other
variables, particularly the categorical variable. For instance, we may ask if the impact on the
claim amounts from Car Age differs from female drivers to male drivers. Figures 8 and 9
show the conditional functional pattern for the numerical variables on gender. Overall,
these functional patterns do not deviate significantly from the normal range of variables
we consider. The difference is mainly located at the values either near the lower bound or
upper bound of the interval, where we have higher sampling errors. This may suggest that
functional patterns of Car Age, Credit Scores, Insured Age, or Years of no Claims do not
depend on gender. Therefore, in rate regulation, gender should not be one of the rating
variables to discriminate the potential risk. This result coincides with the requirement by
the European Union in rate regulation of insurance.

Figures 10 and 11 show the results of how Car Age, Credit Scores, Insured Age and
Years of no Claims interact with Marital status. First, we observe that the Car Age does
not significantly interact with Marital Status, which makes sense to us. However, it seems
to behave differently for the functional pattern of Credit Scores, Insured Age, and Years
of no Claims between married and single drivers. This may imply that consideration
needs to be given when pricing auto insurance policies for the different marital statuses of
drivers. As for the interaction with Car Use, we also observe material differences among
different levels of Car Use for the variables we consider. This may imply that pricing
needs to be determined by different types of Car Use to further capture different risk
levels among those with insurance. The obtained results are displayed in Figures 12–15.
Note that Marital status, Car Use, and Insured Age are often combined to make another
variable to avoid the issue prevented by regulation rule. For instance, in Canada, these
three variables are combined to become a new variable called Type of Use, one of the major
factors considered in rate regulation. Because of the potential interactions illustrated in
Figures 12–15, a regulator may have to separate the data by these variables or the new
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variable that combines all these together to improve the performance of rate regulation
of UBI.
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Figure 8. The plots of fitted spline functions for Car Age and Credit Scores, separated by Insured Sex.
(a) Car Age by Insured Sex; (b) Credit Scores by Insured Sex.
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Figure 9. The plots of fitted spline functions for Insured Age and Years of no Claims, separated by
Insured Sex. (a) Insured Age by Insured Sex; (b) Year of no Claims by Insured Sex.

To show the statistical significance of the designed rating territory, we conducted
the ANOVA F test to compare two GAM models, one with rating territory and the other
without rating territory. From the obtained results shown in Tables 6 and 7, we observe
that the p-values for testing the reduction in model variation are equal to zero, implying
that contributions from rating territory are all significant for the two models, i.e., the model
for predicting claim probability and the model for predicting claim amounts. Furthermore,
rating territory as a model predictor influences claims probability more than claim amounts
because of small deviance, leading to a much higher value of test statistics. This is also
verified by model performance measures GCV (i.e., Generalised Cross-Validation Statistic)
and AIC (i.e., Akaike Information Criterion) shown in Table 8. Both cross-validated model
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errors and AIC values are smaller for GAM models with rating territory as an additional
model predictor. Although we realise that BIC (i.e., Bayesian Information Criterion) is
higher for the model with Territory, this may be due to many factor-level estimations that
need to be carried out to increase BIC’s values. The dataset also contains a fair amount of
extreme losses, leading to high values of GCV for the GAM model that is used to predict
claim amounts. This may be another reason for the inconsistency in performance evaluation.
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Figure 10. The plots of fitted spline functions for Car Age and Credit Scores, separated by Marital
Status. (a) Car Age by Marital Status; (b) Credit Scores by Marital Status.
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Figure 11. The plots of fitted spline functions for Insured Age and Years of no Claims, separated by
Marital Status. (a) Insured Age by Marital Status; (b) Years of no Claims by Marital Status.

Finally, rate relativities for different risk factors are estimated through GLM modelling.
The reason for using GLM rather than GAM modelling is that we have to calculate the
risk relativity for each level of a given risk factor, including both numerical and categorical
variables. For numerical values, we must first group them into different categories. The
modelling assumes that the risk relativity is the same for each level of a given risk factor.
These estimated risk relativities are summarised in Table 9. Using GLM, we derive the risk
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relativity for claim probability, claim amounts, and the loss cost. The loss cost relativity for
Insured Age appears to be decreasing with the increase in age. Gender and Marital have no
discriminative power, and the relativity decreases with the increase in Car Age. Particularly,
new cars have much higher risk relativity than older cars. Commercial and commuter Cars
are riskier than other types of Car Use. The relativity of high Credit Scores is much lower
than that of low Credit Scores. This implies that drivers who have high Credit Scores are a
greater risk. The relativity of Years of no Claims is also significantly decreased with the
increase in the number of Years of no Claims. Different rating territories have different
relativities, some of which have either extremely low or very high relativity, such as Cluster
3 and 11. The Annual Mileage Driven variable has significantly high relativities caused
by the high claim probability. To further study the functionality of relativity for important
risk factors, including Annual Mileage Driven, Credit Scores, and Years of no Claims, we
summarised the results obtained in Figures 16–18. From the displayed results, we observe
that Annual Mileage Driven as a rating variable is dominated by claim frequency, and
the relativities estimated by using claim amounts are close for most of the levels of such
factors. The sudden decrease in relativity for the bracket with the largest amount of driving
may be due to insufficient observation of large losses, as we still observe high relativity for
claim probability. Unlike the Annual Mileage Driven variable, the risk relativities for Credit
Scores and Years of no Claims are significantly affected by claim frequency and amounts.
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Figure 12. The plots of fitted spline functions for Car Age, separated by Car Use.
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Figure 13. The plots of fitted spline functions for Credit Scores, separated by Car Use.
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Figure 14. The plots of fitted spline functions for Insured Age, separated by Car Use.
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Figure 15. The plots of fitted spline functions for Years of no Claims, separated by Car Use.

Table 6. Statistical test results and summary statistics for the GAM modelling of claim probability,
with and without designed rating territories. Note that the test is based on Deviance, which is a
goodness-of-fit statistic for the model, calculated based on the log likelihood-ratio; Pr (>F) is the
p-value of the test. “Resid. Df” means Residual Degree of freedom; “Resid. Dev” means Residual
Standard Deviation; “Df” means Degree of freedom.

Statistic N Mean St. Dev. Min Max

Resid. Df 2 99,955.380 9.308 99, 948.800 99,961.960
Resid. Dev 2 25,491.370 75.184 25,438.200 25,544.530
Df 1 −13.164 −13.164 −13.164
Deviance 1 −106.327 −106.327 −106.327
F 1 8.077 8.077 8.077
Pr (>F) 1 0.000 0 0

Table 7. Statistical test result and summary statistics for the GAM modelling of claim amounts,
with and without designed rating territories. Note that the test is based on Deviance, which is a
goodness-of-fit statistic for the model, calculated based on the log likelihood-ratio; Pr (>F) is the
p-value of the test. “Resid. Df” means Residual Degree of freedom; “Resid. Dev” means Residual
Standard Deviation; “Df” means Degree of freedom.

Statistic N Mean St. Dev. Min Max

Resid. Df 2 3812.783 9.292 3806.213 3819.354
Resid. Dev 2 4873.449 68.969 4824.681 4922.217
Df 1 −13.141 −13.141 −13.141
Deviance 1 −97.536 −97.536 −97.536
F 1 4.553 4.553 4.553
Pr (>F) 1 0.00000 0.00000 0.00000
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Table 8. Performance comparison between GAM models for predicting claim probability and claim
amounts, respectively. Note: GCV: Generalised Cross-Validation Statistic; AIC: Akaike Information
Criterion; BIC: Bayesian Information Criterion.

Claim Probability Model
GCV AIC BIC

GAM with clusters 0.04021174 34,076.88 34,527.22
GAM without clusters 0.04026616 34,156.86 34,481.85

Claim Amounts
Model
GAM with clusters 26,227,331 70,317.51 70,658.48
GAM without clusters 27,176,211 70,383.03 70,641.44

Figure 16. Risk relativities by grouped Annual Mileage Driven based on loss severity, frequency, and
loss cost (aggregate risk), respectively.

Figure 17. Risk relativities by grouped Credit Scores based on loss severity, frequency, and loss cost
(aggregate risk), respectively.

Figure 18. Risk relativities by grouped Years of no Claims based on loss severity, frequency, and loss
cost (aggregate risk), respectively.
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Table 9. Risk relativity estimate for categorical factors and numerical factors with designed levels.

Variable Risk Relativity of Claim Prob
(With Poisson)

Risk Relativity of Claim Amount
(With Gamma)

Aggregate Risk Relativity
(Poisson + Gamma)

Insured.Age. 16–22 1.00 1.00 1.00
Insured.Age. 23–35 0.69 0.91 0.63
Insured.Age. 36–45 0.65 0.75 0.49
Insured.Age. 46–65 0.71 0.79 0.57
Insured.Age. 65+ 0.53 0.89 0.47

Female 1.00 1.00 1.00
Male 0.99 1.03 1.03

Car.Age ≤ 0 1.00 1.00 1.00
Car.Age. 1–5 0.91 0.91 0.83
Car.Age. 6–10 0.64 0.83 0.53
Car.Age. 11–15 0.41 0.64 0.26
Car.Age ≥16 0.24 0.66 0.16

Married 1.00 1.00 1.00
Single 1.03 0.99 1.03

Car.Use.Commercial 1.00 1.00 1.00
Car.Use.Commute 0.81 1.05 0.85
Car.Use.Farmer 0.42 0.44 0.18
Car.Use.Private 0.81 0.96 0.77

Credit.Score ≤600 1.00 1.00 1.00
Credit.Score. 601–700 0.93 1.06 0.98
Credit.Score. 701–800 0.73 0.78 0.57
Credit.Score. 801–900 0.45 0.60 0.27

Location.Cluster1 1.00 1.00 1.00
Location.Cluster2 1.18 0.95 1.12
Location.Cluster3 0.35 0.45 0.16
Location.Cluster4 1.23 1.36 1.67
Location.Cluster5 1.48 0.95 1.40
Location.Cluster6 0.79 0.89 0.70
Location.Cluster7 1.07 1.57 1.69
Location.Cluster8 0.49 3.55 1.74
Location.Cluster9 1.00 0.99 1.00
Location.Cluster10 1.20 1.26 1.51
Location.Cluster11 1.04 5.04 5.23
Location.Cluster12 0.60 1.07 0.65
Location.Cluster13 0.93 1.03 0.96
Location.Cluster14 1.11 1.21 1.34

Annual.Miles. 0–5000 1.00 1.00 1.00
Annual.Miles. 5000–10,000 2.32 0.99 2.31
Annual.Miles. 10,000–15,000 2.67 1.12 2.99
Annual.Miles. 15,000–20,000 2.98 0.95 2.82
Annual.Miles. 20,000–25,000 3.87 0.89 3.46
Annual.Miles. 25,000+ 2.16 0.31 0.66

Years.noclaims. 0–20 1.00 1.00 1.00
Years.noclaims. 21–40 0.85 1.04 0.88
Years.noclaims. 41–60 0.79 0.66 0.52
Years.noclaims. 61–80 0.60 0.79 0.48

4. Conclusions

Automobile insurance has shifted from collective to individual-level pricing as usage-
based insurance has become more prevalent. As a result of such a shift in focus from
traditional pricing, it is intended to further discriminate drivers to attract more drivers with
reasonable risks. By better distinguishing between insurance risk classes, the insurance
company can enhance the implementation of actuarial pricing principles, as each driver
should be responsible for his/her own risk. From a rate regulation standpoint, the rate-
making and rate classification techniques associated with UBI are still under development,
and rate regulation for UBI is premature. In this work, we have devoted ourselves to
exploring what rating variables can potentially be used for rate regulation of UBI, where the
variables are highly discriminative on an aggregated basis and can be truly reflective when
it comes to the measure of individual-level risk. Additionally, as regulation is collective,
these major risk factors could be easily aggregated, while at the same time retaining some
representative risks. We conducted predictive modelling based on GAM to forecast claim
probability and amounts. Our study showed that variables of Insured Age, Car Age, Credit
Scores, Annual Mileage Driven, and Years of no Claims might serve as major risk factors
for regulating UBI. The estimated risk relativity for these variables at the group level may
be used as a benchmark for regulation purposes. Particularly, we find that relativity for
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high annual mileage driven is almost three times greater than that associated with low
annual mileage level, which implies its importance in premium calculation. Additionally,
the risk relativity estimate for Year of no claims is in line with the estimates of relativity
for Driving Record (DR) that were previously studied in [37]. It is considered an extension
of the study of DR, as the year of no claims variable covers almost a lifetime of driving
history, but DR only focuses on the first seven years with right truncation at year seven. In
addition, the GAM modelling technique is beneficial for capturing the functional pattern
of a given risk factor. The exploration of such functionality over major risk factors reveals
the important non-linear relationship between major risk factors and claim probability
or amounts. Moreover, the additive nature of its components in the GAM model helps
improve its interpretability.

From a rate regulation perspective, rating territory is critical, as it has been proven that
territory risk is highly discriminative and contributes significantly to insurance pricing. We
have also extended this study to territory clustering using a low-dimensional feature subset
of insurance risk. Our study has demonstrated that a combination of claim frequency
and severity becomes an optimal feature vector, leading to a suboptimal design of rating
territory. The sub-optimality applies in the sense that it is optimal among all other choices.
The zero p-values for the significance test of extending the GAM model by including
rating territory show strong evidence of the importance of such a variable in modelling
the claim probability and amounts. Furthermore, relativities associated with territory level
are significantly discriminative, meaning that premium level will be affected considerably
when the territory is used as a factor in pricing. This finding extends the similar results
from traditional auto insurance to UBI and confirms that rating territory is key for both
types of insurance. Since this study aims to illustrate how rating territory can be retained
to regulate UBI, their relativities associated with different levels of rating territory were
produced. The estimated risk relativity suggested that the designed rating territory has a
discriminative power to differentiate the level of territory risk. Combining Urban or Rural
with the driver’s location area to design rating territory allows us to create more basic
rating units for a better clustering result. Our future work will further develop statistical
techniques suitable for regulating UBI and continue identifying more major risk factors
from the UBI database. In addition, we will extend our predictive modelling by including
telematics variables. Due to the high dimensionality and complexity of telematics variables,
we plan to find a way of transforming telematics variables into a low-dimensional feature
subspace. Therefore, it is necessary to have explainable and interpretable statistical models
for auto insurance rate regulation. However, we will not derive the risk relativity for
telematics variables; instead, we will consider how they can be used to improve predictive
modelling performance. All of these factors contribute to a better understanding of the
complex UBI system.
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