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Abstract: Two new integrated models with heat source–heat sink are established, in which isothermal
liquid cooling channels with triangle or square sections are, respectively, embedded in a cylindrical
heating body with uniform heat production. Based on constructal theory, under the conditions
of a fixed cylinder cross-sectional area and the proportion of channels, taking the dimensionless
maximum temperature and the dimensionless entransy equivalent thermal resistance (EETR) as the
optimization goals, the influences of distribution of liquid cooling channels on the heat dissipation
capacity of integrated models are studied with the number and the center distance of liquid cooling
channels as design variables, and the optimal constructs with different proportions of channels are
obtained. The results show that when the proportion of channels, cross-sectional area and the number
of liquid cooling channels are given, there is an optimal center distance to make the overall heat
dissipation performance of the integrated model reach its best, but the optimal center distances for
the two indicators are different. The dimensionless maximum temperature and the dimensionless
EETR decrease when the proportion of channels increases, but the optimal dimensionless center
distances are almost the same for different proportions of channels. The dimensionless maximum
temperature with the triangular cross-section is lower than that with the square cross-section under
the conditions of constant cross-sectional area and dimensionless center distance, which is the same
as the case for the dimensionless EETR. The results can furnish the theoretical guidelines for the
thermal design of cylindrical devices needing efficient cooling.

Keywords: constructal design; entransy theory; electronics cooling; thermal design; evolution;
generalized thermodynamic optimization

MSC: 80-10

1. Introduction

With advances in highly integrated electronic and electrical devices, the heat genera-
tion rate is increasing, and the heat dissipation problem has become a key bottleneck in
these technological developments. In all solutions, using the liquid cooling method to
cool the heating body is an important technical way to break through the heat dissipation
bottleneck [1–3]. Senn and Poulikakos [4] proposed a water-cooled fin radiator made of
silicon and applied it to super-large-scale integration. ABO Zahhad et al. [5] studied the
influence of rib length ratio of long and short ribs on temperature and pressure drop loss in
rectangular liquid cooling channels and obtained the optimal rib length ratio. Ahmed and
Rageb [6] used numerical methods to study the heat dissipation performance of parallel
and radial divergent liquid cooling channels. The results showed that the radial channel
can improve the hydrodynamic and thermal performance of the radiator. Yang and Cao [7]
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studied the optimal design of a new type of liquid-cooled microchannel under four dif-
ferent parameters to achieve the target of making the total thermal resistance and pump
power minimum.

Bejan [8,9] discovered the constructal law and proposed the constructal theory in
studying the physical and deterministic mechanism of the formation of natural organiza-
tion network structure, such as urban streets. The constructal theory [8–14] opens up a new
direction for thermal design optimization. Bello Ochende and Meyer [15] optimized the
constructs of two liquid-cooled microchannels, with the total heat transfer rate maximiza-
tion as the objective under the given constraint conditions of the fixed total volume of the
heat sink, the pressure drop and the volume of high-thermal-conductivity material. Xie
et al. [16] optimized the constructs of line-to-line convective heat transfer tubes with the
constraints of fixed channel surface area and channel total volume, aiming at minimizing
the rate and amount of entropy production. Adewumi et al. [17] researched the heat transfer
performance of a micro-pin fin composite microchannel heat sink via the numerical method
and optimized the constructs of micro-pin fin. The integration of the liquid supply channel
and the liquid return channel of the working fluid into the heat sink is more conducive to
the compactness of the layout of electronic devices and becomes a new type of heat sink
design. Farzaneh et al. [18,19] designed the constructs of square and equilateral triangle
microchannel heat sink with working fluid reflux and microchannels. Aiming to make
the maximum temperature difference minimization, Zhang et al. [20] implemented the
constructal optimization of the arrow-shaped path comprising high-thermal-conductivity
material in the square heat-generation body. You et al. [21] used a composite function,
which is composed of hot-spot temperature and pump power as performance indicator, op-
timized the cooling channel diameter and body length-to-width ratio via the finite element
method and obtained the optimal construct. Chen et al. [22] established a composite func-
tion that integrates the maximum temperature difference and pump work to optimize the
three-dimensional disc of non-uniform heat production and obtained its thermal and hydro-
dynamic characteristics. Ahmadian-Elmi et al. [23] designed six heat sink models attached
to the surface of high-temperature electronic devices and obtained optimal constructs.
Bejan et al. [24] investigated the optimal constructs of a composite structure, considering
both conduction and strength performance requirements. Constructal theory has distinct
advantages in exploring the evolution law of the shape, structure, distribution and the
performances for things and it is of outstanding scientific guiding value for exploring the
optimal design of engineering structures with given constraints.

Based on the classical thermoelectric analogy method, the entransy concept and
the entransy dissipation extremum principle (EDEP), which are a new physical quantity
describing the heat transfer capacity of objects and a novel principle for optimizing the heat
transfer processes with finite temperature difference, were put forward by Guo et al. [25].
These expanded the classical theory basis for the heat transfer subject. The EDEP can also
be attributed to the minimum principle of entransy equivalent thermal resistance (EETR).
Many scholars have shown enthusiastic interest and further enriched and developed the
entransy theory. These lay a new advance impetus for heat transfer optimization [26–34].
Zhang et al. [27] analyzed the energy loss in an air-conditioning system using the entransy
theory and obtained the relationship between entransy dissipation and system performance.
Anwar et al. [29] defined the concept of the entransy effectiveness of a heat exchanger. In
the studies of reversible thermal processes and thermal cycles, based on the entransy theory
and variational theory, Cheng et al. [30] summarized and discussed the entransy function
of steady-state heat transfer and derived the entransy function of steady convection heat
transfer. Zhao et al. [31] optimized the heat transfer system by the EDEP and proposed
a new optimization strategy that integrated local component optimization and global
system optimization.

With the developments in constructal theory and entransy theory, Chen provided
new insight into heat and mass transfer process optimization by combining the constructal
theory and the entransy theory [10,26,35–37] and carried out a series of research in various
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aspects, such as the volume-point heat conduction, rib, cooling channel, heat exchanger,
heat source and iron- and steel-production process.

In this study, two new heat source–heat sink-integrated models are further established,
which are the cylindrical heating bodes with isothermal liquid cooling channels. The
heat generation per volume in a solid is uniform, and the cooling channels are designed
as triangle and square sections, respectively. According to the method combining the
constructal theory and the entransy theory, given the cross-sectional area of the cylindrical
heating body and the proportion of channels to cylindrical heating body (hereinafter
referred to as proportion of channels) as the geometric constraints, the effect of channel
evolution, i.e., channel shape, dimensionless circle distance and number of liquid cooling
channels, on the dimensionless maximum temperature and the dimensionless EETR of
the cylindrical heating body will be investigated based on the dimensionless method with
different proportions of channels, seeking the optimal constructs. The results can provide
theoretical guidelines for the thermal design of cylindrical devices with efficient cooling.

2. Mathematical and Physical Model
2.1. Geometric Model

The two types of heat source–heat sink-integrated models are shown in Figure 1.

Figure 1. The schematics of two circular sections. Wherein, subfigure (a) is a triangle section channel
model, and subfigure (b) is a square section channel model. The red circle is to emphasize that the
angle of the liquid cooling channel is a small arc connection to reduce the stress.

The cylindrical solids generate heat uniformly and constancy, and the heat fluxes are
q′′ . The outer edges of cylinders are adiabatic boundaries. The radius of the cylindrical
cross-section is R and its area is SR, in which several liquid cooling channels are embedded.
The cross-sections of the liquid cooling channels are triangular and square (Figure 1a,b,
respectively). The side length of the triangle channel shown in Figure 1a is ltri, and the
side length of the square channel shown in Figure 1b is lsqu. The cross-section area of each
liquid cooling channel is Sr. The total cross-section area of all liquid cooling channels is SNr.
The liquid cooling channels are uniformly distributed on the circumferences of concentric
circles, and the distances between the centroid of each liquid cooling channel and the center
of the cylindrical heating body are the center distances d.

Figures 2 and 3 show that the numbers N of liquid cooling channels of triangular
section and square section range from 1 to 6, respectively. Models 1 and 2 are the cases of
triangular cross-section with edge-to-edge and corner-to-corner distributions, respectively.
Models 3 and 4 are the cases of square cross-section with edge-to-edge and corner-to-corner
distributions, respectively. The number N of cooling channels is variable, but the total area
SNr of channels remains unchanged as a geometric constraint in the optimization process:

SNr =

√
3Nltri

2

4
= Const (triangle) (1)

SNr = Nlsqu
2 = Const (square) (2)
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Figure 2. The models 1 and 2 with N = 2~6.

Figure 3. Models 3 and 4 with N = 2~6.

It can be converted into the ratio of total channel area SNr to cross-section area SR of
cylindrical heating body, i.e., the proportion ϕ of channels:

ϕ =
SNr
SR

(3)

In practical engineering applications, the too-large area of the cooling channel would
limit the layout and operation of other components. Therefore, in order to balance the
cooling effect and practical application value, this paper just selects 5%, 10% and 15%
channel proportions to explore the impact of channel proportion on the cooling effect of
the liquid cooling channel.

In the four models selected in this paper, the liquid cooling channel is radially sym-
metric with respect to the center of the cylindrical heater, which can make the cooling of
the liquid cooling channel to the cylindrical heater more uniform, so that the cooling effect
is better.
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2.2. Heat Transfer Model

Heat-conducting solids are isotropic and the thermal conductivity k is constant. It is
assumed that the fluid temperature in the cooling channels is T∞. The heat is carried away
by the coolant.

The two-dimensional heat-conduction equation in the circular section of the heating
body is expressed as:

k
(

∂2T
∂x2 +

∂2T
∂y2

)
+ q′′ = 0 (4)

The boundary condition of the contact surface between liquid and solid is assumed as:

T = T∞ (5)

The adiabatic condition of the outer wall of the cylinder is expressed as:

∂T
∂x

=
∂T
∂y

= 0 (6)

The EETR of the cylinder is defined as:

Rh =

.
EVhϕ

Q2 =

.
EVhϕ

(q′′πR2)2 =

∫
v

.
Ehϕdv

(q′′πR2)2 (7)

where
.
EVhϕ is the total entransy dissipation rate and

.
Ehϕ is the function of entransy dissipation.

The entransy dissipation function is defined as:

.
Ehϕ = − .

q · ∇T (8)

The dimensionless quantities are defined as:

T̃ =
T − Tmin

(q′′πR2)/k
(9)

(x̃, ỹ, R̃, r̃, d̃) =
(x, y, R, r, d)√

SR
(10)

where T̃ is the dimensionless temperature and d̃ is the dimensionless center distance.
Substituting Formulae (8) and (9) into Formula (3), the dimensionless heat-conduction

equation can be expressed as: (
∂2T̃
∂x̃2 +

∂2T̃
∂ỹ2

)
+ 1 = 0 (11)

The dimensionless boundary condition of the contact surface between liquid and
solid is:

T̃ = 0 (12)

The dimensionless adiabatic condition of the outer wall of the cylinder is expressed as:

∂T̃
∂x̃

=
∂T̃
∂ỹ

= 0 (13)

The dimensionless EETR is expressed as:

R̃h = Rhk (14)
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3. Result Analyses

The dimensionless partial differential equation with its boundary conditions for heat
transfer is solved by MATLAB. The one-time optimization with single freedom degree and
double optimization with double freedom degree for liquid cooling channels with two
cross-section shapes are studied all with the given cross-section area SR and heat flux q′′ of
the cylindrical heating body, respectively.

3.1. One-Time Optimization with Single Freedom Degree

The one-time optimization with dimensionless center distance as a design variable
is studied when the proportion ϕ of channels is 15% and the number N of liquid cooling
channels is three.

(1) Minimization of dimensionless maximum temperature

Figure 4 and Table 1 show the relationship between the dimensionless maximum
temperature T̃max and the dimensionless center distance d̃ of models 1, 2, 3 and 4. It
can be seen from Figure 4 that when ϕ = 15% and N = 3, T̃max of each model changes
from monotonically decreasing to monotonically increasing with the increase in d̃ and
there are optimal dimensionless center distances d̃opt being 0.33850 (model 1), 0.29337
(model 2), 0.31594 (model 3) and 0.31594 (model 4), respectively, which make the minimum
values of T̃max 0.044637, 0.044436, 0.048623 and 0.047677. These show that in practical
engineering applications, when the size, number and cross-section shape of liquid cooling
channels are fixed, the hot-spot temperature can be reduced by selecting the appropriate
channel distribution. When the cross-section shape changes, the cooling capacity of liquid
cooling channels changes accordingly. The dimensionless maximum temperature of model
2 is lower than that of model 1 when the dimensionless center distance is small, but the
opposite is true when the dimensionless center distance is large. This shows that for
different distribution modes, different cross-section shapes of liquid cooling channels can
be selected to achieve the best heat dissipation performance. For the triangle section, the
edge-to-edge distribution is more suitable for application near the edge of the cylindrical
heating body, while the corner-to-corner distribution is more suitable for the central region
of the heating body.

Figure 4. The relationship between T̃max and d̃ of four models at ϕ = 15% and N = 3.
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Table 1. The relationship between the minimum value of T̃max and d̃ in four models.

Cross-Section
Shape of Liquid
Cooling Channel

Minimum
Value

of T̃max

~
dopt

Cross-Section
Shape of Liquid
Cooling Channel

Minimum
Value

of T̃max

~
dopt

Edge to edge in
triangle section 0.044637 0.33850 Angle to angle in

triangle section 0.044436 0.29337

Edge to edge in
Square section 0.048623 0.31594 Angle to angle in

Square section 0.047677 0.31594

(2) Minimization of dimensionless EETR

Figure 5 and Table 2 show the influence of the dimensionless center distance d̃ on
the dimensionless EETR R̃h for models 1, 2, 3 and 4. It can be seen from the graph that
when ϕ = 15% and N = 3, R̃h of each model changes from monotonically decreasing to
monotonically increasing with the increase in d̃. Hence, there are optimal dimensionless
center distances d̃opt being 0.31594 (model 1), 0.30465 (model 2), 0.3103 (model 3) and 0.3103
(model 4), which make R̃h reach the minimum values of 0.018854, 0.018259, 0.02117 and
0.020935, respectively. It can be concluded that the best overall average heat dissipation
effect can be obtained by optimizing the dimensionless center distance d̃ under the condition
of constant proportion of channels, number and cross-section shape of liquid cooling
channels, and the EETR reaches the minima. When the intersecting surface shapes of the
liquid cooling channel are changed, the EETR also changes.

Figure 5. The relationship between R̃h and d̃ of four models at ϕ = 15% and N = 3.

Table 2. The relationship between the minimum value of R̃h and d̃ in four models.

Cross-Section
Shape of Liquid
Cooling Channel

Minimum
Value
of

~
Rh

~
dopt

Cross-Section
Shape of Liquid
Cooling Channel

Minimum
Value
of

~
Rh

~
dopt

Edge to edge in
triangle section 0.018854 0.31594 Angle to angle in

triangle section 0.018259 0.30465

Edge to edge in
Square section 0.02117 0.3103 Angle to angle in

Square section 0.020935 0.3103

It can be seen from Figures 4 and 5 that although the influences of d̃ on T̃max and
R̃h are similar, and there are optimal dimensionless center distances to make the per-
formance indicators reach the optima, but the optimal constructs corresponding to the
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two optimization objectives are different. The changes in cross-section shapes result in the
changes in T̃max and R̃h, and the values of the triangular section are smaller than those
of the square section. The first reason is that when the cross-sectional area is certain, the
cross-sectional perimeter of the triangular section is longer and the contact area between
the cooling liquid and the heating body is larger; the second reason is that the angle of the
triangle is sharper than that of the square, that is, the angle is smaller. It has the ability to
collect heat more deeply into the heating body like a fin, which makes the heat dissipation
capacity of the liquid cooling channel stronger.

When the circular section liquid cooling channel reaches the position of the optimal
dimensionless center distance, the dimensionless maximum temperature is 0.050233 and the
dimensionless EETR is 0.022656. Therefore, it can be found that with the fixed proportion of
channels, the dimensionless maximum temperature and dimensionless EETR of triangular
section liquid cooling channels and square section liquid cooling channels presented in this
paper are lower than those of circular section liquid cooling channels. The reason is that
the corners of this polygon can penetrate into the heating body like fins and can cool the
heating body better.

It can be seen from the above analysis that the dimensionless maximum temperature
and dimensionless EETR of the four models decrease first and then increase with the
increase in the dimensionless center distance, and there are minimum values, respectively.
This rule is also applicable to heating elements of other cross-section shapes, but there are
some differences in numerical values.

3.2. Double Optimization with Double Freedom Degree

(1) Minimization of dimensionless maximum temperature

Given the conditions with the same proportions of channels, for different channel
cross-section shapes (triangle section and square section), the double optimization with
dimensionless center distance d̃ and number N (2, 3, 4, 5, 6) of liquid cooling channels as
design variables is performed. The results are shown in Figure 6.

Figure 6. Cont.
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Figure 6. The relationship among N, d̃ and T̃max when ϕ = 15%. Where subfigures (a–e) are N = 2–6
respectively.

When ϕ and N are constant, with the increase in d̃ of liquid cooling channel with
different cross-section shapes, T̃max first decreases and then increases, and the minimum
value can be obtained.

It can be obtained from Figure 6 that the dimensionless maximum temperature T̃max
of the four models gradually decreases with the increase in the number N of liquid cooling
channels when the proportion ϕ of channels is given. This is because when the number
of liquid cooling channels increases, the distribution of the liquid cooling channels on
the cross-section of the cylinder becomes more uniform. In fact, the heating solid area is
discretized, which avoids the continuous concentration of heat production in the contiguous
heating area and changes the distribution of thermal resistance, so that the heat can be
dissipated through the liquid cooling channels in time, thus, reducing the dimensionless
maximum temperature. Figure 6 shows that for different cross-sections of liquid cooling
channels, the optimal dimensionless center distance d̃opt first increases and then decreases
with the addition of the number N of liquid cooling channels and reaches the maximum
when N = 4. This indicates that the number of liquid cooling channels has an effect on
the optimal dimensionless center distance, and the change in the number of liquid cooling
channels will cause a change in the thermal resistance distribution of the model, which
will lead to a change in the optimal dimensionless center distance. With the addition of
the number N of liquid cooling channels, the d̃opt of liquid cooling channels with different
cross-sections tends to be the same. This is because when N is small, the cooling capacity
of a single liquid cooling channel is stronger, so the cooling effect is greatly affected by
the cross-sectional area of the channel and d̃opt is different. When N is larger, the cooling
capacity of a single liquid cooling channel decreases, and the influence of cross-section
shape on the optimal distribution of the channel weakens, so d̃opt is to be the same.

The proportion ϕ (5%, 10%, 15%) of channels is realized. Figures 7–9 show the changes
in T̃max with d̃ for different ϕ and N. The optimization results show that for the liquid cool-
ing channels with different cross-section shapes, when ϕ increases, T̃max corresponding to
a different number N of liquid cooling channels decreases further. With the increase in the
proportion of channels, the total cross-sectional area of the liquid cooling channel increases,
the cooling capacity increases, and the area of the heat-producing area decreases, which
reduces the dimensionless maximum temperature. With the increase in ϕ, the optimal
dimensionless center distance d̃opt corresponding to a different number N of liquid cooling
channels is almost unchanged. This shows that the optimal dimensionless center distance
d̃opt is more susceptible to the number N of liquid cooling channels. In all numerical
examples, the optimal construct making the dimensionless maximum temperature mini-
mum is model 2 when N is 6, the proportion ϕ of channels is 15% and the dimensionless
center distance d̃ is 0.34415. The minimum dimensionless maximum temperature (T̃max)min
is 0.016838.

Figure 10 shows the dimensionless temperature cloud chart of model 1 when N = 3,
ϕ = 15%, N = 6, ϕ = 5% and N = 6, ϕ = 15%.
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Figure 7. The relationship between ϕ and T̃max in four models at N = 2. Where subfigures (a–d) are
Model 1, 2, 3 and 4 respectively.

Figure 8. The relationship between ϕ and T̃max in four models at N = 4. Where subfigures (a–d) are
Model 1, 2, 3 and 4 respectively.

Figure 9. Cont.
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Figure 9. The relationship between ϕ and T̃max in four models at N = 6. Where subfigures (a–d) are
Model 1, 2, 3 and 4 respectively.

Figure 10. A dimensionless temperature cloud chart of model 1.
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It can be observed from Figure 10 that when N and ϕ are constant, with the increase in
d̃, the high-temperature part of the temperature cloud chart moves from the edge part of the
circular section to the center part and the region near the liquid cooling channels is always
the lowest-temperature region; when it is the optimal dimensionless center distance, the
temperature distribution of the heating body is more uniform. Under the same conditions
with ϕ and d̃, the temperature cloud chart of N = 3 is larger than that of N = 6, and the
highest temperature is higher. When d̃ and N are constant, the temperature distribution of
the temperature cloud chart with ϕ = 15% is similar to that of the temperature cloud chart
with ϕ = 5%, but the temperature is lower on the whole. The variation in the cloud chart
with N, d̃ and ϕ in models 2, 3 and 4 is similar to that in model 1, but the distribution and
temperature are different.

Figure 11 shows the temperature cloud chart of the liquid cooling channel models
with different cross-section shapes at N = 6, ϕ = 15% and d̃ = 0.344147.

Figure 11. The dimensionless temperature cloud charts of four models when N = 6, ϕ = 15% and
d̃ = 0.344147. Where subfigures (a–d) are Model 1, 2, 3 and 4 respectively.

From Figure 11, it can be seen that the changes in microchannel cross-section will
change the temperature value and distribution of the heating body. Comparing Figure 11a,b,
it can be found that the high-temperature area of model 1 is smaller than that of model 2
(that is, the red area), which means that the temperature of model 1 is lower. This can be
verified in Figure 4. When d̃ = 0.344147, the dimensionless maximum temperature of model
2 is higher than that of model 1, i.e., the cooling capacity of model 1 is higher than that of
model 2. It can also be seen from Figure 11 that the temperature of the high-temperature
part of model 1 and 2 is lower, and that of model 3 and 4 is higher.

(2) Minimization of dimensionless EETR

The influence of dimensionless center distance d̃ and the number N of liquid cooling
channels of four models on dimensionless EETR R̃h is depicted in Figure 12.
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Figure 12. The influence of N and ϕ on R̃h and d̃ when ϕ = 15%. Where subfigures (a–e) are N = 2–6
respectively.

When the number of liquid cooling channels and the proportion of channels are
constant, the dimensionless EETR R̃h of each model changes from monotonically decreasing
to monotonically increasing with the increase in dimensionless center distance d̃, and the
minimum value can be obtained.

As shown in Figure 12, given the proportion ϕ of channels, the dimensionless EETR
R̃h of the four models gradually decreases with the increase in the number N of liquid
cooling channels, and the optimal dimensionless center distance d̃opt gradually increases
with the increase in the number N of liquid cooling channels. Moreover, with the increase
in N, the optimal dimensionless center distance d̃opt of each model tends to be consistent,
and the influence of the cross-section shape of the liquid cooling channel on d̃opt becomes
smaller and smaller.

The reason is that with the increase in the number of liquid cooling channels, the
cross-sectional area of each liquid cooling channel decreases. Therefore, the influence of
channel location on cooling capacity increases, but the influence of the cross-section shape
of the liquid cooling channel decreases, so the optimal dimensionless center distance tends
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to be the same. In a word, when the number of liquid cooling channels is different, the
optimal distribution of each cooling channel is different and the distance between channels
is also different.

The proportion ϕ (5%, 10% and 15%) of channels is released. The optimization
results in Figures 13–15 show that

(
R̃h

)
min

corresponding to a different number N of
liquid cooling channels is further reduced when ϕ increases. Similar to the result of
maximum temperature, with the increase in ϕ, the optimal dimensionless center distance
d̃opt corresponding to a different number N of liquid cooling channels does not change,
that is, the change in ϕ has no effect on d̃opt.

Figure 13. The influence of ϕ on R̃h in four models at N = 2. Where subfigures (a–d) are Model 1, 2, 3
and 4 respectively.

Figure 14. The influence of ϕ on R̃h in four models at N = 4. Where subfigures (a–d) are Model 1, 2, 3
and 4 respectively.
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Figure 15. The influence of ϕ on R̃h in four models at N = 6. Where subfigures (a–d) are Model 1, 2, 3
and 4 respectively.

Figure 16 shows the entransy dissipation cloud chart of model 1 when N = 3, ϕ = 15%,
N = 6, ϕ = 5% and N = 6, ϕ = 15%. It can be seen from the figure that the region with
high entransy dissipation rate is concentrated near the corner of the liquid cooling channels.
When N and ϕ are constant, with the increase in d̃, the region of high entransy dissipation
rate gradually moves from the circumferential side near the liquid cooling channel to the
central side of the circular section of the heating body.

Figure 16. The entransy dissipation cloud chart of model 1.

When ϕ and d̃ are constant, the larger N is, the smaller the area of the region of high
entransy dissipation rate near a single liquid cooling channel is. It can be said that the
area of the high entransy dissipation rate part is divided and the total entransy dissipation
rate is reduced. When N and d̃ are constant, with the increase in ϕ, the perimeter of the
cross-section of the liquid cooling channels becomes longer, and the distribution area of
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the region with high entransy dissipation rate is larger. Although the area is larger, the
total entransy dissipation decreases, which leads to a decrease in entransy dissipation rate.
Models 2, 3 and 4 are similar to model 1.

In all simulation cases, the optimal construct corresponding to the minimum dimen-
sionless EETR is model 2 with the number N of liquid cooling channels being 6, the
proportion ϕ of channels being 15% and the dimensionless center distance d̃ being 0.36107,
the minimum dimensionless EETR

(
R̃h

)
min

is 0.0078263.
Comparing the effects of dimensionless center distance, number of liquid cooling

channels and proportion of channels on dimensionless maximum temperature and dimen-
sionless EETR, it can be found that the influence characteristics is similar. In the range of
N = 2~6, when the number N of liquid cooling channels increases, the optimal dimension-
less center distance d̃opt of dimensionless maximum temperature T̃max first increases and
then decreases, while the optimal dimensionless center distance d̃opt of dimensionless EETR
R̃h gradually increases. Therefore, in practical engineering applications, there are different
optimal cooling channel distributions for different heat transfer performance indicators.

Compared with the circular section liquid cooling channel model, the triangular section
liquid cooling channel model and square section liquid cooling channel model proposed in
this paper have smaller dimensionless maximum temperature and dimensionless EETR
with a fixed proportion of channels and number of liquid cooling channels. Therefore, this
paper provides two new alternative design schemes for practical applications.

4. Conclusions

In this paper, two new integrated models of heat source and heat sink with triangular
and square cross-section liquid cooling channels embedded in a cylindrical heating body
with uniform heat production are established. With the given constraints of cross-sectional
area and proportion of channels in the heating body, the influence of dimensionless center
distances and number of liquid cooling channels on the cross-section area of the heating
body is studied by using the dimensionless method. The main conclusions are as follows:

(1) Corresponding to different proportions of channels, channel section and number of
liquid cooling channels, the dimensionless maximum temperature and the dimen-
sionless EETR change from monotonically decreasing to monotonically increasing
with the increase in the dimensionless center distance. There are different optimal
center distances of the dimensionless circle, which make the dimensionless maximum
temperature and the dimensionless EETR reach the respective minima.

(2) The dimensionless maximum temperature and dimensionless EETR decrease with
the increase in the number of liquid cooling channels. With the increase in the
number of liquid cooling channels, the optimal dimensionless center distance of
dimensionless maximum temperature first increases and then decreases, while the
optimal dimensionless center distance of dimensionless EETR gradually increases.

(3) The results reveal that the dimensionless maximum temperature and the dimension-
less EETR decrease when the proportion of channels increases, but the optimal dimen-
sionless center distances is almost the same for different proportions of channels.

(4) For the same proportion of channels and number of liquid cooling channels, the
dimensionless maximum temperature and dimensionless EETR of the triangle section
liquid cooling channels are smaller than that of the square section liquid cooling
channels, and with the increase in the number of liquid cooling channels, the cooling
effect of model 2 (angle to angle in triangle section) is the best.

(5) In engineering applications, the demands are multifaceted, including but not lim-
ited to the cost, the thermal stress, the convenience of manufacturing and operat-
ing and so on. Therefore, it is necessary to study the effects of cross-section shape
of channels on the performances and far more performance indicators should be
considered synthetically.
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