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Abstract: This paper mainly studied the analytical solutions of three types of Van der Pol-Duffing
equations. For a system with parametric excitation frequency, we knew that the ordinary homotopy
analysis method would be unable to find the analytical solution. Thus, we primarily used the
multi-frequency homotopy analysis method (MFHAM). First, the MFHAM was introduced, and the
solution of the system was expressed by constructing auxiliary linear operators. Then, the method
was applied to three specific systems. We compared the numerical solution obtained using the
Runge–Kutta method with the analytical solution to verify the correctness of the latter. Periodic
solutions, with and without time delay, were also compared under the same parameters. The results
demonstrated that it was both effective and correct to use the MFHAM to find analytical solutions to
Van der Pol-Duffing systems, which were classical systems. By comparison, the MFHAM proved to
be effective for time delay systems.
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1. Introduction

In recent years, time delay-coupled dynamical systems have become an increasingly
important research object. The main reasons for this have been high-tech demands, such as
precision machining, social demands, such as solving traffic jams, and scientific demands
for the development of systems biology. These factors mean that time delays in the process
of system coupling cannot be ignored. The dynamical behavior of differential systems with
time delays has attracted the attention of researchers in many fields, such as mathematics,
physics, mechanical engineering, and biology [1–6]. Hu et al. [7] emphasized singular
perturbation methods. By comparing them with other methods, the authors concluded
that this method could more easily calculate and accurately predict the local dynamics of
systems with time delays near Hopf bifurcation. Sharma [8] studied parameter mismatch
and time delay, showing that they affected the collective dynamics of nonlinear oscillation.
In the context of ecology, they found that the predator–prey mechanism controlled global
interactions, through appropriate time delays and parameter mismatches, to obtain constant
populations. Jin et al. [9] presented an identification approach to time delays in linear
systems. Ning [10] solved the problem of global adaptive control of nonlinear systems with
time delay through the HOPA system method.

The Van der Pol-Duffing system has a long history of application in the physical and
biological sciences [11–13]. For example, Fitzhugh [14] treated the equation as a model
of neuronal action potentials. These equations were also used in seismology to model
two plates in geological faults [15], in addition to applications in physics. In recent years,
period-doubling solutions and quasi-periodic solutions of forced Van der Pol-Duffing
oscillators have also received extensive attention and research. Cui et al. [16] combined
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the homotopy analysis method (HAM) with the multi-scale analysis method to study the
analytical solution of the forced Van der Pol-Duffing oscillators.

The HAM was proposed by Liao [17,18] in 1992. Cui et al. [19] studied its stability in
the Van der Pol–Duffing forced oscillator and periodic solutions. Shahram et al. [20] used
the HAM to study the fourth order nonlinear free vibration of Timoshenko beams. Shukla
et al. [21] proposed an improved HAM to solve quasi-periodic solutions and limit cycles
in a forced Van der Pol-Duffing oscillator. Fu et al. [22] obtained a periodic solution for a
coupled Duffing system using the MFHAM.

In Section 1, we introduced the systems and methods studied in this paper. In Section 2,
we described the process of the MFHAM, which was used to calculate a two-degree-of-
freedom coupled Duffing system. In Sections 3–5, we offered three specific examples. In
Section 6, we provided our summary.

2. Multi-Frequency Homotopy Analysis Method

First, we considered the following two-degree-of-freedom Duffing system:

x′′1 + cx′1 + F1(x1, x2) = f1cos Ωt
x′′2 + cx′2 + F2(x1, x2) = f2cos Ωt

, (1)

where x1(t), x2(t) are unknow real functions, F1(x1, x2), F2(x1, x2) are coupling functions,
f1, f2 are the amplitudes of excitation, Ω is the frequency of the parametric excitation, and c
is a known physical parameter.

Based on the MFHAM, we constructed the following n-order auxiliary linear differen-
tial operator

Ln

(
x1
x2

)
=

(
x(2n)

1

x(2n)
2

)
+

n
∑

i=1
Ω2

i

(
x(2n−2)

1

x(2n−2)
2

)
+

n
∑
i 6=j

Ω2
i Ω2

j

(
x(2n−4)

1

x(2n−4)
2

)

+
n
∑

i 6=j 6=r
Ω2

i Ω2
j Ω2

r

(
x(2n−6)

1

x(2n−6)
2

)
+ . . . +

n
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Ω2
i
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x2

) , (2)

where Ωi(i = 1, 2, ..., n) are the fundamental frequencies.
The characteristic polynomial of Equation (2) is

P(λ) =
n

∏
r=1

(λ + rΩi)(λ− rΩi). (3)

The root of the characteristic polynomial in Equation (3) is the frequency under
consideration multiplied by the imaginary unit i, so it was necessary to eliminate the
long-term term formed by any sinusoidal term of the frequency under consideration on the
right side of the differential operator Ln(x).

When the solution of the equation contains a constant term, Equation (2) can be written
as follows.
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=
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) . (4)

We constructed the following homotopy expression

(1− q)Ln+1

(
x1 − g1,0(t)
x2 − g2,0(t)

)
− q}N

(
x1
x2

)
= 0, (5)
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where q ∈ [0, 1] is the embedding variable,gi,0(t)(i = 1, 2) are the intial solutions of
xi(t)(i = 1, 2) respectively, and } is the auxiliary parameter.

Assuming that the power series solution of Equation (1) is

xi = xi,0 + qxi,1 + q2xi,2 + · · · (i = 1, 2). (6)

Substituting Equation (6) into Equation (5), and then merging the same term of q, we
were able to obtain

q0 : Ln+1

(
x1,0 − g1,0(t)
x2,0 − g2,0(t)

)
= 0, (7)

q1 : Ln+1

(
x1,1 − g1,0(t)
x2,1 − g2,0(t)

)
= Ln+1

(
x1,0 − g1,0(t)
x2,0 − g2,0(t)

)
+ }N

(
x1,0
x2,0

)
, (8)

q2 : Ln+1

(
x1,2 − g1,0(t)
x2,2 − g2,0(t)

)
= Ln+1

(
x1,1 − g1,0(t)
x2,1 − g2,0(t)

)
+ }

∂N
(

x1
x2

)
∂q

∣∣∣∣∣∣∣∣∣
q=0

. (9)

Let the solution to Equation (7) be

xi,0(t) = gi,0(t) + A0 + ∑
l=1

Alsin (Ωlt + φl), (10)

where A0, Al , φl(l = 1, 2, ..., n) are constants.
First, substituting Equations (7) and (10) into Equation (8), and eliminating the secular

terms, we obtained Ln+1(
x1
x2
). Second, substituting Ln+1(

x1
x2
) into Equation (2) or Equation

(4), xi(t)(i = 1, 2) was obtained. Finally, we obtained the value of A0, Al , φl(l = 1, 2, ..., n)
by solving the equations consisting of secular terms.

In a similar way, xi,r(t)(i = 1, 2) can be determined one by one. The solution of
Equation (5) was

xi(t) = lim
q→1

xi(t, q) = xi,0(t) + xi,1(t) + xi,2(t) + . . . . (11)

3. Analyzing the Coupling Van der Pol-Duffing System with MFHAM

We considered the following system by the MFHAM

..
x1(t)− µ

(
1− x1

2(t)
) .
x1(t) + αx2(t) + βx1

3(t) = f cos (Ωt)
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t) + βx2

3(t) = f cos (Ωt)
, (12)

where the prime denotes the differential with respect to the time t, x1(t), x2(t) are unknow
real functions, Ω is the frequency of the parametric excitation, and µ > 0, f is the amplitudes
of excitation.

For the single period, the characteristic polynomial is

p(λ) = λ
3

∏
r=1

(λ + rΩi)(λ− rΩi). (13)

The corresponding auxiliary linear differential operator is

L4

(
x1
x2

)
=

(
x(7)1

x(7)2

)
+ 14Ω2

(
x(5)1

x(5)2

)
+ 49Ω4

(
x(3)1

x(3)2

)
+ 36Ω6

(
x′1
x′2

)
. (14)
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Then, we constructed the homotopy expression

Γ
(

x1 q
x2 q

)
= L4

(
x1
x2

)
− qL4

(
x1
x2

)
−q}

( ..
x1(t)− µ

(
1− x1

2(t)
) .

x1(t) + αx2(t) + βx1
3(t)− f cos Ωt

..
x2(t)− µ

(
1− x2

2(t)
) .

x2(t) + αx1(t) + βx2
3(t)− f cos Ωt

), (15)

where } is the auxiliary parameter, and q ∈ [0, 1] is the embedding variable.
Supposing the solution to Equation (12) was

xi = xi,0 + qxi,1 + q2xi,2 + · · · (i = 1, 2), (16)

then, substituting Equation (16) into Equation (15) and merging the same power terms of q,
we obtained

q0 : L4

(
x1,0
x2,0

)
= 0, (17)

q1 : L4

(
x1,1
x2,1

)
= L4

(
x1,0
x2,0

)
+ }

( ..
x1,0 − µ

(
1− x1,0

2) .
x1,0 + αx2,0 + βx1,0

3 − f cos Ωt
..
x2,0 − µ

(
1− x2,0

2) .
x2,0 + αx1,0 + βx2,0

3 − f cos Ωt

)
. (18)

Assuming that the solution Equation (17) could be expressed by

x1,0 = a1 + b1cos (Ωt + φ1) + b2cos (2Ωt + φ2) + b3cos (3Ωt + φ3)
x2,0 = a2 + d1cos (Ωt + γ1) + d2cos (2Ωt + γ2) + d3cos (3Ωt + γ3)

, (19)

where a1, a2, bi, di, φi, γi(i = 1, 2, 3) are unknown parameters.
Substituting Equations (17) and (19) into Equation (18), we obtained the following equations:

L4(x1,1) = {− f Cos [tΩ] + α(a2 + d1Cos[tΩ + γ1] + d2Cos[2tΩ + γ2] + d3Cos[3tΩ + γ3])

−b1Ω2Cos[tΩ + φ1]− 4b2Ω2Cos[2tΩ + φ2]− 9b3Ω2Cos[3tΩ + φ3]+

β(a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])
3−

µ
(

1− (a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])
2
)

(−b1ΩSin[tΩ + φ1]− 2b2ΩSin[2tΩ + φ2]− 3b3ΩSin[3tΩ + φ3])}}

, (20)

L4(x2,1) = {− f Cos [tΩ] + β(a2 + d1Cos[tΩ + γ1] + d2Cos[2tΩ + γ2] + d3Cos[3tΩ + γ3])
3

−Ω2(d1Cos[tΩ + γ1] + 4d2Cos[2tΩ + γ2] + 9d3Cos[3tΩ + γ3])+

α(a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])−
µ
(

1− (a2 + d1Cos[tΩ + γ1] + d2Cos[2tΩ + γ2] + d3Cos[3tΩ + γ3])
2
)

(−d1ΩSin[tΩ + γ1]− 2d2ΩSin[2tΩ + γ2]− 3d3ΩSin[3tΩ + γ3])}}

. (21)

To eliminate the secular terms in xi,1(t)(i = 1, 2), we expanded the Equations (20) and (21),
obtaining the equations as follows:

−b1µΩ + a1
2b1µΩ + 1

4 b1
3µΩ + 1

2 b1b2
2µΩ + 1

2 b1b3
2µΩ + a1b1b2µΩCos [2φ1 − φ2]+

b3Ω
(

1
4 b1

2µCos [3φ1 − φ3] + a1b2µCos [φ1 + φ2 − φ3] +
1
4 b2

2µCos [φ1 − 2φ2 + φ3]
)
+

d1αSin [γ1 − φ1] + f Sin [φ1]− 3a1b1b2βSin [2φ1 − φ2]− 3
4 b1

2b3βSin [3φ1 − φ3]−
3a1b2b3βSin [φ1 + φ2 − φ3]− 3

4 b2
2b3βSin [φ1 − 2φ2 + φ3] = 0

, (22)

−2b2µΩ + 2a1
2b2µΩ + b1

2b2µΩ + 1
2 b2

3µΩ + b2b3
2µΩ + a1b1

2µΩCos [2φ1 − φ2]+

2a1b1b3µΩCos [φ1 + φ2 − φ3] + b1b2b3 µΩCos [φ1 − 2φ2 + φ3] + d2αSin [γ2 − φ2]+

b1β
( 3

2 a1b1Sin [2φ1 − φ2]− 3a1b3Sin [φ1 + φ2 − φ3] +
3
2 b2b3Sin [φ1 − 2φ2 + φ3]

)
= 0

, (23)

−3b3µΩ + 3a1
2b3µΩ + 3

2 b1
2b3µΩ + 3

2 b2
2b3µΩ + 3

4 b3
3µΩ + 1

4 b1
3µΩCos [3φ1 − φ3]+

3a1b1b2µΩCos [φ1 + φ2− φ3] +
3
4 b1b2

2µΩCos [φ1 − 2φ2 + φ3] + d3αSin [γ3 − φ3]+
1
4 b1

3βSin [3φ1 − φ3] + 3a1b1b2βSin [φ1 + φ2 − φ3]− 3
4 b1b2

2βSin [φ1 − 2φ2 + φ3] = 0

, (24)

−3a1
2b1β− 3b13 β

4 − 3
2 b1b2

2β− 3
2 b1b3

2β + b1Ω2 − d1αCos [γ1 − φ1] + f Cos [φ1]−
3a1b1b2βCos [2φ1 − φ2]− 3

4 b1
2b3βCos [3φ1 − φ3]− 3a1b2b3βCos [φ1 + φ2 − φ3]−

3
4 b2

2b3βCos [φ1 − 2φ2 + φ3]− a1b1b2µΩSin [2φ1 − φ2]− 1
4 b1

2b3µΩSin [3φ1 − φ3]−
a1b2b3µΩSin [φ1 + φ2 − φ3]− 1

4 b2
2b3µΩSin [φ1 − 2φ2 + φ3] = 0

, (25)
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−3a1
2b2β− 3

2 b1
2b2β− 3b23 β

4 − 3
2 b2b32β + 4b2Ω2 − d2αCos [γ2 − φ2]−

3
2 a1b1

2βCos [2φ1 − φ2]− 3a1b1b3βCos [φ1 + φ2 − φ3]− 3
2 b1b2b3βCos [φ1 − 2φ2 + φ3]+

µΩ
(

a1b1
2Sin [2φ1 − φ2]− 2a1b1b3Sin [φ1 + φ2 − φ3] + b1b2b3Sin [φ1 − 2φ2 + φ3]

)
= 0

, (26)

−3a1
2b3β− 3

2 b1
2b3β− 3

2 b2
2b3β− 3b33 β

4 + 9b3Ω2 − d3αCos [γ3 − φ3]−
1
4 b1

3βCos [3φ1 − φ3]− 3a1b1b2βCos [φ1 + φ2 − φ3]− 3
4 b1b2

2βCos [φ1 − 2φ2 + φ3]+

µΩ
(

1
4 b1

3Sin [3φ1 − φ3] + 3a1b1b2Sin [φ1 + φ2 − φ3]− 3
4 b1b2

2Sin[φ1 − 2φ2 + φ3]
)
= 0

, (27)

−d1µΩ + a2
2d1µΩ + 1

4 d1
3µΩ + 1

2 d1d2
2µΩ + 1

2 d1d3
2µΩ + a2d1d2µΩCos [2γ1 − γ2]+

1
4 d1

2d3µΩCos [3γ1 − γ3] + a2d2d3µΩCos [γ1 + γ2 − γ3] +
1
4 d2

2d3µΩCos [γ1 − 2γ2 + γ3]+

f Sin[γ1]− 3a2d1d2βSin[2γ1 − γ2]− 3
4 d1

2d3βSin[3γ1 − γ3]−
3a2d2d3βSin [γ1 + γ2 − γ3]− 3

4 d2
2d3βSin [γ1 − 2γ2 + γ3]− b1αSin [γ1 − φ1] = 0

, (28)

−2d2µΩ + 2a2d2µΩ + d12d2µΩ + 1
2 d2

3µΩ + d2d32µΩ + a2d1
2µΩCos [2γ1 − γ2]+

2a2d1d3µΩCos [γ1 + γ2 − γ3] + d1d2d3µΩCos [γ1 − 2γ2 + γ3] +
3
2 a2d1

2βSin[2γ1 − γ2]−
3a2d1d3βSin[γ1 + γ2 − γ3] +

3
2 d1d2d3βSin[γ1 − 2γ2 + γ3]− b2αSin[γ2 − φ2] = 0

, (29)

−3d3µΩ + 3a2
2d3µΩ + 3

2 d12d3µΩ + 3
2 d22d3µΩ + 3

4 d3
3µΩ + 1

4 d13µΩCos [3γ1 − γ3]+

3a2d1d2µΩCos [γ1 + γ2 − γ3] +
3
4 d1d2

2µΩCos [γ1 − 2γ2 + γ3] +
1
4 d1

3βSin[3γ1 − γ3]+

3a2d1d2βSin[γ1 + γ2 − γ3]− 3
4 d1d2

2βSin [γ1 − 2γ2 + γ3]− b3αSin[γ3 − φ3] = 0

, (30)

− 3d13 β
4 − 3

2 d1d2
2β− 3

2 d1d3
2β + d1Ω2 + f Cos [γ1]− 3a2d1d2βCos [2γ1 − γ2]−

3
4 d1

2d3βCos [3γ1 − γ3]− 3a2d2d3βCos [γ1 + γ2 − γ3]− 3
4 d2

2d3βCos [γ1 − 2γ2 + γ3]

−b1αCos [γ1 − φ1]− a2d1d2µΩSin[2γ1 − γ2]− 1
4 d1

2d3µΩSin[3γ1 − γ3]−
a2d2d3µΩSin [γ1 + γ2 − γ3]− 3a2

2d1β− 1
4 d2

2d3µΩSin [γ1 − 2γ2 + γ3] = 0

, (31)

−3a2
2d2β− 3

2 d1
2d2β− 3d23 β

4 − 3
2 d2d3

2β + 4d2Ω2 − 3
2 a2d1

2βCos [2γ1 − γ2]−
3a2d1d3βCos [γ1 + γ2 − γ3]− 3

2 d1d2d3βCos [γ1 − 2γ2 + γ3]− b2αCos [γ2 − φ2]+

a2d1
2µΩSin[2γ1 − γ2]− 2a2d1d3µΩSin[γ1 + γ2 − γ3] + d1d2d3µΩSin[γ1 − 2γ2 + γ3] = 0

, (32)

−3a2
2d3β− 3

2 d1
2d3β− 3

2 d2
2d3β− 3d33 β

4 + 9d3Ω2 − 1
4 d1

3βCos [3γ1 − γ3]−
3a2d1d2βCos [γ1 + γ2 − γ3]− 3

4 d1d2
2βCos [γ1 − 2γ2 + γ3]− b3αCos [γ3 − φ3]+

1
4 d1

3µΩSin[3γ1 − γ3] + 3a2d1d2µΩSin [γ1 + γ2 − γ3]− 3
4 d1d2

2µΩSin [γ1 − 2γ2 + γ3] = 0

, (33)

−a1α− a2
3β− 3

2 a2d1
2β− 3

2 a2d2
2β− 3

2 a2d3
2β− 3

4 d1
2d2βCos [2γ1 − γ2]−

3
2 d1d2d3βCos [γ1 + γ2 − γ3] = 0

, (34)

−a2α− a1
3β− 3

2 a1b1
2β− 3

2 a1b2
2β− 3

2 a1b3
2β− 3

4 b1
2b2βCos [2φ1 − φ2]−

3
2 b1b2b3βCos [φ1 + φ2 − φ3] = 0

. (35)

Eliminating the secular terms, we obtained x1,1 and x2,1, where the set of parameters
a1, a2, bi, di, φi, γi(i = 1, 2, 3) could be given by Equations (22)–(35), and the solution for x1,1
and x2,1 could be obtained.

Therefore, the first-order approximate solution of x1 and x2 was

xi(t) = lim
q→1

(x0 + qx1) = xi,0 + xi,1(i = 1, 2). (36)

Letting
µ = 1; α = 3.8; β = 1; f = 3; Ω = 2, (37)

the system had a single period solution, as shown in Figure 1. This figure was a superposi-
tion of analytical solution and numerical solution. The numerical solution was obtained by
directly calling the command of Mathematica 12.0 version, and the parameter values were
the same as the analytical solution.
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We used the following corresponding auxiliary linear differential operator 

𝐿7 (
𝑥1
𝑥2
) = (

𝑥1
(13)

𝑥2
(13)

) +
91𝛺2

4
(
𝑥1
(11)

𝑥2
(11)

) +
3003𝛺4

16
(
𝑥1
(9)

𝑥2
(9)
) +

44473𝛺6

64
(
𝑥1
(7)

𝑥2
(7)
)

+
37037𝛺8

32
(
𝑥1
(5)

𝑥2
(5)
) +

48321𝛺10

64
(
𝑥1
(3)

𝑥2
(3)
) +

2025𝛺12

16
(
𝑥1
′

𝑥2
′)

. (39) 
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Figure 1. The single period solution of the coupling Van der Pol-Duffing system when τ = 0, µ = 1,
α = 4, β = 1, f = 3, and Ω = 2. (a) Phase curve; (b) time history response.

For the period-doubling solution, the characteristic polynomial was

P(λ) = λ
6

∏
r=1

(
λ +

rΩ
2

i
)(

λ− rΩ
2

i
)

. (38)

We used the following corresponding auxiliary linear differential operator

L7

(
x1
x2

)
=

(
x(13)

1

x(13)
2

)
+ 91Ω2

4

(
x(11)

1

x(11)
2

)
+ 3003Ω4

16

(
x(9)1

x(9)2

)
+ 44473Ω6

64

(
x(7)1

x(7)2

)

+ 37037Ω8

32

(
x(5)1

x(5)2

)
+ 48321Ω10

64

(
x(3)1

x(3)2

)
+ 2025Ω12

16

(
x′1
x′2

) . (39)

Next, we constructed

Γ
(

x1 q
x2 q

)
= L7

(
x1
x2

)
− qL7

(
x1
x2

)
−q}

( ..
x1(t)− µ

(
1− x1

2(t)
) .

x1(t) + αx2(t) + βx1
3(t)− f cos Ωt

..
x2(t)− µ

(
1− x2

2(t)
) .

x2(t) + αx1(t) + βx2
3(t)− f cos Ωt

), (40)

where } is the auxiliary parameter and q ∈ [0, 1] is the embedding variable.
Assuming that the solution of Equation (12) could be expressed as

xi = xi,0 + qxi,1 + q2xi,2 + · · · (i = 1, 2), (41)

then, substituting Equation (41) into Equation (40) and merging the same power terms of q,
then obtained

q0 : L7

(
x1,0
x2,0

)
= 0, (42)

q1 : L7

(
x1,1
x2,1

)
= L7

(
x1,0
x2,0

)
+

}
( ..

x1(t)− µ
(
1− x1

2(t)
) .
x1(t) + αx2(t) + βx1

3(t)− f cos Ωt
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t) + βx2

3(t)− f cos Ωt

). (43)
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The solution to Equation (42) can be expressed by

x1,0 = a1 + e1cos
(

Ωt
2 + φ0

)
+ b1cos (Ωt + φ1) + e2cos

(
3Ωt

2 + φ2

)
+b2cos (2Ωt + φ3) + e3cos

(
5Ωt

2 + φ4

)
+ b3cos (3Ωt + φ5)

, (44)

x2,0 = a2 + f1cos
(

Ωt
2 + γ0

)
+ d1cos (Ωt + γ1) + f2cos

(
3Ωt

2 + γ2

)
+d2cos (2Ωt + γ3) + f3cos

(
5Ωt

2 + γ4

)
+ d3cos (3Ωt + γ5)

, (45)

where a1, a2, bi, di, ei, fi, φj, γj(i = 1, 2, 3; j = 0, 1, 2, 3, 4, 5) are unknown parameters.
Substituting Equations (42), (44), and (45) into (43), and eliminating the secular

term in xi,1(t)(i = 1, 2), we obtained the solution of a1, a2, bi, di, ei, fi, φj, γj(i = 1, 2, 3;
j = 1, 2, 3, 4, 5).

Taking µ = 1, α = 3.8, β = 1, f = 3, Ω = 2, we obtained the double period solution
and found that the system had the double period of movement, as shown in Figure 2.
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4. Analyzing the Time Delay Van der Pol-Duffing System with MFHAM

We considered the following system by the MFHAM

..
x(t)− µ

(
1− x2(t)

) .
x(t) + αx(t− τ) + βx3(t) = f cos (Ωt), (46)

where the prime denotes the differential with respect to the time t, x(t) are unknow real
functions, τ is the time delay, Ω is the frequency of the parametric excitation, and µ > 0,
α, β, f are constant physical parameters.

First, for the single period solution, we have the characteristic polynomial

p(λ) = λ
3

∏
r=1

(λ + rΩi)(λ− rΩi). (47)

Then, we obtained the corresponding auxiliary linear differential operator

L4(x) =
(

x(7)
)
+ 14Ω2

(
x(5)

)
+ 49Ω4

(
x(3)

)
+ 36Ω6(x′). (48)
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The homotopy expression was constructed as follows:

Γ
(
x, q

)
= L4(x)− qL4(x)−

q}
( ..

x(t)− µ
(
1− x2(t)

) .
x(t) + αx(t− τ) + βx3(t)− f cos (Ωt)

), (49)

where q ∈ [0, 1] is the embedding variable and } is the auxiliary parameter.
We were then able to suppose that the solution to Equation (46) is

x = x0 + qx1 + q2x2 + · · · . (50)

Substituting Equation (50) into Equation (49) and combining terms of the same power
of q, we obtained

q0 : L4(x0) = 0, (51)

q1 : L4(x1) = L4(x0)+
}
( ..

x0(t)− µ
(
1− x0

2(t)
) .
x0(t) + αx0(t− τ) + βx0

3(t)− f cos (Ωt)
)
.

(52)

We then supposed the solution to Equation (51) to be

x0 = a1 + b1cos (Ωt + φ1) + b2cos (2Ωt + φ2) + b3cos (3Ωt + φ3), (53)

where a1, bi, φi(i = 1, 2, 3) are unknown parameters.
Substituting Equation (53) into Equation (52), we obtained

L4(x1) = {α(a1 + d1Cos[(t− τ)Ω + φ1] + d2Cos[2(t− τ)Ω + φ2])+

d3Cos[3(t− τ)Ω + φ3])− 4b2Ω2Cos[2tΩ + φ2]− 9b3Ω2Cos[3tΩ + φ3]−
b1Ω2Cos[tΩ + φ1] + β(a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])

3

− f Cos [tΩ]− µ
(

1− (a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])
2
)

(−b1ΩSin[tΩ + φ1]− 2b2ΩSin[2tΩ + φ2]− 3b3ΩSin[3tΩ + φ3])}}

. (54)

Expanding Equation (54) and eliminating the secular terms in x1, we obtained the
following equations:

3b3 µΩ− 3a1
2b3µΩ− 3

2 b1
2b3µΩ− 3

2 b2
2b3µΩ− 3

4 b3
3µΩ− 1

4 b1
3µΩcos [3φ1 − φ3]−

3a1b1b2µΩcos [φ1 + φ2 − φ3]− 3
4 b1b2

2µΩcos [φ1 − 2φ2 + φ3]− 1
4 b1

3βsin [3φ1 − φ3]

−3a1b1b2βsin [φ1 + φ2 − φ3] +
3
4 b1b2

2βsin [φ1 − 2φ2 + φ3] + b3αsin [3τΩ] = 0

, (55)

3a1b1b3βsin [φ1 + φ2 − φ3]− b1
2b2µΩ− 1

2 b2
3µΩ− b2b3

2µΩ− a1
2µΩcos [2φ1 − φ2]

−2a1b1b3µΩcos [φ1 + φ2 − φ3]− b1b2b3µΩcos [φ1 − 2φ2 + φ3] + b2αsin [2τΩ]+

2b2µΩ− 2a1
2b2µΩ− 3

2 b1b2b3βsin [φ1 − 2φ2 + φ3]− 3
2 a1b1

2βsin [2φ1 − φ2] = 0

, (56)

b1µΩ− a1
2b1µΩ− 1

4 b13µΩ− 1
2 b1b2

2µΩ− 1
2 b1b3

2µΩ− a1b1b2µΩcos [2φ1 − φ2]

− 1
4 b1

2b3µΩcos [3φ1 − φ3]− 1
4 b2

2b3µΩcos [φ1 − 2φ2 + φ3]− f sin [φ1]+

3a1b1b2βsin [2φ1 − φ2]− a1b2b3µcos [φ1 + φ2 − φ3] +
3
4 b1

2b3βsin [3φ1 − φ3]

+3a1b2b3βsin [φ1 + φ2 − φ3] +
3
4 b2

2b3βsin [φ1 − 2φ2 + φ3] + b1αsin [τΩ] = 0,

, (57)

3
2 b2

2b3β + 3b33 β
4 − 9b3Ω2 + 1

4 b1
3βcos [3φ1 − φ3] +

3
4 b1b2

2µΩsin [φ1 − 2φ2 + φ3]

+3a1b1b2βcos [φ1 + φ2 − φ3] +
3
4 b1b2

2βcos [φ1 − 2φ2 + φ3] + b3αcos [3τΩ]−
1
4 b1

3µΩsin [3φ1 − φ3]− 3a1b1b2µΩsin [φ1 + φ2 − φ3] + 3a1
2b3β + 3

2 b1
2b3β = 0

, (58)

3a1
2b2β + 3

2 b1
2b2β + 3

2 b2b3
2β− 4b2Ω2 + 3

2 a1b1
2βcos [2φ1 − φ2]+

3a1b1b3βcos [φ1 + φ2 − φ3] +
3
2 b1b2b3βcos [φ1 − 2φ2 + φ3]

+b2αcos [2τΩ]− a1b1
2µΩsin [2φ1 − φ2] +

3b23 β
4

+2a1b1b3µΩsin [φ1 + φ2 − φ3]− b1b2b3µΩsin [φ1 − 2φ2 + φ3] = 0

, (59)
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3b13 β
4 + 3

2 b1b3
2β− b1Ω2 − f cos [φ1] +

3
4 b1

2b3βcos [3φ1 − φ3]+

3a1b1b2βcos [2φ1 − φ2] + 3a1b2b3cos [φ1 + φ2 − φ3] + 3a1
2b1β

3
4 b2

2b3βcos [φ1 − 2φ2 + φ3] + b1αcos [τΩ] + a1b1b2µΩsin [2φ1 − φ2]

+ 1
4 b1

2b3µΩsin [3φ1 − φ3] + a1b2b3µsin [φ1 + φ2 − φ3] +
3
2 b1b2

2β

+ 1
4 b2

2b3µΩsin [φ1 − 2φ2 + φ3] = 0

, (60)

a1α + a1
3β + 3

2 a1b1
2β + 3

2 a1b2
2β + 3

2 a1b3
2β + 3

4 b1
2b2βcos [2φ1 − φ2]

+ 3
4 b1

2b2βcos [2φ1 − φ2] +
3
2 b1b2b3βcos [φ1 + φ2 − φ3] = 0

. (61)

Eliminating the secular terms, we obtained x1, where the set of parameters a1, bi, φi
(i = 1, 2, 3) can be given by Equations (55)–(61).

Therefore, the first-order approximate solution of x was

x = lim
q→1

(x0 + qx1) = x0 + x1. (62)

Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 3.
We also obtained the single periodic solution for τ = 0 under the parameter, as shown
in Figure 4.
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Figure 3. The single period solution of the time delay Van der Pol-Duffing system when 𝜏 = 0.01, 

𝜇 = 0.1, 𝛼 = 1, 𝛽 = 1, 𝑓 = 0.01 and 𝛺 = 2. (a) Phase curve; (b) time history response. 
Figure 3. The single period solution of the time delay coupling Van der Pol-Duffing system when
τ = 0.01, µ = 0.1, α = 1, β = 1, f = 0.01 and Ω = 2. (a) Phase curve; (b) time history response.
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For the period-doubling solution, the characteristic polynomial is

P(λ) = λ
6

∏
r=1

(
λ +

rΩ
2

i
)(

λ− rΩ
2

i
)

. (63)

We used the following corresponding auxiliary linear differential operator

L7(x) =
(

x(13)
)
+ 91Ω2

4

(
x(11)

)
+ 3003Ω4

16

(
x(9)

)
+ 44473Ω6

64

(
x(7)

)
+ 37037Ω8

32

(
x(5)

)
+ 48321Ω10

64

(
x(3)

)
+ 2025Ω12

16 (x′)
. (64)

Next, we constructed

Γ
(
x q

)
= L7(x)− qL7(x)

−q}
( ..

x(t)− µ
(
1− x2(t)

) .
x(t) + αx(t− τ) + βx3(t)− f cos (Ωt)

), (65)

where } is the auxiliary parameter, q ∈ [0, 1] is the embedding variable.
We then assumed that the solution of Equation (46) could be expressed as

x = x0 + qx1 + q2x2 + · · · . (66)

Substituting Equation (66) into Equation (65) and merging the same power terms of q,
we obtained

q0 : L7(x0) = 0, (67)

q1 : L7(x1) = L7(x0)+
}
( ..

x0(t)− µ
(
1− x0

2(t)
) .
x0(t) + αx0(t− τ) + βx0

3(t)− f cos (Ωt)
). (68)

We assumed that the solution Equation (67) could be expressed by

x0 = a1 + e1cos
(

Ωt
2 + φ0

)
+ b1cos (Ωt + φ1) + e2cos

(
3Ωt

2 + φ2

)
+b2cos (2Ωt + φ3) + e3cos

(
5Ωt

2 + φ4

)
+ b3cos (3Ωt + φ5)

, (69)

where a1, bi, ei, φj(i = 1, 2, 3; j = 1, 2, 3, 4, 5) are unknown parameters.
Substituting Equations (67) and (69) into (68), and eliminating the secular term in

x1(t), we obtained the solution a1, bi, ei, φj(i = 1, 2, 3; j = 0, 1, 2, 3, 4, 5).
Taking µ = 1, α = 3.8, β = 1, f = 3, Ω = 2, τ = 0.01, we obtained the double period

solution and found that the system had the double period of movement, as shown in
Figure 5. We also obtained the double periodic solution for τ = 0 under this parameter,
as shown in Figure 6. Therefore, we found that the existence of time delay affected the
solution of the system.
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5. Analyzing the Time Delay Coupling Van der Pol-Duffing System with MFHAM

The system was as follows

..
x1(t)− µ

(
1− x1

2(t)
) .
x1(t) + αx2(t− τ) + βx1

3(t) = f cos (Ωt)
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t− τ) + βx2

3(t) = f cos (Ωt).
(70)

For the single period, the characteristic polynomial is

p(λ) = λ
3

∏
r=1

(λ + rΩi)(λ− rΩi). (71)

The corresponding auxiliary linear differential operator is

L4

(
x1
x2

)
=

(
x(7)1

x(7)2

)
+ 14Ω2

(
x(5)1

x(5)2

)
+ 49Ω4

(
x(3)1

x(3)2

)
+ 36Ω6

(
x′1
x′2

)
. (72)

Then, we constructed the homotopy expression

Γ
(

x1 q
x2 q

)
= L4

(
x1
x2

)
− qL4

(
x1
x2

)
−q}

( ..
x1(t)− µ

(
1− x1

2(t)
) .
x1(t) + αx2(t− τ) + βx1

3(t)− f cos Ωt
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t− τ) + βx2

3(t)− f cos Ωt

), (73)

where } is the auxiliary parameter and q ∈ [0, 1] is the embedding variable.
We supposed the solution to Equation (70) to be

xi = xi,0 + qxi,1 + q2xi,2 + · · · (i = 1, 2). (74)

Substituting Equation (74) into Equation (73) and merging the same power terms of q,
we obtained

q0 : L4

(
x1,0
x2,0

)
= 0, (75)
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q1 : L4

(
x1,1
x2,1

)
= L4

(
x1,0
x2,0

)
+}
( ..

x1(t)− µ
(
1− x1

2(t)
) .
x1(t) + αx2(t− τ) + βx1

3(t)− f cosΩt
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t− τ) + βx2

3(t)− f cosΩt

). (76)

We then assumed that the solution Equation (75) could be expressed by

x1,0 = a1 + b1cos (Ωt + φ1) + b2cos (2Ωt + φ2) + b3cos (3Ωt + φ3)
x2,0 = a2 + d1cos (Ωt + γ1) + d2cos (2Ωt + γ2) + d3cos (3Ωt + γ3)

, (77)

where a1, a2, bi, di, φi, γi(i = 1, 2, 3) are unknown parameters.
Substituting Equations (75) and (77) into Equation (76), we obtained the following equations

L4(x1,1) = {α(a2 + d1Cos[(t− τ)Ω + γ1] + d2Cos[2(t− τ)Ω + γ2] + d3Cos[3(t− τ)Ω + γ3])

−b1Ω2Cos[tΩ + φ1]− 4b2Ω2Cos[2tΩ + φ2]− 9b3Ω2Cos[3tΩ + φ3]− f Cos [tΩ]+

β(a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])
3−

µ
(

1− (a1 + b1Cos[tΩ + φ1] + b2Cos[2tΩ + φ2] + b3Cos[3tΩ + φ3])
2
)

(−b1ΩSin[tΩ + φ1]− 2b2ΩSin[2tΩ + φ2]− 3b3ΩSin[3tΩ + φ3])}}

, (78)

L4(x2,1) = {− f Cos [tΩ] + β(a2 + d1Cos[tΩ + γ1] + d2Cos[2tΩ + γ2] + d3Cos[3tΩ + γ3])
3

−Ω2(d1Cos[tΩ + γ1] + 4d2Cos[2tΩ + γ2] + 9d3Cos[3tΩ + γ3])+

α(a1 + b1Cos[(t− τ)Ω + φ1] + b2Cos[2(t− τ)Ω + φ2] + b3Cos[3(t− τ)Ω + φ3])−
µ
(

1− (a2 + d1Cos[tΩ + γ1] + d2Cos[2tΩ + γ2] + d3Cos[3tΩ + γ3])
2
)

(−d1ΩSin[tΩ + γ1]− 2d2ΩSin[2tΩ + γ2]− 3d3ΩSin[3tΩ + γ3])}}

. (79)

Expanding Equations (78) and (79), then eliminating the secular term in Equations (78) and (79),
we obtained the Equations (A1)–(A14) in Appendix A.

Eliminating the secular terms, we obtained x1,1 and x2,1, where the set of parameters
a1, a2, bi, di, φi, γi(i = 1, 2, 3) can be given by Equations (A1)–(A14).

Therefore, the first-order approximate solution of x1 and x2 was

xi(t) = lim
q→1

(x0 + qx1) = xi,0 + xi,1(i = 1, 2). (80)

Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 7.
We also obtained the single periodic solution for τ = 0 under this parameter, as shown
in Figure 8.
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For the period-doubling solution, the characteristic polynomial is

P(λ) = λ
6

∏
r=1

(
λ +

rΩ
2

i
)(

λ− rΩ
2

i
)

. (81)

We used the following corresponding auxiliary linear differential operator as

L7

(
x1
x2

)
=

(
x(13)

1

x(13)
2

)
+ 91Ω2

4

(
x(11)

1

x(11)
2

)
+ 3003Ω4

16

(
x(9)1

x(9)2

)
+ 44473Ω6

64

(
x(7)1

x(7)2

)

+ 37037Ω8

32

(
x(5)1

x(5)2

)
+ 48321Ω10

64

(
x(3)1

x(3)2

)
+ 2025Ω12

16

(
x′1
x′2

) . (82)

Next, we constructed

Γ
(

x1 q
x2 q

)
= L7

(
x1
x2

)
− qL7

(
x1
x2

)
−

q}
( ..

x1(t)− µ
(
1− x1

2(t)
) .
x1(t) + αx2(t− τ) + βx1

3(t)− f cosΩt
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t− τ) + βx2

3(t)− f cosΩt

), (83)

where } is the auxiliary parameter and q ∈ [0, 1] is the embedding variable.
We assumed that the solution of Equation (70) could be expressed as

xi = xi,0 + qxi,1 + q2xi,2 + · · · (i = 1, 2). (84)

Substituting Equation (84) into Equation (83) and merging the same power terms of q,
we obtained

q0 : L7

(
x1,0
x2,0

)
= 0, (85)

q1 : L7

(
x1,1
x2,1

)
= L7

(
x1,0
x2,0

)
+}
( ..

x1(t)− µ
(
1− x1

2(t)
) .
x1(t) + αx2(t− τ) + βx1

3(t)− f cosΩt
..
x2(t)− µ

(
1− x2

2(t)
) .
x2(t) + αx1(t− τ) + βx2

3(t)− f cosΩt

). (86)
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We assumed that the solution Equation (85) can be expressed by

x1,0 = a1 + e1cos
(

Ωt
2 + φ0

)
+ b1cos (Ωt + φ1) + e2cos

(
3Ωt

2 + φ2

)
+b2cos (2Ωt + φ3) + e3cos

(
5Ωt

2 + φ4

)
+ b3cos (3Ωt + φ5)

, (87)

x2,0 = a2 + f1cos
(

Ωt
2 + γ0

)
+ d1cos (Ωt + γ1) + f2cos

(
3Ωt

2 + γ2

)
+d2cos (2Ωt + γ3) + f3cos

(
5Ωt

2 + γ4

)
+ d3cos (3Ωt + γ5)

, (88)

where a1, a2, bi, di, ei, fi, φj, γj(i = 1, 2, 3; j = 1, 2, 3, 4, 5) are unknown parameters.
Substituting Equations (85), (87) and (88) into Equation (86), and eliminating the

secular term in xi,1(t)(i = 1, 2), we obtained the solution a1, a2, bi, di, ei, fi, φj, γj(i = 1, 2, 3;
j = 0, 1, 2, 3, 4, 5). Hence, the double period solution was obtained, as shown in Figure 9.
We also obtained the double periodic solution for τ = 0 under this parameter, as shown
in Figure 10. Therefore, we found that the existence of time delay affected the solution
of the system.
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Figure 9. The double period solution of the time delay coupling Van der Pol-Duffing system when
τ = 0.01, µ = 0.1, α = 1, β = 0, f = 0.5 and Ω = 0.499. (a) Phase curve; (b) time history response.
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6. Conclusions

In this paper, the Van der Pol-Duffing systems contained parametric excitation frequen-
cies. As such, the ordinary HAM was unable to solve the periodic solution of the systems.
Therefore, we chose MFHAM to solve the periodic solution of the system, and applied the
method to the coupled Van der Pol-Duffing system, single-degree-of-freedom delay Van
der Pol-Duffing system, and Van der Pol-Duffing system with coupled time delay. Then,
the solution obtained by this method was compared with the Runge–Kutta method. The
results showed that the solutions obtained by the MFHAM and the Runge–Kutta method
were consistent, and also showed that the time history curve obtained by the MFHAM and
the Runge–Kutta method were consistent. Thus, the effectiveness of the MFHAM to study
time delay-coupled nonlinear dynamical systems was demonstrated. We also compared
the system with and without time delay under the same parameters, and found that the
time delay affected the solution of the system and the dynamic behavior of the system.
Thus, it was necessary to consider the time delay of the system.
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Appendix A

For the steps described in time delay coupling Van der Pol-Duffing system system, we
can obtain the equations as follows:

3a1
2b1β + 3b13 β

4 + 3
2 b1b2

2β + 3
2 b1b3

2 − b1Ω2 − f cos [γ1] + 3a1b1b2βcos [2γ1 − γ2]+
3
4 b1

2b3βcos [3γ1 − γ3] + 3a1b2b3βcos [γ1 + γ2 − γ3] +
3
4 b2

2b3βcos [γ1 − 2γ2 + γ3]+

d1αcos [γ1 − φ1 + τΩ] + a1b1b2µΩsin [2γ1 − γ2] +
1
4 b1

2b3µΩsin [3γ1 − γ3]+

a1b2b3µΩsin [γ1 + γ2 − γ3] +
1
4 b2

2b3µΩsin [γ1 − 2γ2 + γ3] = 0

, (A1)

3
2 b1

2b2β + 3
2 b2b3

2β− 4b2Ω2 + a1b1
2βcos [2γ1 − γ2]− b1b2b3µsin [γ1 − 2γ2 + γ3]+

3a1b1b3βcos [γ1 + γ2 − γ3] +
3
2 b1b2b3βcos [γ1 − 2γ2 + γ3] + d2αcos [γ2 − φ2 + 2τΩ]

−a1b1
2µΩsin [2γ1 − γ2] + 2a1b1b3µsin [γ1 + γ2 − γ3] + 3a1

2b2β + 3b2
3 β

4 = 0

, (A2)

3a1
2b3β + 3b3

3 β
4 − 9b3Ω2 + 1

4 b1
3βcos [3γ1 − γ3] +

3
4 b1b2

2µΩsin [γ1 − 2γ2 + γ3]+

3a1b1b2βcos [γ1 + γ2 − γ3] +
3
4 b1b2

2βcos [γ1 − 2γ2 + γ3] + d3αcos [γ1 − φ3 + 3τΩ]−
1
4 b1

3µΩsin [3γ1 − γ3]− 3a1b1b2µΩsin [γ1 + γ2 − γ3] +
3
2 b1

2b3β + 3
2 b3

2b3β = 0

, (A3)

b1µΩ− a1b1b2µΩcos [2γ1 − γ2]− f sin [γ1]− 1
4 b2

2b3µΩcos [γ1 − 2γ2 + γ3]−
1
4 b1

2b3µΩcos [3γ1 − γ3]− a1b2b3µcos [γ1 + γ2 − γ3]− 1
2 b1b2

2µΩ− 1
2 b1b3

2µΩ

+3a1b1b2βsin [2γ1 − γ2] +
3
4 b1

2b3βsin [3γ1 − γ3] + 3a1b2b3βsin [γ1 + γ2 − γ3]

+ 3
4 b2

2b3βsin [γ1 − 2γ2 + γ3] + d1αsin [γ1 − φ1 + τΩ]− a1
2b1µΩ− 1

4 b1
3µΩ = 0

, (A4)
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2b2µΩ + d2αsin [γ2 − φ2 + 2τΩ]− 1
2 b2

3µΩ− b2b3
2µΩ− a1b1

2µΩcos [2γ1 − γ2]−
2a1b1b3µΩcos [γ1 + γ2 − γ3]− b1b2b3µΩcos [γ1 − 2γ2 + γ3]− 3

2 a1b1
2βsin [2γ1 − γ2]+

3a1b1b3βsin [γ1 + γ2 − γ3]− 3
2 b1b2b3βsin [γ1 − 2γ2 + γ3]− 2a1

2b2µΩ− b1
2b2µΩ = 0

, (A5)

3b3 µΩ− 3
2 b2

2b3µΩ− 3
4 b3

3µΩ− 1
4 b1

3µΩcos [3γ1 − γ3] + d3αsin [γ1 − φ3 + 3τΩ]−
3a1b1b2µΩcos [γ1 + γ2 − γ3]− 3

4 b1b2
2µΩcos [γ1 − 2γ2 + γ3]− 1

4 b1
3βsin [3γ1 − γ3]−

3a1b1b2βsin [γ1 + γ2 − γ3] +
3
4 b1b2

2βsin [γ1 − 2γ2 + γ3]− 3a1
2b3µΩ− 3

2 b1
2b3µΩ = 0

, (A6)

3a2
2d1β + 3d1

3 β
4 + 3

2 d1d2
2β− d1Ω2 − f cos [φ1] + 3a2d1d2βcos [2φ1 − φ2]+

3
4 d1

2d3βcos [3φ1 − φ3] + 3d2d3βcos [φ1 + φ2 − φ3] +
3
4 d2

2d3βcos [φ1 + 2φ2 − φ3]

+b1αcos [γ1 − φ1 − τΩ] + a2d1d2µΩsin [2φ1 − φ2] +
1
4 d1

2d3µΩsin [3φ1 − φ3]

+a2d2d3µΩsin [φ1 + φ2 − φ3] +
1
4 d2

2d3µΩsin [φ1 − 2φ2 + φ3] +
3
2 d1d3

2β = 0

, (A7)

3a2
2d2β− 4d2Ω2 − d1d2d3µΩsin [φ1 − 2φ2 + φ3] +

3
2 a2d1

2βcos [2φ1 − φ2] +
3d2

3 β
4 +

3a2d1d3βcos [φ1 + φ2 − φ3] +
3
2 d1d2d3βcos [φ1 − 2φ2 + φ3] + b2αcos [γ2 − φ2 − 2τΩ]

−a2d1
2µΩsin [2φ1 − φ2] + 2a2d1d3µΩsin [φ1 + φ2 − φ3] +

3
2 d1

2d2β + 3
2 d2d3

2β = 0

, (A8)

3a2
2d3β + 3

2 d1
2d3β + 3d3

3 β
4 − 9d3Ω2 + 1

4 d1
3βcos [3φ1 − φ3]− 1

4 d1
3µΩsin [3φ1 − φ3]

3a2d1d2βcos [φ1 + φ2 − φ3] +
3
4 d1d2

2βcos [φ1 − 2φ2 + φ3] + b3αcos [γ3 − φ3 − 3τΩ]

+ 3
2 d2

2d3β− 3a2d1d2µΩsin [φ1 + φ2 − φ3] +
3
4 d1d2

2µΩsin [φ1 − 2φ2 + φ3] = 0

, (A9)

d1µΩ− 1
2 d1d2

2µΩ− 1
2 d1d3

2µΩ− a2d1d2µΩcos [2φ1 − φ2]− 1
4 d1

2d3µΩcos [3φ1 − φ3]

−a2d2d3µΩcos [φ1 + φ2 − φ3]− 1
4 d2

2d3µΩcos [φ1 − 2φ2 + φ3]− 1
4 d1

3µΩ

+3a2d1d2βsin [2φ1 − φ2] +
3
4 d1

2d3βsin [3φ1 − φ3] +
3
4 d2

2d3βsin [φ1 + 2φ2 − φ3]

+3d2d3βsin [φ1 + φ2 − φ3]− b1αsin [γ1 − φ1 − τΩ]− a2
2d1µΩ− f sin [φ1] = 0

, (A10)

2d2µΩ− 1
2 d2

3µΩ− d2d3
2µΩ− a2d1

2µΩ cos [2φ1 − φ2]− d1d2d3µΩcos [φ1 − 2φ2 + φ3]

−2a2d1d3µΩcos [φ1 + φ2 − φ3]− 2a2
2d2µΩ− d1

2d2µΩ− 3
2 d1d2d3βsin [φ1 − 2φ2 + φ3]

+3a2d1d3βsin [φ1 + φ2 − φ3]− 3
2 a2d1

2βsin [2φ1 − φ2]− b2αsin [γ2 − φ2 − 2τΩ] = 0

, (A11)

3d3µΩ− 3
2 d2

2d3µΩ− 3
4 d3

3µΩ + 3
4 d1d2

2βsin [φ1 − 2φ2 + φ3]− 1
4 d1

3µΩcos [3φ1 − φ3]

−3a2d1d2µΩcos [φ1 + φ2 − φ3]− 3
4 d1d2

2µΩcos [φ1 − 2φ2 + φ3]− 1
4 d1

3βsin [3φ1 − φ3]

−3a2d1d2βsin [φ1 + φ2 − φ3]− b3αsin [γ3 − φ3 − 3τΩ]− 3a2
2d3µΩ− 3

2 d1
2d3µΩ = 0

, (A12)

3d3µΩ− 3a2
2d3µΩ− 3

2 d1
2d3µΩ− 3

2 d2
2d3µΩ− 3

4 d3
3µΩ− 1

4 d1
3µΩcos[3φ1 − φ3]−

3a2d1d2µΩcos[φ1 + φ2 − φ3]− 1
4 d1

3βsin[3φ1 − φ3]− 3
4 d1d2

2µΩcos[φ1 − 2φ2 + φ3]−
3a2d1d2βsin[φ1 + φ2 − φ3] +

3
4 d1d2

2βsin[φ1 − 2φ2 + φ3]− b3αsin[γ3 − φ3 − 3τΩ] = 0

, (A13)

3d3µΩ− 3a2
2d3µΩ− 3

2 d12d3µΩ− 3
2 d2

2d3µΩ− 3
4 d3

3µΩ− b3αsin [γ3 − φ3 − 3τΩ]−
3a2d1d2µΩcos [φ1 + φ2 − φ3]− 3

4 d1d2
2µΩcos [φ1 − 2φ2 + φ3]− 1

4 d1
3βsin [3φ1 − φ3]−

3a2d1d2βsin [φ1 + φ2 − φ3] +
3
4 d1d2

2βsin [φ1 − 2φ2 + φ3]− 1
4 d1

3µΩcos [3φ1 − φ3] = 0

. (A14)
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