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Abstract: This paper mainly studied the analytical solutions of three types of Van der Pol-Duffing
equations. For a system with parametric excitation frequency, we knew that the ordinary homotopy
analysis method would be unable to find the analytical solution. Thus, we primarily used the
multi-frequency homotopy analysis method (MFHAM). First, the MFHAM was introduced, and the
solution of the system was expressed by constructing auxiliary linear operators. Then, the method
was applied to three specific systems. We compared the numerical solution obtained using the
Runge-Kutta method with the analytical solution to verify the correctness of the latter. Periodic
solutions, with and without time delay, were also compared under the same parameters. The results
demonstrated that it was both effective and correct to use the MFHAM to find analytical solutions to
Van der Pol-Duffing systems, which were classical systems. By comparison, the MFHAM proved to
be effective for time delay systems.

Keywords: multi-frequency homotopy analysis method; Van der Pol-Duffing system; time delay
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1. Introduction

In recent years, time delay-coupled dynamical systems have become an increasingly
important research object. The main reasons for this have been high-tech demands, such as
precision machining, social demands, such as solving traffic jams, and scientific demands
for the development of systems biology. These factors mean that time delays in the process
of system coupling cannot be ignored. The dynamical behavior of differential systems with
time delays has attracted the attention of researchers in many fields, such as mathematics,
physics, mechanical engineering, and biology [1-6]. Hu et al. [7] emphasized singular
perturbation methods. By comparing them with other methods, the authors concluded
that this method could more easily calculate and accurately predict the local dynamics of
systems with time delays near Hopf bifurcation. Sharma [8] studied parameter mismatch
and time delay, showing that they affected the collective dynamics of nonlinear oscillation.
In the context of ecology, they found that the predator—prey mechanism controlled global
interactions, through appropriate time delays and parameter mismatches, to obtain constant
populations. Jin et al. [9] presented an identification approach to time delays in linear
systems. Ning [10] solved the problem of global adaptive control of nonlinear systems with
time delay through the HOPA system method.

The Van der Pol-Duffing system has a long history of application in the physical and
biological sciences [11-13]. For example, Fitzhugh [14] treated the equation as a model
of neuronal action potentials. These equations were also used in seismology to model
two plates in geological faults [15], in addition to applications in physics. In recent years,
period-doubling solutions and quasi-periodic solutions of forced Van der Pol-Duffing
oscillators have also received extensive attention and research. Cui et al. [16] combined
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the homotopy analysis method (HAM) with the multi-scale analysis method to study the
analytical solution of the forced Van der Pol-Duffing oscillators.

The HAM was proposed by Liao [17,18] in 1992. Cui et al. [19] studied its stability in
the Van der Pol-Duffing forced oscillator and periodic solutions. Shahram et al. [20] used
the HAM to study the fourth order nonlinear free vibration of Timoshenko beams. Shukla
et al. [21] proposed an improved HAM to solve quasi-periodic solutions and limit cycles
in a forced Van der Pol-Duffing oscillator. Fu et al. [22] obtained a periodic solution for a
coupled Duffing system using the MFHAM.

In Section 1, we introduced the systems and methods studied in this paper. In Section 2,
we described the process of the MFHAM, which was used to calculate a two-degree-of-
freedom coupled Duffing system. In Sections 3-5, we offered three specific examples. In
Section 6, we provided our summary.

2. Multi-Frequency Homotopy Analysis Method

First, we considered the following two-degree-of-freedom Duffing system:

x| 4 cexf 4+ Fi(x1,x2) = ficos Ot

Xy + cxh + Fo(x1, x2) = facos QF M)

where x(t), x2 () are unknow real functions, F;(x1, x2), F2(x1, x3) are coupling functions,
f1, f> are the amplitudes of excitation, () is the frequency of the parametric excitation, and c
is a known physical parameter.

Based on the MFHAM, we constructed the following n-order auxiliary linear differen-

tial operator
(2) n (2n-2) n (2n—4)
X1 X X X
L ="t + Y 0 +y 02021
n (xz) <x§2n)> igl i <x§2n2)> i;j it x§2n74)

(216 “ 2)
20202 [ *1 2
+i¢fz¢r i (xézn 6)> toor O <x2)
where ;(i = 1,2, ..., n) are the fundamental frequencies.
The characteristic polynomial of Equation (2) is
n
P(A) =] ] (A4 rQi)(A —rOi). ©)]

r=1

The root of the characteristic polynomial in Equation (3) is the frequency under
consideration multiplied by the imaginary unit i, so it was necessary to eliminate the
long-term term formed by any sinusoidal term of the frequency under consideration on the
right side of the differential operator L, (x).

When the solution of the equation contains a constant term, Equation (2) can be written

as follows.
(2n+1) n (2n-1) n (2n-3)
X1 X x ¥
LnJrl (xz) = <x§2n+l)> + igl sz (xEZn—1)> + lg] Q%Q]z <x§2n_3)>

L A202002 x§2n75) no2 (X
F Yy 02020 B +...—|—HQ«< )
idr 1 T\ LY =1 \x

(4)

We constructed the following homotopy expression

(=t (2800 g (1) <o ®)
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where g € [0,1] is the embedding variable,g;o(t)(i = 1,2) are the intial solutions of
x;i(t)(i = 1,2) respectively, and £ is the auxiliary parameter.
Assuming that the power series solution of Equation (1) is

xXi = X0+ qxi1 + g7 xip + - (i =1,2). (6)

Substituting Equation (6) into Equation (5), and then merging the same term of g, we
were able to obtain

0.1, (xl,o —81,o(f)> o, ;

1 i x2,0 — §2,0(t) @

L, (xl,l _gl,O(t)) ~1, (xl,o —gl,o(t)) ﬁN<X1,o>’ 3

1 T\ w21 — g20(t) T\ x20 — g20(t) * X2,0 ®

()

2.1 (xl,z —gl,o(f)> 1 <x1,1 —gl,o(f)> B X2 ‘ 9

T 51\ xp 5 — g00(F) "1\ x21 — g20(t) * dq ©
q=0

Let the solution to Equation (7) be

xio(t) = gio(t) + Ao+ Y Agsin (Ot + ¢y), (10)
i=1

where Ay, A;, ¢;(1 = 1,2, ..., n) are constants.

First, substituting Equations (7) and (10) into Equation (8), and eliminating the secular
terms, we obtained L, 1 (;;) Second, substituting L;, 11 (g) into Equation (2) or Equation
(4), x;(t)(i = 1,2) was obtained. Finally, we obtained the value of Ay, A, ¢;(1 =1,2,...,n)
by solving the equations consisting of secular terms.

In a similar way, x;,(t)(i = 1,2) can be determined one by one. The solution of

Equation (5) was

xi(t) = éljﬁ xi(t,q) = xio(t) + x1(t) + xi0(6) +.... (11)

3. Analyzing the Coupling Van der Pol-Duffing System with MFHAM
We considered the following system by the MFHAM

5&1(1’) — ‘1/1(1 — xlz(t))xl (t) + OCXQ(f) + ‘BX13(t) = fcos (Qt) (12)
Xo(t) — (1 — x2(t)) o () + axy (£) + Px23(t) = feos (Qt)

where the prime denotes the differential with respect to the time ¢, x1(t), x(¢) are unknow
real functions, () is the frequency of the parametric excitation, and y > 0, f is the amplitudes
of excitation.
For the single period, the characteristic polynomial is
3
p(A) = AH (A + Qi) (A —rQi). (13)
r=1

The corresponding auxiliary linear differential operator is

x1 27 o (2O NES (!
Ly = ("1 | + 1402 "1 ) +4004 1, | + 3608 (71 ). (14)
% <) g e x
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Then, we constructed the homotopy expression

X1 q X1 X1
T =L — gL
<x2 67) : (xz) a4 <x2>

. . , 15
_qﬁ(xl(t) —u(1—x1%(8)) %1 (t) + axp(t) + Bx1°(t) — feos Qt) (15)
Xo(t) — u(1 — x22(t)) 22 (t) + axq (t) + Px23(t) — feos Ot
where £ is the auxiliary parameter, and g € [0, 1] is the embedding variable.
Supposing the solution to Equation (12) was
Xi = Xip + %1 + P xip+ o (i =1,2), (16)

then, substituting Equation (16) into Equation (15) and merging the same power terms of g,

we obtained
qo . L ( 1’O> =0, 17
4 X2,0 17)

, 2\ 2 3
1o (fn) 2 (xl,()) n h(%l'o —u(1—x1p )3.61,0 +axpo + Px1° — fcos Qt>‘ 18
q 4 (xm) 4 X2,0 Xo0— MU (l — x2’02)x2,0 +axi0+ IBX2’03 — fcos Ot (18)

Assuming that the solution Equation (17) could be expressed by

x1,0 = a1 + bycos (Ot + ¢1) + bacos (204 + ) + bscos (3Q + ¢3)

, 19
Xo0 = ap +dycos (Ot + 1) + dacos (204 + 72) + dscos (3O + 73) (19

where ay,ay,b;, d;, ¢, vi(i = 1,2,3) are unknown parameters.
Substituting Equations (17) and (19) into Equation (18), we obtained the following equations:

Ly(x1,1) = {—fCos [tQ] + a(az + d1Cos[tQ + v1] + d2Cos[2tQ) 4 ¥2] + d3Cos[3tQ2 + 73])
—b1 2 Cos[tQ + 1] — 4by (Y Cos[2tQ + ¢n] — 93O Cos[3tQ + 3]+
B(a1 + by Cos[tQ + 1] + baCos[2tQ) + o] + b3Cos[3tQ + ¢3])° — , (20)
y(l — (a1 + by Cos[tQ) + 1] + by Cos[2tQ) + ] + b3Cos[3tQ2 + ¢3D2)
(=b1QSin[tQ + ¢1] — 262Q8in[2Q + ] — 3b30Sin[3tQ + ¢3]) }

Ly(x21) = {—fCos [tQ] + B(az + d1Cos[tQ + 1] + d2Cos[2tQ + 75] + d3Cos[3tQ + 73])°
—0%(dy Cos[tQ + 1] + 4d2Cos[2tQ + 2] 4 9d3Cos[3tQ + 73]) +
a(ay + by Cos[tQ + ¢1] + baCos[2tQ) + 2] + b3Cos[3tQY + ¢3]) — . (21)
u (1 — (a2 + d1Cos[tQy + y1] + d2Cos[2tQ + 7] + d3Cos[3tQ) + 73])2>
(—d1QSin[tQ + 71] — 2d>,QSin[2tQ) + 2] — 3d3QSin[3tQ + 3]) i

To eliminate the secular terms in x; 1 (f) (i = 1,2), we expanded the Equations (20) and (21),
obtaining the equations as follows:

b pQ + a2y pQ + 103 uQ + Lo b2 uQ + 101557 uQ + ay by brpQCos [2¢1 — o]+
b30(i b12uCos [3¢y — ¢3] + arbapCos [p1 + ¢y — p3] + %bzzyCos [p1 —2¢ + ¢3])+ (22)
dyaSin [y1 — 1]+ FSin [1] — 3arbibaBSin 291 — po] — 3b12b3Sin By — p3]—
3aybab3 BSin [y + ¢2 — 3] — Sby*baBSin [p1 — 2¢2 + 3] = 0

—2bo Q) + 212 by pQ + by b pQ + 3023 uQ + babs uQ + a1 61> uQCos [2¢1 — o]+
2a1b1b3uQCos [P1 + 2 — @3] + bi1babs pQCos (1 — 2¢2 + ¢3] + daaSin [y2 — o]+, (23)
b1B(3a1b1Sin 2¢1 — o] — 3arbsSin [ + ¢2 — ¢3] + SbabsSin (1 — 2¢2 + ¢3]) =0
—3b3Q + 3a12b3uQ + 301263 Q2 + 302302 + 3037 uQ + 1613 uQCos [3¢1 — 3]+
3a101b,1QCos [Py + ¢2 — ¢3] + 2b1b?uOCos [¢1 — 22 + ¢3] + dsaSin [y3 — ¢3]+ , (24)
101°BSin [3¢1 — ¢3] + 3a1bibafSin (1 + po — ¢3] — Sbi1by?BSin [p1 — 2¢ + 3] = 0
—3a;%by B — VB _ 3p16,28 — 3b1b32B + by — dyaCos [11 — 1] + fCos ] —
3a1b1b2BCos [291 — o] — 3b1°b3BCos [3¢1 — 3] — Ba1babsPCos (1 + 2 — 3] — (25)
31y2b38Cos [p1 — 29 + 3] — mb1bapQSin (291 — ¢o] — 1b12b3uQSin 3¢y — 3]~
arbabapQSin (1 + ¢2 — 3] — 2b22bapQSin [y — 2¢0 + ¢3] = 0
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—3a12by — 3by2by — 22E _ 31,5326 + 4,0 — dyaCos [72 — o] —
301b12BCos [2¢1 — ¢o] — 3a1b1b3Cos [Py + p2 — B3] — SbibabsCos [¢1 — 2 + 3]+, (26)
HO (a6 2Sin 21— ¢a] — 2a1b1bsSin [y + > — 3] + brbabaSin [fn — 22+ gs]) =0
—3a1%b3B — 3b,2b3B — 3by%bap — 22 4+ 9530 — dsaCos [73 — ] —
101°BCos [3¢1 — §3] — 3a1b1b28Cos [P1 + po — p3] — Sb1b2BCos [p1 — 2 + 3]+ (27)
HO(101°Sin [391 — gs] + 3abibySin [pr + g2 — gs] — Fb1627Sinlpr — 22+ gs]) = 0
—dpQ + 02d1pQ + 1P pQ + 3dido?uQ + 3d1ds* uQ + apdidopQCos [21 — 7o)+
1d1%d3pQCos (371 — 3] + a2dad3pQCos [y1 + 72 — 73] + §d2°d3uQCos [y1 — 272 + 73]+
f Sin[y1] — 3axd1d2BSin[2y1 — 72 — %d12d3ﬁ5in[3'n —73]—
3aydrdaSin [11+ 12 — 73] — 3dad3BSin [y1 — 272 + v3] — braSin [y1 —¢1] =0
—2d,4Q) + 2a*dr p Q) + d12d2pQ) + 1dPuQ) + d2d32pQ + a24,*uQCos 21 — 2]+
2a5d1d3pQCos [71 + 72 — 73] + didadspQCos [11 — 272 + 73] + 3a2d1°BSin[2y1 — 2] —, (29)
3ayd1d3BSin[y1 + v2 — 73] + Jd1dadaSinfy1 — 272 + 73] — baaSin[ys — ¢2] = 0
—3d3pQ + 3a22d3 5 Q2 + 3d12dspQ + 3d22dspQ + 3d5°uQ + 1d13uQCos 31 — 3]+
3axd1dapQCos [11 + 72 — 73] + 3d1d22uQCos [y1 — 272 + 73] + 1di®BSin[3v1 — 3]+, (30)
3ayd1daBSin[y1 + 2 — 73] — d1da2BSin [y1 — 272 + 73] — bsaSin[ys — 3] =0
—% — 3d1dy* B — 3dids’ B+ d10? + fCos [11] — BapdydafCos [271 — 72]—
3d12d3BCos [3y1 — 73] — 3a2dad3BCos [y1 + 72 — ¥3) — 3d27d3BCos [11 — 272 + 73] (31)
—b1aCos [y1 — ¢1] — apd1dapQSin|2y; — 2] — %d12d3yQSin[371 —73]— ’
a2dad3pQSin [1 + 2 — 3] — 3a22d1 — 1do?d3uQSin [y1 — 272 + 73] =0
30,2y — 3dr2dap— HZE _ 34,4328 + 4d, 0% — 3apdy2BCos [271 — 7] —
3aydyd3BCos [11+ 12 — 73] — 3d1dad3pCos [y1 — 272 + 73] — baaCos [y2 — o]+ & (32)
121 pQSin[2y1 — 73] — 2a5d1d3pQSin[y1 + 72 — 73] + didadspQSin[yy — 272 + 73] = 0
—32d3B — 3di2dsp — 3dy2dsp — 2B 4 943002 — Ly BCos [By1 — 73] —
3ayd1d28Cos [11 + 72 — 73] — 3d1dr*BCos [v1 — 272 + 3] — baaCos [y3 — 3]+ , (33)
101’ uQSin[3y1 — 73] + BazdydapQSin [y1 + 72 — 73] — 3d1da*pQSin [y1 — 272+ 73] =0

. (298)

—a1x — a23/3 — %azdlzﬁ — %azdzzﬁ — %a2d3zﬁ — %dlzdzﬁcos [271 — '}'2]— (34)
3d1dyd3PCos [y1+ 72 — 73] =0 ’
—ap0 — a13B — 3a101%B — 34102 B — 31657 B — 3b17baBCos 21 — o] — (35)

%b1b2b3ﬁCos [p1+¢2—p3] =0

Eliminating the secular terms, we obtained x;; and x;;, where the set of parameters
a1, 4z, b, d;, i, vi(i = 1,2,3) could be given by Equations (22)—(35), and the solution for x; ;
and x; ;1 could be obtained.

Therefore, the first-order approximate solution of x; and x, was

xi(t) = lﬁz?l (x0 +qx1) = X0 +x;1(i = 1,2). (36)
q

Letting
u=La=38p=1f=30=2, (37)

the system had a single period solution, as shown in Figure 1. This figure was a superposi-
tion of analytical solution and numerical solution. The numerical solution was obtained by
directly calling the command of Mathematica 12.0 version, and the parameter values were
the same as the analytical solution.
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1.5}
1.0}
0.5
"X < 0.0
-0.5|
-1.0/
-1.5,
~15-10-05 00 05 10 15 1000 1020 1040 1060 1080 1100
X1 t
(@) ®)
oooooo MFHAM approximate solution - MFHAM approximate solution
RK solution ~ RKsolution

Figure 1. The single period solution of the coupling Van der Pol-Duffing system whent =0, y =1,
n=4,8=1,f=3and Q = 2. (a) Phase curve; (b) time history response.

For the period-doubling solution, the characteristic polynomial was

A):A§<A+r)<)»r?>. (38)

We used the following corresponding auxiliary linear differential operator

X »(13) 5 [ 1D o (O . (7)
L) = (% 402 (X 4 30030% (%7 ) 444730
X (13) i (11) 16 (9) (7)
2 & 2 2 (@)
Jr370;2708 X%S) 4 48321010 33) 4 2025012 (x'1>

! 16 /
X
2 2 2

Next, we constructed

‘(1) =L7<";> ~an ()

—gh V(l—xl (£))21(t) + axa(t) + px1>(t) — feos QY 40
q xz(t (1 —x2%(t)) 2 (t) + axy () 4+ Bx23(t) — feos Ot
where £ is the auxiliary parameter and g € [0, 1] is the embedding variable.
Assuming that the solution of Equation (12) could be expressed as
X = X +4xin + P xip +- (i =1,2), (41)
then, substituting Equation (41) into Equation (40) and merging the same power terms of g,
then obtained
0. 1,(110) =, 2Y)
P (3) )

X 25 . (43)
hi Xy (1) = (1= x1%(8)) 3 (F) + axz F) + Bx13(t) — feos Qt)
( ) +ax

1(t) + Bxa3(t) — feos Ot
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The solution to Equation (42) can be expressed by

x10 = a1 + e1¢c0s (% + cpo) + bycos (O + ¢1) + epcos (37(” + 4)2)

50 , (44)
+bycos (20 + ¢3) + ezcos (Tt + <P4) + bscos (30 + ¢s)

Xp0 = ap + ficos (% + 70) + dycos (Qt 4 1) + facos (37(“ + 72)

501 (45)
+dycos (202t + y3) + f3cos (T + ’y4> + dzcos (3Q2 + 5)

where a1, a3, b;,d;, e;, fi, §j, fyj(i =1,2,3;j=0,1,2,3,4,5) are unknown parameters.
Substituting Equations (42), (44), and (45) into (43), and eliminating the secular
term in x;1(t)(i = 1,2), we obtained the solution of ay,a, b;, d;, ei, fi, Pj, 'yj(i =1,2,3;
j=1,2,3,4,5).
Taking p = 1,04 = 3.8, =1, f = 3,() = 2, we obtained the double period solution
and found that the system had the double period of movement, as shown in Figure 2.

1 2
1
_ 0
"X < 0
-1
1
-2
-2 1000 1020 1040 1060 1080 1100
2 -1 0 1 2 :
X1 (b)
(@)
000000 MFHAM approximate solution - MFHAM approximate solution
RK solution RK solution

Figure 2. The double period solution of the coupling Van der Pol-Duffing system when T = 0,
u=2008a=1=0,f=07and Q = 0.5. (a) Phase curve; (b) time history response.

4. Analyzing the Time Delay Van der Pol-Duffing System with MFHAM
We considered the following system by the MFHAM

¥(t) - (1 - xZ(t))x(t) +ax(t— 1) + Bx3(t) = feos (Q), (46)

where the prime denotes the differential with respect to the time ¢, x(¢) are unknow real
functions, 7 is the time delay, () is the frequency of the parametric excitation, and y# > 0,
«, B, f are constant physical parameters.
First, for the single period solution, we have the characteristic polynomial
3
p(A) = AT T (A +rQi) (A — rOhi). (47)
r=1

Then, we obtained the corresponding auxiliary linear differential operator

Ly(x) = (x(7)) 1402 (x(S)) + 4904 (x(3)> +360°(x'). (48)
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The homotopy expression was constructed as follows:
) I gx ) — qLa(x)~ (49)
qh(x(t) — p(1 = x2(1))x(¢) (t—T)+ﬁx (t) — feos (OF))
where g € [0,1] is the embedding variable and 7 is the auxiliary parameter.
We were then able to suppose that the solution to Equation (46) is
x:x0+qx1+q2x2+~~~. (50)

Substituting Equation (50) into Equation (49) and combining terms of the same power
of g, we obtained

q°: Ly(x0) =0, (51)

) 171'3 Ly(x1) = La(x0)+ (52)
R(%o(t) — (1 —x0® (1)) %o (t) + axo(t — T) + Bxo°(t) — feos (O)).

We then supposed the solution to Equation (51) to be
xo = a1 + bicos (Ot + ¢1) + bpcos (2Ot + ¢p) + bzcos (3Q + ¢3), (53)

where aq, b;, ¢;(i = 1,2,3) are unknown parameters.
Substituting Equation (53) into Equation (52), we obtained

Ly(x1) = {a(ay +d1Cos[(t — T)Q + ¢1] + d2Cos[2(t — T)Q + ¢2]) +
d3Cos[3(t — T)Q + ¢3]) — 4b, (Y Cos[2tQ + ¢p] — Ib3 OV Cos[3tQ + 3] —
b OPCos[tQ + ¢1] + B(ar + b1Cos[tQ + 1] + b2Cos[2£Q + ¢p] + b3Cos[3tQ + ¢3])° . (54)
~fCos [t0)] — (1~ (a1 + byCos[tQ + 1] + b2CoS[24O) + ] + bCos[3O) + gs])°)
(—b1QSin[tQ + 1] — 262QSin[24Q + o] — 3b3OSin[3tQ + ¢3]) }

Expanding Equation (54) and eliminating the secular terms in x1, we obtained the
following equations:

3bs nQ — 3a;%b3puQ) — %blzbg,]lﬂ - %bzzbwﬂ — %b33y0 - %blr’chos B — 3] —
3a1b1bauQcos [p1 + P2 — ¢3] — %blhzzyﬁcos (1 — 2¢0 + 3] — %bﬁﬁsin [Bp1 — ¢3), (55)
—3ayb1bafsin [P + ¢2 — ¢3] + %blhzzﬂsin [p1 — 2¢2 + ¢3] + bzasin [37Q)) =0

3aybybapsin (b1 + ¢2 — ¢s] — bi*bapQ — 302> Q) — bybs® Q) — ay2puQcos [2¢1 — ¢
—2a1b1b3puQcos [P + P2 — ¢3] — bibabspQcos [p1 — 2¢2 + ¢3] + baasin [2TQ+ (56)
szyQ — 2a12b2y0 — %hlbzb:gﬁsin [471 - 24?2 + 473] - %alblzﬁsin [2471 — (,172} =0
by pQ — b pQ — 1613002 — 1010200 — 10103240 — aybybapQcos 21 — o)
*%blzbg}{QCOS B¢ — ¢3] — %bzzbwﬂcos (1 — 2¢p + ¢p3] — fsin [¢1]+ (57)
3a1b1b2,Bsin [24)] — 4)2] — a1b2b3ycos [(P] +¢2 - 4)3] + %b12b3ﬁsin [3(]51 — (P3]
+3a1babaBsin [y + pa — @3] + Sby2bssin (¢ — 22 + 3] + brasin [tQ] = 0,

3by%b3 + M5B — 95302 + by Beos [3n — gs] + Jb1b2*uQsin g1 — 29 + 3]
+3a1b1b2Bcos [p1 + P2 — ¢3] + %blbzzﬂcos [p1 — 2¢2 + ¢3] + bsacos [3TQY— (58)
ibﬁyﬂsin [34)1 — ¢3] —3a1b1b,uQsin [4)1 + ¢ — ¢3] + 3!112173/5 + %b12b3‘3 =0
301262 + 301262 + 3babs? B — 4by O + Sayby?Beos [2¢1 — o+
3a1b1bsBeos [¢1 + ¢ — 3] + Fb1babspeos [P — 262 + 3] (59)
+byacos 27O — arby 2uQsin 2¢1 — o] + szsﬁ ’
+2a1b1b3pQsin [y + ¢ — p3] — bibabspQsin [pr — 2472 +¢3]=0
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3
PP 4 30165%B — 1P — feos [gn] + Jn bapeos 31 — gl +
3ayb1byBeos [2¢1 — ¢o] + 3arbabscos [p1 + ¢a — 3] + 3a12b1 B
3b2%bsBcos [P — 2 + 3] + bracos [TQ + arbybopQsin [2¢1 — o), (60)
+ib12b3yﬂsin [34)1 — 4)3] + albzbg}lsil’l [4)1 + ¢ — (P3] + %blbzzﬁ
+1022b3uQsin [Py — 22 + 3] = 0
a e + ﬂ13ﬂ + %ﬂlhlzﬁ + %ﬂlbzzﬁ + %ﬂlbg}zﬁ + %blzbzﬂCOS [2(,01 - 472] (61)
+3b12b2Bcos [2¢1 — o] + Sbybabsfcos [¢r + o — ¢3] =0
Eliminating the secular terms, we obtained xj, where the set of parameters ay,b;, ¢;

(i =1,2,3) can be given by Equations (55)—(61).
Therefore, the first-order approximate solution of x was

x = lim (xo + gx1) = X0 + X1. (62)

q—1

Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 3.

We also obtained the single periodic solution for T = 0 under the parameter, as shown
in Figure 4.

1000 1020 1040 1060 1080 1100
t

-2 -1 o 1 2
g (b)
@
000000 MFHAM approximate solution - MFHAM approximate solution
RK solution RK solutionRK

Figure 3. The single period solution of the time delay coupling Van der Pol-Duffing system when
T=00L,u=01a=18=1,f=001and QO = 2. (a) Phase curve; (b) time history response.

X4
o

-2t

@
000000 MFHAM approximate solution =~ - MFHAM approximate solution
RK solution RK solution

Figure 4. The single period solution of the time delay coupling Van der Pol-Duffing system when
T=0,p=01a=1 =1, f=0.01and Q = 2. (a) Phase curve; (b) time history response.
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For the period-doubling solution, the characteristic polynomial is

/\):Ar]i (A+r><)t—r?>. (63)

We used the following corresponding auxiliary linear differential operator

Ly(x) = (x(1® +¥ x(ll))+3023604 (x(g))+44467206 (x(7))

8 10 12 (64)
+ 370;270 (x(s)) + 48326}10 (x(3)) + 2021560 (x)
Next, we constructed
—qh(x(t) — p(1 - t)) x(t ) + txx(t —T)+ ﬁx () = feos (1))’
where £ is the auxiliary parameter, g € [0, 1] is the embedding variable.
We then assumed that the solution of Equation (46) could be expressed as
X =x0+qx +q*x+ . (66)

Substituting Equation (66) into Equation (65) and merging the same power terms of g,
we obtained

qO : L7(X0) = 0, (67)

q' : Ly(x1) = Ly (x0)+ 68)
(%o(t) — u(1 — xo?(t)) xo(t) + axo(t — T) + Pxo®(t) — feos (Q))°

We assumed that the solution Equation (67) could be expressed by

Xo = a1 + e1c0s (% + 470) + bycos (Ot + ¢1) + epcos (%Qt + 492)

, (69)
+bycos (20t + ¢3) + ezcos (@ + ¢4) + bscos (3Ot + ¢p5)
where aq, b;, ¢;, 47j(i =1,2,3;j=1,2,3,4,5) are unknown parameters.

Substituting Equations (67) and (69) into (68), and eliminating the secular term in
x1(t), we obtained the solution a1, b;, ¢;, (/)]-(i =1,2,3,j=0,1,2,3,4,5).

Taking u =1, =3.8,=1,f =3,Q0 = 2,7 = 0.01, we obtained the double period
solution and found that the system had the double period of movement, as shown in
Figure 5. We also obtained the double periodic solution for T = 0 under this parameter,
as shown in Figure 6. Therefore, we found that the existence of time delay affected the
solution of the system.

15 o
1.0 ' 4
0.5 1
0.0
- - 0
-05 =
=1.0 =i
-1.5 -2
-2.0 1000 1020 1040 1060 1080 1100
-2 -1 0 1 2 t
X1 (b)
()
000000 MFHAM approximate solution - MFHAM approximate solution
RK solution RK solution

Figure 5. The double period solution of the time delay Van der Pol-Duffing system when 7 = 0.1,
u=008a=1 =0, f=071and Q = 0.5. (a) Phase curve; (b) time history response.
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0.0: [
~0.5]
~1.0!
_15;
_20!

N
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—=

|
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-
-~
-
=

1000 1020 1040 1060 1080 1100
{

X1 (b)

@)
000000 MFHAM approximate solution - MFHAM approximate solution
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Figure 6. The double period solution of the time delay Van der Pol-Duffing system when 7 = 0,
u=008a=1 =0, f=071and Q = 0.5. (a) Phase curve; (b) time history response.

5. Analyzing the Time Delay Coupling Van der Pol-Duffing System with MFHAM

The system was as follows

X1 (8) = (1= 2% (8) %1 (#) + axa(t — 7) + Bx1>(t) = feos () (70)
Xo(t) — u(1— x2(t))x22() + axy (t — T) + Bx23(t) = feos (Q).

For the single period, the characteristic polynomial is
3
p(A) = AT T (A +rQi) (A — Q). (71)
r=1
The corresponding auxiliary linear differential operator is
x x\7) e e X!
Ly ( 1) = (1) | +14Q?( 5 | +490H Tl | +360° < }) : (72)
X2 X5 E9) X5 *2

Then, we constructed the homotopy expression

X1 g\ _ X1 X1
T =1L —qgL
(o §) =) - (3)

. . 7.
ok X1(t) — p(1 = x12(t)) a1 (t) + axa(t — T) 4 Bx13(t) — feos Ot 3)
T\ sa2(t) — (1 = 122() d2(t) + axy (£ — T) + pro(t) — feos O
where £ is the auxiliary parameter and g € [0, 1] is the embedding variable.
We supposed the solution to Equation (70) to be
Xi = g+ qxip + i+ (i =1,2). (74)

Substituting Equation (74) into Equation (73) and merging the same power terms of g,

we obtained
0.,(*0) =0, 75
7 4(3{2,0) 75)
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1.1 xl,l) - (xl,O)
1 4(962,1 4 X2,0

.. . . 7
ih X1(t) = p(1 = x12(t)) &1 (t) + axp(t — 7) 4 Bx1°(t) — feosQt (76)
Xo(t) — p(1 — x2(t)) 2 (t) + axy (t — T) 4+ Bx23(t) — feosQt
We then assumed that the solution Equation (75) could be expressed by
x10 = a1 + bycos (O + ¢1) + bacos (2O + ¢) + bcos (3Ot + ¢3) 77)

Xo0 = a + dycos (Ot + 1) + dacos (2Qt + 7y2) + dzcos (3Ot + 73)’

where ay, a3, b;, d;, ¢, vi(i = 1,2,3) are unknown parameters.
Substituting Equations (75) and (77) into Equation (76), we obtained the following equations

Ly(x11) = {a(az + d1Cos[(t — T)Q + 11] + d2Cos[2(t — T)Q + 2] + d3Cos[3(t — T)QA + 73])
—b1O*Cos[tQ + P1] — 452 Cos[2tQ) + o] — 9b302Cos[3tQ + 3] — fCos [tQ]+
B(ay + by Cos[tQ + 1] + brCos[2tQ) + ¢hn] + b3Cos[3tQY + ¢3])° — . (78)
(1= (@14 B Cos[tQ + 1] + b2Cos (240 + ] + b Cos[3tQ + ¢s])*)
(=b1QSin[tQ + ¢1] — 26,Q8in[2Q + ] — 3b30Sin[3tQ + ¢3]) }

Ly(x21) = {—fCos [tQ] + B(az + d1Cos[tQ + 71] + d2Cos[2tQ + 2] + d3Cos[3tQ + 73])>
— 0% (d1Cos[tQ + 1] + 4d2Cos[2tQ + 2] + 9d3Cos[3tQ + 73]) +
a(ay + b1Cos[(t — T)Q + ¢1] + b2Cos[2(t — T)Q + o] + b3Cos[3(t — T)QA + Pp3])— . (79)
U (1 — (az 4 d1Cos[tQ + 1] + d2Cos[2tQ) + 73] + d3Cos[3tQ) + 73})2)
(—d1QSin[tQ + 1] — 2d2QSin[2tQ + 7] — 3d3QSin[3tQ + 43]) } i

Expanding Equations (78) and (79), then eliminating the secular term in Equations (78) and (79),
we obtained the Equations (Al)-(A14) in Appendix A.

Eliminating the secular terms, we obtained x1 1 and x; 1, where the set of parameters
ay,ay,b;,d;, ¢, vi(i = 1,2,3) can be given by Equations (A1)-(A14).

Therefore, the first-order approximate solution of x; and x, was

xi(t) = lin (xo +qx1) = i + x;2 (i = 1,2). (80)
q

Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 7.
We also obtained the single periodic solution for T = 0 under this parameter, as shown
in Figure 8.

X1
o

1000 1020 1040 1060 1080 1100
t

X (b)
(a)
000000 MFHAM approximate solution - MFHAM approximate solution
RK solution RK solution

Figure 7. The single period solution of the time delay Van der Pol-Duffing system when 7 = 0.01,
u=050a0=4 =1, f=3and Q = 2. (a) Phase curve; (b) time history response.
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‘ i
1.5}
1.0f
0.5¢
< 0.0
-0.5},
-1.0}
-1.5¢ ]
1000 1020 1040 1060 1080 1100
~151.60.5.0051.01.5 (b) t
X2
(a)
oooooo MFHAM approximate solution - MFHAM approximate solution
RK solution ~ RKsolution

Figure 8. The single period solution of the time delay Van der Pol-Duffing system when 7 = 0,
u=05ua0=4 =1, f=3and Q = 2. (a) Phase curve; (b) time history response.

For the period-doubling solution, the characteristic polynomial is

A):Aﬁl (x\ﬂ)(A?). 81)

We used the following corresponding auxiliary linear differential operator as

x x(13) 2 x(ll) " (9) P (7)
L 1) = 1 + 9107 [ *1 + 30030 + 444730
7 X7 (13) 4 x(ll) ( ) x(7)
& G\ NG 2 , 2/ (8
4+ 3703708 <x1 ) + 48321010( ) 42025012 <x1>
32 (5) (3) 16 X!
X2 X, 2

Next, we constructed
X1 q 1 X1
r L L -
(xZ ‘7) 7 <x2> at <x2>

83
ﬁ(xl(f) p(l- x1 £))%1(t) + axa(t — ) + B> (t) — fCOSQt>' &
1 (1) — u (1 — x22(t)) x2(t) + axy (t — T) + B3 (t) — feosQt
where £ is the auxiliary parameter and g € [0, 1] is the embedding variable.
We assumed that the solution of Equation (70) could be expressed as
X = Xjo+qxi1 + g0+ (i =1,2). (84)

Substituting Equation (84) into Equation (83) and merging the same power terms of g,

we obtained
qO : Ly <x1,0> =0, (85)

#or () = ()
+h<5&1(t) — (1= x12(8)) 1 (F) + axa(t — 7) + Br1>(t) —fCOSQf)
Xo(t) — p (1 — x2(t)) 2 (t) + axy (t — T) 4+ Bx23(t) — feosQt

(86)
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We assumed that the solution Equation (85) can be expressed by

x10 = a1 + e1¢c0s (% + cpo) + bycos (O + ¢1) + epcos (3Tnt + ([)2)

, (87)
+bycos (20 + ¢3) + ezcos (% + ¢4) + bscos (3Ot + ¢p5)

Xp0 = ap + ficos (% + ’yg) +dycos (Ot + 1) + facos (%Qt + 72)

501 (88)
+dycos (202t + y3) + f3cos (T + ’y4> + dzcos (3Q2 + 5)

where a1, a3, b;,d;, e;, fi, §j, 'yj(i =1,2,3;j=1,2,3,4,5) are unknown parameters.

Substituting Equations (85), (87) and (88) into Equation (86), and eliminating the
secular term in x; 1 (f) (i = 1,2), we obtained the solution a1, a2, b;, d;, e;, fi, ®js 'yj(i =1,2,3;
j=0,1,2,3,4,5). Hence, the double period solution was obtained, as shown in Figure 9.
We also obtained the double periodic solution for T = 0 under this parameter, as shown
in Figure 10. Therefore, we found that the existence of time delay affected the solution
of the system.

2l
20
1L
'] L
- N N
< O [© < 0
-1
-1}
-2 ¥ . v v Y ]
V= 1000 1010 1020 1030 1040 1050
2L, | oo © ] {
-2 -1 0 1 2 (b)
X2
@
oooooo MFHAM approximate solution - MFHAM approximate solution
RK solution RK solution

Figure 9. The double period solution of the time delay coupling Van der Pol-Duffing system when
T=00L,u=01a=18=0,f=05and Q) = 0.499. (a) Phase curve; (b) time history response.

2 L
2F
1+
1F
<0 X o
-1f
-1+
_20 . ‘ ‘ ‘ ‘ E
) 1000 1010 1020 1030 1040 1050
2 0 1 2 t
“ (b)
@
000000 MFHAM approximate solution - MFHAM approximate solution
RK solution RK solution

Figure 10. The double period solution of the time delay coupling Van der Pol-Duffing system when
T=0,pu=01a=1=0, f=05and O = 0.499. (a) Phase curve; (b) time history response.
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6. Conclusions

In this paper, the Van der Pol-Duffing systems contained parametric excitation frequen-
cies. As such, the ordinary HAM was unable to solve the periodic solution of the systems.
Therefore, we chose MFHAM to solve the periodic solution of the system, and applied the
method to the coupled Van der Pol-Duffing system, single-degree-of-freedom delay Van
der Pol-Duffing system, and Van der Pol-Duffing system with coupled time delay. Then,
the solution obtained by this method was compared with the Runge-Kutta method. The
results showed that the solutions obtained by the MFHAM and the Runge-Kutta method
were consistent, and also showed that the time history curve obtained by the MFHAM and
the Runge-Kutta method were consistent. Thus, the effectiveness of the MFHAM to study
time delay-coupled nonlinear dynamical systems was demonstrated. We also compared
the system with and without time delay under the same parameters, and found that the
time delay affected the solution of the system and the dynamic behavior of the system.
Thus, it was necessary to consider the time delay of the system.
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Appendix A

For the steps described in time delay coupling Van der Pol-Duffing system system, we
can obtain the equations as follows:

31261 B+ 218 + 3b15y2B + 3b1b3% — 51O — feos [y] + 3arbibaBeos 291 — 7]+
3b1%b3Bcos [371 — 73] + 3a1babsPeos [y1 + 72 — 13] + b bsPcos [11 — 272 + 3]+ (A1)
diacos [y1 — ¢1 + TQ] 4+ a1bibpuQsin 271 — 72| + ibfbsyﬂsin 8711 — 73]+ ’
a1bybspQsin [y1 + 72 — 73] + 1o’ bapQsin [y1 — 272+ 73] =0

%b]zbz‘B + %bzb;;zﬁ — 4b202 + ﬂ]hlzﬁCOS [2’)/1 — ’)/z] — b] b2b3ysin [’yl — 2’)/2 + ’)/3]"1‘
3a1b1bs3Bcos [y1+ 72 — v3] + %b1b2b3[$cos [v1 — 292 + 73] + d2acos [y2 — ¢ 4+ 27QY, (AZ)
3
fulblzyﬂsin [271 — 2] + 2a1bybspsin [y1 + y2 — 93] + 3a12b2 B + # =0

3ﬂ12b3,5 + 3b33ﬁ — 9b302 + l1713‘BCOS [3’)/] — ’)/3] + éblbzzyﬂsin [')’1 - 2’}/2 + 73]+
! 3 i
3a1b1baBcos [y1+ 72 — v3] + %blhzzﬁcos [v1 — 292 + 73] + dzacos [y1 — ¢3 +31Q)—, (A3)

10,3 uQsin [3y1 — 73] — 3arbibapQsin [y1 + 92 — 73] + 35,263 + 3b3%b3 = 0

by Q) — a1bybapQcos (21 — 2] — fsin [y1] — %bzzbgyﬁcos [v1 =272+ 73—

%blzbwﬂcos [3y1 — 3] — a1babspcos [y1 + v2 — 3] — %lnbzzyQ - %b1b32y0 (A4)
+3a1b1bafsin 21 — 2] + %b12b3ﬁsin [371 — 3] + 3a1babzBsin [y1 + v2 — 3] ’
+%b22b3/3sin [Y1 — 272 + 73] + drasin [y1 — ¢1 + TQ] — a12b Q) — %blsyQ =0
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2bruQ) + daasin [ya — o +27QY) — %bzsyQ — bzbgzyQ — alblzchos 271 — 72]—
2a1byb3pQcos [1 + 72 — 73] — bibabspQcos [y1 — 292 + 73] — Sa1byBsin 271 — 12]+, (A5)
3aybibsBsin [y1 +v2 — 3] — %b1b2b3ﬁsin 71— 272+ 73] — Zalzbzy() — b12b2}l0 =0

3bs pQ — 3627 b — 36530 — 1613 uQcos (31 — 3] + dsasin [y1 — ¢3 +37Q) -

3a1b1bypQcos [y1 + 12 — 73] — $b1ba*uOQcos [y1 — 272 + 93] — Jbi’Bsin [3y1 — 73] —, (A6)
3a1b1byBsin [’)’] + 72— ’Ys} + %lﬁ bzzﬁsin [’)/1 — 27 + ’)’3] — 3a12b3y0 - %512b3}l0 =0

3ay%d1 8 + 3dfﬁ + 3d1dy* B — dy O — feos [p1] + Bardidafeos [2¢1 — o]+
3d1*dsBeos (3¢ — ¢s] + 3dadseos (@1 + ¢o — @3] + Fda>dspeos (g1 + 29 — ¢s] (A7)
+biacos [y1 — ¢p1 — TQ + axd1dauQsin 21 — ¢o] + %d12d3]405in [B¢1 — ¢3]
+a2d2d3stin [<P1 + ¢ — 4’3] + %d22d3y05i71 [¢1 —2¢ + ([)3] + %dldszﬁ =0

3a2%do B — 4dy (0 — dydadspQsin [Py — 2¢2 + 3] + Saxdy?Beos [2¢1 — ¢a] + @ju
3aydydsBeos [p1 + 2 — ¢3] + %dldzdg,‘[%cos [p1 — 2¢2 + ¢3] + barxcos [y2 — po — 27QY, (A8)
*Ilzdlz}lﬂsin [24)1 — (Pz} + 2ﬂ2d1d3]405i1’l [([J] + ¢ — 4)3] + %d]Zdzﬁ + %dzdg,zﬁ =0

31122113/5 + %d]zdsﬁ + @ — 9d302 + %d]sﬁCOS [34)] — 4)3] — %dﬁyﬁsin [3471 — 4)3}
3ayxdydyBeos [¢1 + ¢ — 3] + %dldzzﬁcos (1 — 2¢2 + ¢p3] + bsacos [y3 — 3 — 3TQY, (A9)
+3dy2d3B — Bard1dopQsin (1 + o — 3] + Sd1do’uQsin [p1 — 24 + 3] = 0

dipQ) — %dldzzy() — %d1d32;40 — apd1dauQdcos [2¢1 — ¢o] — %dlzdwﬂcos [B3p1 — ¢3]
—a2dadspQcos [¢1 + o — 3] — Ldo?dapQecos [p1 — 2¢2 + ¢3] — 1di Q) (A10)
+3aydydyPsin (291 — o] + 3di>dsPsin [3p1 — 3] + Fdo daPsin [y + 29 — 3]
+3dod3Bsin @1 + ¢ — @3] — brasin [y — ¢1 — TQ] — ax2d pQ — fsin [¢1] =0

ZdzyQ — %dzsyﬁ — d2d32}l0 — azdlzyQ cos [2471 — (Pz] — d1d2d3y0cos [4)1 —2¢ + 4)3]
—2apdd31Qcos [P1 + ¢o — 3] — 2a2%d Q) — d12d2y0 - %d1d2d3ﬁsin [p1 — 2¢2 + ¢3] . (A11)
+3u2d1d3ﬁsin [‘Pl + 472 — 4)3] — %ﬂ2d12ﬂsi1’l [2(])1 — (Pz] — széSiTl [’)’2 — 4)2 — ZTQ} = O

3d3}l0 — %d22d3}10 — %dg,SVQ + 43d1d22ﬁsin [4)1 - 2([)2 + ¢3] - %d13}lQCOS [34)1 — 4)3]
—3apdydypQcos [p1 + 2 — P3] — %dldzzyﬂcos (1 —2¢0 + 3] — %dﬁﬁsin B¢ — ¢3) (A12)
73a2d1d2ﬁsin [(Pl + ¢ — (]73] — bzasin [’)’3 —¢3 — 3TQ] — 3&22113]10 — %dlzdg,}lﬂ =0

3dapQ) — 3a22d3u Q) — 3d1%dspQ) — 3do%dspQ — 3d3>uQ — 1diuQcos 3¢y — 3]

3axdydauQcos|r + 2 — ¢3] — %d13ﬁsin[3¢1 — 3] — %dldzzyﬂcos[(pl —2¢p + ¢3]— (A13)
Baxdidafsin(pr + ¢o — 3] + Sdido? Bsin|dr — 24 + 3] — baasin[ys — ¢p3 — 37Q =0

3d3pQ) — 3ay2d3pQ) — 3d12d3puQ — 3dy2dapQ) — 3d5°uQ — baasin [y3 — ¢3 — 37Q)) -
3apdidapQicos [p1 + o — P3] — %dldzzchos (1 —2¢p + 3] — %dﬁﬁsin [Bp1 — P3]—- (A14)
3axdidaBsin [¢1 + o — ¢3] + Sdida?Bsin [p1 — 20 + pa] — Ld1>uQcos [3¢1 — ¢3] = 0
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